Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Computational Optimization ofMagnetically Enhanced CCP PlasmaUniformity for Disk Etch Applications    Vladimir Kudriavtsev...
Summary          Think Lean – Create Value
Magnetic Field Line Uniformity Analogy                            -improve magnetic line angle                            ...
Two Configurations       Initial                            Optimized – Rev1                                              ...
CF4 Chemistry Model (HPEM)             Think Lean – Create Value
K Pole Magscans    Close Distance                                       62.5 mm away      View from bottom                ...
Magnetized CCP   • 2-dimensional HPEM Hybrid Model of Ar Plasma   • Electron energy equation for bulk electrons   • Contin...
ELECTRON ENERGY TRANSPORT 3                                      5                      ∂ ne kTe  / ∂t = S (Te ) − L...
PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS    • Continuity, momentum and energy equations are solved for each species ...
Initial ConfigurationCF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet direction: Horizontal right. 125mm distance from subs...
Initial ConfigurationCF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet direction: Horizontal right. 125mm distance from subs...
Initial ConfigurationCF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet direction: Horizontal right. 125mm distance from subs...
Optimal Rev1CF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet: Horizontal right. 125mm from substrate to magnet, 113mm gap i...
Optimal Rev1CF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet: Horizontal right. 125mm from substrate to magnet, 113mm gap i...
Optimal Rev1CF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet: Horizontal right. 125mm from substrate to magnet, 113mm gap i...
Comparison – Plasma Density NeCF4 gas 50sccm, 100mTorr, 100W CCP power.Decreasing the distance from magnet to substrate, w...
Comparison – F radical number densityCF4 gas 50sccm, 100mTorr, 100W CCP power.Decreasing the distance from magnet to subst...
Comparison – CF2 polymer number densityCF4 gas 50sccm, 100mTorr, 100W CCP power.Decreasing the distance from magnet to sub...
Comparison- Radial Profiles       CF4 gas 50sccm, 100mTorr, 100W CCP power.       Decreasing the distance from magnet to s...
Uniformity Initial Configuration      R range: from inner edge of the substrate to the outer edge of the substrate.       ...
Uniformity Initial Configuration 50sccm, 100mTorr, 100W CCP power. R range: from inner edge of the substrate to the outer ...
Uniformity – Rev 1 (CF4)R range: from inner edge of the substrate to the outer edge of the substrate.                     ...
Uniformity Rev 1 (CF4)R range: from 0 to the outer edge of the powered electrode.                                         ...
Summary   Plasma uniformity improves with increase in plasma gap   (chamber height) while keeping substrate to magnet   di...
Phase II Optimization workWiden Kpole magnetic steel zone => expand source widthRemove magnetic steel enclosure, expand ma...
Further K-Pole OptimizationR is from inner radius of substrate to outer radius of substrate.                              ...
Further Source OptimizationR is from inner radius of substrate to outer radius of substrate.                              ...
Magnet Inclination Influence (different source)                                           current                     Angl...
ConclusionsComputational optimization of magnetically enhanced CCP plasmasource was conducted, leading to progressive impr...
Supplemental MaterialsAr Plasma Results     Think Lean – Create Value
Experimental & Computational  Superposition (Ar plasma)     B field         Think   Lean – Create species                 ...
50 mm top to substrate                       distance           5 mtorr                     Zone of plasma light collapses...
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
Upcoming SlideShare
Loading in …5
×

Simulation of Magnetically Confined Plasma for Etch Applications

631 views

Published on

Simulation of Magnetically Confined Plasma for HDD Etch Applications, DTR Magnetic Media

  • Be the first to comment

  • Be the first to like this

Simulation of Magnetically Confined Plasma for Etch Applications

  1. 1. Computational Optimization ofMagnetically Enhanced CCP PlasmaUniformity for Disk Etch Applications Vladimir Kudriavtsev, Wenli Collison Huong Nguyen, Pat Ward, Michael Barnes, Mark Kushner 62nd Annual Gaseous Electronics Plasma Conference GEC 09 - American Physical Society October, 2009 Think Lean – Create Value
  2. 2. Summary Think Lean – Create Value
  3. 3. Magnetic Field Line Uniformity Analogy -improve magnetic line angle uniformity and desired cross-section and you will improve plasma uniformity -best way to do it to increase magnet to substrate distance, however that weakens corresponding magnetic field Think Lean – Create Value
  4. 4. Two Configurations Initial Optimized – Rev1 HM H HM H HM=62.5…125 mm, H=50 mm HM=125 mm, H=113 mm Magnet moves up/down Plasma gap increases, ground to electrode area increased Think Lean – Create Value
  5. 5. CF4 Chemistry Model (HPEM) Think Lean – Create Value
  6. 6. K Pole Magscans Close Distance 62.5 mm away View from bottom Magnetic steel enclosure Magnets Think Lean – Create Value
  7. 7. Magnetized CCP • 2-dimensional HPEM Hybrid Model of Ar Plasma • Electron energy equation for bulk electrons • Continuity, Momentum and Energy (temperature) equations for all neutral and ion species. • Poisson equation for electrostatic potential •Gas phase reactions: •Surface reactions: AR + E > AR* + E AR + E > AR* + E Ar* > Ar AR + E > AR^ + E + E Ar^ > Ar AR* + E > AR^ + E + E AR* + AR* > AR^ + AR + E AR* + E > AR + E AR^ + AR > AR + AR^ Ar^-ion Think Lean – Create Value
  8. 8. ELECTRON ENERGY TRANSPORT 3  5 ∂ ne kTe  / ∂t = S (Te ) − L(Te ) − ∇ ⋅  Φ kTe − κ (Te ) ⋅ ∇Te  + S EB 2  2  Φ = qne µ e ⋅ E − D ⋅ ∇ne B field affected transport S(Te) = Power deposition from electric fields L(Te) = Electron power loss due to collisions Φ = Electron flux κ(Te) = Electron thermal conductivity tensor SEB = Power source source from beam electrons• All transport coefficients are tensors:  α 2 + Br2 αBz + Br Bθ − αBθ + Br Bz  mν m 1   A = Ao r 2   − αBz + Br Bθ qα  α 2 + B   α 2 + Bθ2 αBr + Bθ Bz      − αBθ + Br Bz − αBr + Bθ Bz α 2 + Bz2   α= (iω +ν m ) , Ao = isotropic q/m Think Lean – Create Value
  9. 9. PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS • Continuity, momentum and energy equations are solved for each species (with jump conditions at boundaries) ∂ Ni r = −∇ ⋅ ( N i vi ) + Si + S EB ∂t r∂ ( N i vi ) 1 rr qi N i r r r ∂t = ∇(kN iTi ) − ∇ ⋅ (N i vi vi ) + mi mi ( ) E + vi × B − ∇ ⋅ µ i mj r r −∑ N i N j (vi − v j ) ij ν j mi + m j∂ ( N iε i ) Nqν 2 + ∇ ⋅ Q i + Pi ∇ ⋅ U i + ∇ ⋅ ( N i U iε i ) = i i i 2 2 E2 ∂t mi (ν + ω ) i 2 N i qi 2 mij + Es + ∑ 3 N i N j Rij k B (T j − Ti ) ± ∑ 3 N i N j Rij k BT j miν i j mi + m j j • Implicit solution of Poisson’s equation  r  ( ∇ ⋅ ε ∇Φ(t + ∆t ) = - ρ s + ∑ qi N i - ∆t ⋅ ∑ q i∇ ⋅ φi  )  i i  Think Lean – Create Value
  10. 10. Initial ConfigurationCF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet direction: Horizontal right. 125mm distance from substrate to magnet.Electron density. -10 E -5 2.6E+10 1cm above the substrate 2.3E+10 2.0E+10 1.7E+10 1.4E+10 Z (cm) 0 1.1E+10 8.0E+09 4E+10 5.0E+09 2.0E+09 3.5E+10 E 3E+10 5 2.5E+10 E 2E+10 10 1.5E+10 -10 -5 0 5 10 1E+10 1.5 2 2.5 R (cm) 3 R (cm) Think Lean – Create Value
  11. 11. Initial ConfigurationCF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet direction: Horizontal right. 125mm distance from substrate to magnet.F radical density. -10 F 1.1E+13 1E+13 -5 9E+12 8E+12 7E+12 6E+12 5E+12 Z (cm) 4E+12 0 3E+12 2E+12 1E+12 5 10 -10 -5 0 5 10 R (cm) Think Lean – Create Value
  12. 12. Initial ConfigurationCF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet direction: Horizontal right. 125mm distance from substrate to magnet.Plasma potential. -10 P-POT -5 60 46 31 17 3 Z (cm) -11 0 -26 -40 5 10 -10 -5 0 5 10 R (cm) Think Lean – Create Value
  13. 13. Optimal Rev1CF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet: Horizontal right. 125mm from substrate to magnet, 113mm gap in plasma zone.Electron Density. 0 E 5.5E+10 5.0E+10 4.5E+10 5 4.0E+10 Z (cm) 3.5E+10 6E+10 3.0E+10 2.5E+10 5.5E+10 2.0E+10 E 1.5E+10 10 5E+10 1.0E+10 5.0E+09 4.5E+10 E 4E+10 15 3.5E+10 3E+10 -10 -5 0 5 10 2.5E+10 R (cm) 2E+10 1.5 2 2.5 3 R (cm) 1cm below the substrate Think Lean – Create Value
  14. 14. Optimal Rev1CF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet: Horizontal right. 125mm from substrate to magnet, 113mm gap in plasma zone.CF and CF2 densities. 0 0 CF2 CF 2.4E+13 2.0E+13 2.2E+13 1.8E+13 2.0E+13 1.6E+13 5 1.8E+13 5 Z (cm) 1.4E+13 1.6E+13 Z (cm) 1.2E+13 1.4E+13 1.0E+13 1.2E+13 8.0E+12 1.0E+13 6.0E+12 8.0E+12 4.0E+12 10 10 6.0E+12 2.0E+12 4.0E+12 2.0E+12 15 15 -10 -5 0 5 10 -10 -5 0 5 10 R (cm) R (cm) Think Lean – Create Value
  15. 15. Optimal Rev1CF4 gas 50sccm, 100mTorr, 100W CCP power.Magnet: Horizontal right. 125mm from substrate to magnet, 113mm gap in plasma zone.F radical density and plasma potential. 0 0 F P-POT 9.0E+12 20 8.0E+12 10 7.0E+12 0 5 6.0E+12 5 Z (cm) -10 5.0E+12 Z (cm) -20 4.0E+12 -30 3.0E+12 2.0E+12 -40 1.0E+12 -50 10 -60 10 -70 15 15 -10 -5 0 5 10 R (cm) -10 -5 0 5 10 R (cm) Think Lean – Create Value
  16. 16. Comparison – Plasma Density NeCF4 gas 50sccm, 100mTorr, 100W CCP power.Decreasing the distance from magnet to substrate, while keep 113mm gap in plasma zone. Rev.1 Config E 0 5.50E+10 E 5.08E+10 5.5E+10 0 4.67E+10 0 4.7E+10 E 4.25E+10 3.8E+10 3.83E+10 3.0E+10 5.5E+10 3.42E+10 2.2E+10 5.0E+10 5 3.00E+10 1.3E+10 4.5E+10 2.58E+10 Z (cm) 5.0E+09 5 4.0E+10 2.17E+10 Z (cm) 5 3.5E+10 1.75E+10 Z (cm) 3.0E+10 1.33E+10 2.5E+10 9.17E+09 2.0E+10 5.00E+09 1.5E+10 10 10 1.0E+10 10 5.0E+09 15 15 15 -10 -5 0 5 10 -10 -5 0 5 10 R (cm) -10 -5 0 5 10 R (cm) R (cm) 136mm 125mm 113mm 0 0 0 E E E 5.50E+10 4.5E+10 5.05E+10 4E+10 5.50E+10 4.59E+10 5.00E+10 3.5E+10 4.14E+10 4.50E+10 5 3E+10 4.00E+10 3.68E+10 5 3.23E+10 2.5E+10 5 3.50E+10 2E+10 2.77E+10 3.00E+10 1.5E+10 Z (cm) 2.32E+10 2.50E+10 Z (cm) 1.86E+10 1E+10 2.00E+10 Z (cm) 1.41E+10 5E+09 1.50E+10 9.55E+09 1.00E+10 5.00E+09 10 5.00E+09 10 10 15 15 15 -10 -5 0 5 10 -10 -5 0 5 10 R (cm) R (cm) -10 -5 0 5 10 R (cm) 92.5mm 74mm No magnet, 92.5mm Think Lean – Create Value
  17. 17. Comparison – F radical number densityCF4 gas 50sccm, 100mTorr, 100W CCP power.Decreasing the distance from magnet to substrate, while keep 113mm gap in plasma zone. Rev.1 Config F 1.20E+13 0 F 0 1.10E+13 0 1.00E+13 1.1E+13 9.00E+12 F 1E+13 8.00E+12 9E+12 9.0E+12 8E+12 7.00E+12 8.0E+12 7E+12 6.00E+12 7.0E+12 5 6E+12 5 5.00E+12 5 Z (cm) 6.0E+12 5E+12 Z (cm) 4.00E+12 Z (cm) 5.0E+12 4E+12 3.00E+12 4.0E+12 3E+12 2.00E+12 3.0E+12 2E+12 1.00E+12 2.0E+12 10 1E+12 1.0E+12 10 10 15 15 15 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 R (cm) R (cm) R (cm) 136mm 125mm 113mm 0 0 0 F F F 1.1E+13 1.5E+13 1E+13 1E+13 9E+12 1.4E+13 9E+12 8E+12 5 1.3E+13 8E+12 7E+12 5 1.2E+13 7E+12 6E+12 1.1E+13 5 6E+12 5E+12 1E+13 5E+12 4E+12 4E+12 9E+12 Z (cm) 8E+12 Z (cm) 3E+12 3E+12 Z (cm) 2E+12 10 2E+12 7E+12 1E+12 1E+12 6E+12 5E+12 10 4E+12 10 3E+12 2E+12 15 1E+12 15 15 20 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 R (cm) R (cm) R (cm) 92.5mm 74mm No magnet, 92.5mm Think Lean – Create Value
  18. 18. Comparison – CF2 polymer number densityCF4 gas 50sccm, 100mTorr, 100W CCP power.Decreasing the distance from magnet to substrate, while keep 113mm gap in plasma zone. Rev.1 Config CF2 0 CF2 2.40E+13 0 2.20E+13 2.4E+13 2.00E+13 2.2E+13 1.80E+13 2E+13 1.60E+13 1.8E+13 1.40E+13 1.6E+13 0 5 1.4E+13 1.20E+13 5 1.00E+13 1.2E+13 Z (cm) CF2 Z (cm) 8.00E+12 1E+13 6.00E+12 2.4E+13 8E+12 4.00E+12 2.2E+13 6E+12 2.00E+12 2.0E+13 10 4E+12 5 1.8E+13 2E+12 Z (cm) 10 1.6E+13 1.4E+13 1.2E+13 1.0E+13 8.0E+12 15 10 6.0E+12 15 4.0E+12 2.0E+12 -10 -5 0 5 10 -10 -5 0 5 10 R (cm) 15 R (cm) -10 -5 0 5 10 136mm 125mmR (cm) 113mm 0 0 0 CF2 CF2 2.4E+13 CF2 2.6E+13 2.2E+13 2.6E+13 2.4E+13 2.4E+13 2E+13 2.2E+13 2.2E+13 1.8E+13 5 2E+13 5 2E+13 5 1.6E+13 1.8E+13 1.8E+13 1.4E+13 1.6E+13 1.6E+13 1.4E+13 1.2E+13 Z (cm) 1.4E+13 1.2E+13 1E+13 Z (cm) 1.2E+13 1E+13 8E+12 Z (cm) 8E+12 1E+13 6E+12 10 6E+12 8E+12 10 4E+12 4E+12 6E+12 2E+12 2E+12 10 4E+12 2E+12 15 15 -10 -5 0 5 10 15 R (cm) 20 -10 -5 0 5 10 R (cm) -10 -5 0 5 10 R (cm) 92.5mm 74mm No magnet, 92.5mm Think Lean – Create Value
  19. 19. Comparison- Radial Profiles CF4 gas 50sccm, 100mTorr, 100W CCP power. Decreasing the distance from magnet to substrate while keep 113mm gap in plasma zone. Electron density at 1cm below the substrate. R is from inner radius of substrate to outer radius of substrate. distance from magnet to substrate 136mm 125mm 113mm 92.5mm 74mm 5E+10 5E+10 5E+10 5E+10 5E+10 4.5E+10 E E E 4.5E+10 E 4.5E+10 E4.5E+10 4.5E+10 4E+10 4E+10 4E+10 4E+10 4E+10 3.5E+10 E 3.5E+10 E3.5E+10 3.5E+10 3.5E+10 E E E 3E+10 3E+10 3E+10 3E+10 3E+10 2.5E+10 2.5E+10 2.5E+102.5E+10 2.5E+10 2E+10 2E+10 2E+10 1.5 2 2.5 3 2E+10 2E+10 1.5 2 2.5 3 1.5 2 2.5 3 R (cm) 1.5 2 2.5 3 1.5 2 2.5 3 R (cm) R (cm) R (cm) R (cm) 136mm 125mm 113mm 92.5mm 74mm 3E+11 3E+11 3E+11 3E+11 3E+11 2.5E+11 E 2.5E+11 E 2.5E+11 E 2.5E+11 E 2.5E+11 E 2E+11 2E+11 2E+11 2E+11 2E+11 1.5E+11 E 1.5E+11 E 1.5E+11 E 1.5E+11 E 1.5E+11 E 1E+11 1E+11 1E+11 1E+11 1E+11 5E+10 5E+10 5E+10 5E+10 5E+10 0 0 0 0 1 2 3 4 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0 0 1 2 3 4 R (cm) 0 0.5 1 1.5 2 2.5 3 3.5 4 0 1 2 3 4 R (cm) R (cm) R (cm) R (cm) Think Lean – Create Value
  20. 20. Uniformity Initial Configuration R range: from inner edge of the substrate to the outer edge of the substrate. Uniformity% Uniformity% Min Ne Max Ne Mean Ne (Stdev/Mean) (Max-Min)/2/MeanKpole_CF4 with magnet, 62.5mm distance,50mm gap, 50sccm, 100mTorr, 100W, 300G 1.59E+10 2.37E+10 2.02E+10 13.6 19.3 InitialKpole_CF4 with magnet, 125mm distance, Distance to magnet increased, uniformity gets worse50mm gap, 50sccm, 100mTorr, 100W, 35G 1.44E+10 3.64E+10 2.65E+10 26.1 41.5Kpole_CF4 with magnet, 92.5mm distance, If gap is increased, uniformity gets better80mm gap, 50sccm, 100mTorr, 100W, 90G . 3.24E+10 4.71E+10 3.90E+10 12.2 18.8Kpole_CF4 with magnet, 125mm distance, If gap is increased & distance, uniformity gets better113mm gap, 50sccm, 100mTorr, 100W, 35G . 3.65E+10 4.58E+10 4.13E+10 6.96 11.3 R.1OptKpole_Ar with magnet, 62.5mm distance, AR50mm gap, 30sccm, 5mTorr, 200W, 300G 8.63E+10 9.76E+10 9.32E+10 4.16 6.02Kpole_Ar with magnet, 125mm distance,50mm gap, 30sccm, 5mTorr, 200W, 35G AR 9.61E+10 1.11E+11 1.06E+11 4.68 7.00Kpole_Ar with magnet, 125mm distance,113mm gap, 30sccm, 5mTorr, 200W, 35G 7.74E+10 1.008E+11 9.071E+10 8.28 12.89 AR Think Lean – Create Value
  21. 21. Uniformity Initial Configuration 50sccm, 100mTorr, 100W CCP power. R range: from inner edge of the substrate to the outer edge of the substrate. Uniformity% Uniformity% Min Ne Max Ne Mean Ne (Stdev/Mean) (Max-Min)/2/MeanKpole_CF4, no magent, 125mm from magnet No Magto substrate, 50mm gap in plasma zone. 1.70E+10 2.41E+10 2.05E+10 10.4 17.3Kpole_CF4 with magnet, 125mm from magnet Initialto substrate, 50mm gap in plasma zone. 1.44E+10 3.64E+10 2.65E+10 26.1 41.5Kpole_CF4 with magnet, 125mm from magnetto substrate, 113mm gap in plasma zone. 3.65E+10 4.58E+10 4.13E+10 6.96 11.3Kpole_CF4 with magnet, 62.5mm from magnetto substrate, 50mm gap in plasma zone. 1.59E+10 2.37E+10 2.02E+10 13.6 19.3Kpole_Ar with magnet, 125mm from magnet tosubstrate, 50mm gap in plasma zone. AR 1.35E+11 1.61E+11 1.54E+11 5.4 8.4 Think Lean – Create Value
  22. 22. Uniformity – Rev 1 (CF4)R range: from inner edge of the substrate to the outer edge of the substrate. Uniformity% Uniformity% Min Ne Max Ne Mean Ne (Stdev/Mean) (Max-Min)/2/Mean Kpole_CF4 with magnet, 136mm distance, 113mm gap, 50sccm, 100mTorr, 100W, 26G . 3.45E+10 3.76E+10 3.66E+10 2.73 4.3 Kpole_CF4 with magnet, 125mm distance, 113mm gap, 50sccm, Rev.1 Opt 100mTorr, 100W, 35G . 3.65E+10 4.58E+10 4.13E+10 6.96 11.3 Kpole_CF4 with magnet, 113mm distance, 113mm gap, 50sccm, 100mTorr, 100W, 50G 3.44E+10 4.54E+10 4.02E+10 8.13 13.7 Kpole_CF4 with magnet, 92.5mm distance, 113mm gap, 50sccm, 100mTorr, 100W, 90G 3.18E+10 4.23E+10 3.60E+10 9.17 14.6 Kpole_CF4 with magnet, 74mm distance, 113mm gap, 50sccm, 100mTorr, 100W, 190G 2.62E+10 4.04E+10 3.24E+10 13.6 21.9 Kpole_CF4 without magnet, 92.5mm distance, 113mm gap, No Magnet 50sccm, 100mTorr, 100W 4.47E+10 4.89E+10 4.74E+10 2.94 4.5 Think Lean – Create Value
  23. 23. Uniformity Rev 1 (CF4)R range: from 0 to the outer edge of the powered electrode. Uniformity% Uniformity% Voltage Min Ne Max Ne Mean Ne (Stdev/Mean) (Max-Min)/2/Mean drop(V)*Kpole_CF4 with magnet, 136mmdistance, 113mm gap, 50sccm,100mTorr, 100W, 26G . 2.97E+10 3.91E+10 3.63E+10 6.84 12.9 73.50Kpole_CF4 with magnet, 125mmdistance, 113mm gap, 50sccm, Rev.1 Opt100mTorr, 100W, 35G . 3.25E+10 5.69E+10 4.37E+10 16.3 27.9 81.82Kpole_CF4 with magnet, 113mmdistance, 113mm gap, 50sccm,100mTorr, 100W, 50G 2.84E+10 6.39E+10 4.31E+10 21.5 41.2 81.3Kpole_CF4 with magnet, 92.5mmdistance, 113mm gap, 50sccm,100mTorr, 100W, 90G 2.74E+10 2.09E+11 5.05E+10 82.6 179.88 83.4Kpole_CF4 with magnet, 74mmdistance, 113mm gap, 50sccm,100mTorr, 100W, 190G 2.20E+10 2.56E+11 4.89E+10 98.7 238.77 96.4Kpole_CF4 without magnet,92.5mm distance, 113mm gap, No Mag50sccm, 100mTorr, 100W 4.08E+10 4.90E+10 4.69E+10 5.22 8.65 61.8 Think Lean – Create Value
  24. 24. Summary Plasma uniformity improves with increase in plasma gap (chamber height) while keeping substrate to magnet distance constant Plasma uniformity improves as magnet is moved away from the substrate (for fixed chamber dimensions) Plasma uniformity without magnetic field enhancement is higher Simultaneous increase in plasma chamber height (plasma volume, ground area) with increase in substrate to magnet distance produces sharp improvement in plasma uniformity Think Lean – Create Value
  25. 25. Phase II Optimization workWiden Kpole magnetic steel zone => expand source widthRemove magnetic steel enclosure, expand magnetic field widerRemove powered electrode area in the center, to match disk geometry ceramic Electrode (disk with the hole) Think Lean – Create Value
  26. 26. Further K-Pole OptimizationR is from inner radius of substrate to outer radius of substrate. Uniformity% Uniformity% Min Ne Max Ne Mean Ne (Stdev/Mean) (Max-Min)/2/Mean Kpole_CF4 with magnet, 125mm distance, 113mm gap, 50sccm, Rev.1 Opt 100mTorr, 100W, 35G . 3.65E+10 4.58E+10 4.13E+10 6.96 11.3 Kpole_CF4 with magnet, 125mm distance, 113mm gap, 50sccm, 100mTorr, 100W, 50G . Larger magnetic steel. 3.09E+10 4.84E+10 3.94E+10 13.4 22.2 Kpole_CF4 with magnet, 125mm distance, 113mm gap, 50sccm, 100mTorr, 100W, 30G . No ++ Magnetic steel. 3.30E+10 3.85E+10 3.60E+10 4.57 7.7 Kpole_CF4 with magnet, 113mm distance, 113mm gap, 50sccm, 100mTorr, 100W, 50G 3.44E+10 4.54E+10 4.02E+10 8.13 13.7 Kpole_CF4 with magnet, 113mm distance, 113mm gap, 50sccm, 100mTorr, 100W, 42G, no + magnetic steel. 3.50E+10 4.27E+10 3.95E+10 5.75 9.8 Think Lean – Create Value
  27. 27. Further Source OptimizationR is from inner radius of substrate to outer radius of substrate. Uniformity% Uniformity% Min Ne Max Ne Mean Ne (Stdev/Mean) (Max-Min)/2/Mean Kpole_CF4 with magnet, 125mm distance, 113mm gap, 50sccm, 100mTorr, 100W, 35G . 3.65E+10 4.58E+10 4.13E+10 6.96 11.3 Rev.1 Opt Kpole_CF4 with magnet, 125mm distance, 113mm gap, 50sccm, + 100mTorr, 100W, 16G. Weaker B field. 2.84E+10 3.40E+10 3.18E+10 6.18 8.9 Kpole_CF4 with magnet, 125mm distance, 113mm gap, 50sccm, +++ 100mTorr, 100W, 35G. No powered electrode at the center. 4.59E+10 5.03E+10 4.86E+10 2.46 4.5 Rev.2 Optimized Think Lean – Create Value
  28. 28. Magnet Inclination Influence (different source) current Angled magnets Uniformity (Stdev/Mean) Uniformity (measure 1cm below substrate from R=0 to R=5cm) 80.00% 70.00% 60.00% 50.00% 40.00% 30.00% 20.00% 10.00% 0.00% 0 20 40 60 80 100 120 140 160 180 incline B angle New results for Hybrid ICP/CCP plasma source show significant effect of magnet inclination on plasma uniformity. Explore effects of adjustable magnet inclination in Kpole source configuration with objective to tune uniformity without sacrificing plasma density Think Lean – Create Value
  29. 29. ConclusionsComputational optimization of magnetically enhanced CCP plasmasource was conducted, leading to progressive improvement of thesource design, with plasma uniformity reduced from 26% down to 2.5%Two conceptual source chamber layouts were considered, with secondbeing clearly more beneficial. This layout has increased plasma gap andratio of ground area to electrode area and considerably weakermagnetic field near substrate.Further promise is shown due to electrode modification (removingelectrode material in the center) and in adaptive adjustment of Kpolemagnet angles (currently angle is zero). Think Lean – Create Value
  30. 30. Supplemental MaterialsAr Plasma Results Think Lean – Create Value
  31. 31. Experimental & Computational Superposition (Ar plasma) B field Think Lean – Create species AR* Value
  32. 32. 50 mm top to substrate distance 5 mtorr Zone of plasma light collapses towards the electrode (sheath) as P increasedThink Lean – Create Value 100 mtorr

×