SlideShare a Scribd company logo
1 of 56
Download to read offline
STATIC AND VIBRATION ANALYSIS OF CABLE
STRUCTURES USING ISOGEOMETRIC
APPROACH
Thai Son
Sejong University
Advanced Structural Engineering Laboratory
MASTER’S THESIS DEFENSE
November 20, 2014
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 1 / 55
Contents
1 Introduction
Analyses of cable structures
Goals and Objectives
2 IGA-based analysis of cable structures
Isogeometric analysis
Cable formulation
NURBS-based discretization
Form-finding of cable structures
Finite element models
3 Numerical examples
Static analysis
Free vibration analysis
4 Conclusions and remarks
Conclusions
Remarks
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 2 / 55
Introduction
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 3 / 55
Cable structures
Distinctive characteristics:
Light weight
High strength to weigh ratio
Aesthetic appearance
Low-cost construction
Drawbacks:
Highly geometrical non-linearity
Unstable and sensitive to the effects of external loads
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 4 / 55
Analysis of cable structures
Up until the present, there are 2 prevailing approaches to analyze the
cable structures’ behavior:
Exact elastic catenary expression
Finite element analysis
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 5 / 55
Elastic catenary expression
Features
Firstly introduced by Obrien and Francis in 1964
Based on mathematical analysis
The geometries are assumed to be represented by parabolic
curves
Advantage
The nonlinear effects are considered accurately with a small
number of elements
Disadvantages
Only acceptable when small curvatures are considered
Having problems in cases extremely high pretension cables are
taken into account
Having some restrictions due to the limitation of mathematical
expression
For vibration analysis, the complexities arise due to various cases
in reality make the general explicit solutions cannot be obtained
Generally restrictive to apply in engineering practices
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 6 / 55
Traditional finite element approach
Features
Normally employed Lagrangian functions to represent the
geometry and the displacement fields
Advantage
Versatile with no limitation and restriction regarding geometries
and loading conditions
Disadvantages
Need a fine mesh to generate the smooth curve of cables
Difficult to obtained the solutions for cables having a relatively
large sag
Mesh generation is generally time-consuming and costly
Generally less attractive to investigators recently
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 7 / 55
Motivations
Propose an alternative approach, which can take advantage of the
versatility of FEA but also derive the precise geometry of the
structures
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 8 / 55
Motivations
Propose an alternative approach, which can take advantage of the
versatility of FEA but also derive the precise geometry of the
structures
=⇒ ISOGEOMETRIC ANALYSIS APPROACH
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 8 / 55
Recently Isogeometric approach
Bridge the gap between finite element analysis (FEA) and
conventional computer-aided design tools
Employ B-splines, NURBS or currently T-splines as the attractive
alternatives of interpolation functions
Inherit the isoparametric concept from FEA, in which both physical
geometry and dependent variables of problems are expressed by
the same basis
Have the ability to present exact geometry of object, which is
virtually approximated in traditional FEA
Provide advantages in computational cost concerning to accuracy
with the newly introduced k-refinement scheme
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 9 / 55
Objectives
Develop the NURBS-based isogeometric cable element as an
alternative approach to deal with static and free vibration
problems of cable structures
Employ the NURBS basis functions to model exactly the geometry
of cable structures and the displacement field
Utilize the penalty method to handle the form-finding for
determining the initial equilibrium geometries
Perform the refinement tests and compare the converged
solutions with those obtained form previous research to
demonstrate the accuracy and the efficiency of proposed
approach
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 10 / 55
IGA-based analysis of cable
structures
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 11 / 55
Knot vector and Basis functions
Knot vector
Ξ = ξ1, ξ2, ξ3, ..., ξi, ..., ξn+p+1 , ξi ≤ ξi+1
B-spline basis functions
Ni,0 (ξ) =
1 ξi ≤ ξ < ξi+1
0 otherwise
Ni,p =
ξ − ξi
ξi+p − ξi
Ni,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1
Ni,p−1 (ξ)
0
0.25
0.5
0.75
1
0 0.25 0.5 0.75 1
1,3N
2,3N 3,3N 4,3N 5,3N
6,3N
7,3N 8,3N
9,3N
Ξ={0, 0, 0, 0, 0.25, 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1}
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 12 / 55
Knot vector and Basis functions
The characteristics of B-spline basis functions:
constituting the partition of unity, which means
n
1
Ni,p (ξ) = 1
linear independent, which means
n
1
αiNi,p (ξ) = 0 ⇔ αi = 0, i = 1, ..., n
having compact support
Compared to shape function in traditional FEA, the B-splines are also:
non-negative over the entire parameter space
Cp−1 continuity across the element boundaries when knot vector
is uniform.
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 13 / 55
Control points and B-spline curves
B-spline curves are constructed with respect to a set of control points
(Pi, i=1,...,n) by a linear combination of basis functions:
C (ξ) =


x
y
z

 (ξ) =
n
i=1
PiNi,p (ξ) =
n
i=1


xi
yi
zi

 Ni,p (ξ)
1C
2C
3C
4C
5C
6C
7C
8C
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 14 / 55
Refinement schemes
h-refinement
additional knots are inserted to split the knot span, thence
rendering more elements
both physical geometry and parameterization are not changed
the number of control point is increased; besides, the continuities
over the newly created knots are similar to the inner original ones
0
0.25
0.5
0.75
1
0 0.5 1
0
0.25
0.5
0.75
1
0 0.25 0.5 0.75 1
{0, 0, 0, 0.5, 1, 1, 1} ⇒ {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 15 / 55
Refinement schemes
p-refinement
elevates polynomial order of basis functions by increasing the
multiplicity of each knot value by one
the geometry and parameterization of the physical curve are not
changed
the number of basis function and control points are increased
the number of elements and the continuity across inner knots
remains the same
0
0.25
0.5
0.75
1
0 0.25 0.5 0.75 1
0
0.25
0.5
0.75
1
0 0.25 0.5 0.75 1
{0, 0, 0.5, 1, 1} ⇒ {0, 0, 0, 0.5, 0.5, 1, 1, 1}
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 16 / 55
Refinement schemes
k-refinement
newly introduced refinement schemes compared to FEA
both order of basic functions and the continuity across the knot
values (element boundaries) are increased
change the control points but still maintain the original geometry
and the parameterization of physical domain
0
0.25
0.5
0.75
1
0 0.25 0.5 0.75 1
0
0.25
0.5
0.75
1
0 0.25 0.5 0.75 1
{0, 0, 0.5, 1, 1} ⇒ {0, 0, 0, 0.5, 1, 1, 1}
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 17 / 55
Non-Uniform Rational B-splines (NURBS)
NURBS is the generalized form of B-spline in the frame work of
partition of unity with weighted values wi
Rp
i (ξ) =
Ni,p (ξ) wi
W (ξ)
=
Ni,p (ξ) wi
n
i=1 Ni,p (ξ)wi
While B-splines only can represent conical sections or curves,
NURBS have the ability to describe arbitrary physical domain
The NURBS and B-splines basis functions share the same tensor
product nature and refinement schemes
The NURBS curves are defined by a linear combination of the
NURBS basis functions and coefficients (control points) over the
parametric space
C (ξ) =
n
i=1
PiRp
i (ξ)
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 18 / 55
Incremental equation
The initial undeformed configuration (C0), the last known deformed
configuration (C1), and the current deformed configuration (C2)
0
C0
C1
C2
0
ix 00
ii d xx +0
dS
1
0
0
ii ux + 1
0
0
ii ux + d x d ui i0
0 1
+ +1
dS
2
0
0
ii ux + 2
0
0
ii ux + d x d ui i0
0 2
+ +2
dS
0
x2 ,1
x2 ,2
x2
0
x1 ,1
x1 ,2
x1
0
x3 ,1
x3 ,2
x3
1
dS
2
= d0
xi + d1
0 ui · d0
xi + d1
0 ui
2
dS
2
= d0
xi + d2
0 ui · d0
xi + d2
0 ui
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 19 / 55
Incremental equation
0ε =
1
2
2dS
2
− 1dS
2
(0dS)
2
=0e+0η
where 0e and 0η
0e =
d0xi
0dS
dui
0dS
+
dui
0dS
d1
0 ui
0dS
0η =
1
2
dui
0dS
dui
0dS
Incremental equation
0S
Aρ¨uiδuidS +
0S
AE0eδ (0e) dS +
0S
A1
0Pδ (0η) dS
= δ 2
0R −
0S
A1
0Pδ (0e) dS
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 20 / 55
NURBS-based discretization
Geometry and displacement fields
xi =
ncp
α=1
Rα (ξ) (xc
i )α, (i = 1, 2, 3) or x = Rxc
ui =
ncp
α=1
Rα (ξ) (uc
i )α; (i = 1, 2, 3) or u = Ruc
in which
xc = x1
1 , x1
2 , x1
3 , ..., xncp
1 , xncp
2 , xncp
3
T
uc = u1
1, u1
2, u1
3, ..., uncp
1 , uncp
2 , uncp
3
T
R =


R1 0 0
0 R1 0
0 0 R1
...
Rncp 0 0
0 Rncp 0
0 0 Rncp


Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 21 / 55
NURBS-based discretization
0e =
1
(J)2
xT
c R,T
ξ R,ξ +1
0 uT
c R,T
ξ R,ξ · uc = BLuc
δ (0e) =
1
(J)2
xT
c R,T
ξ R,ξ +1
0 uT
c R,T
ξ R,ξ · δuc = BLδuc
0η =
1
2(J)2
uT
c R,T
ξ R,ξ · uc =
1
2
uT
c BT
NLBNLuc
δ (0η) =
1
(J)2
R,T
ξ R,ξ · δuc = BT
NLBNLδuc
J =
dS
dξ
=
3
i=1
ncp
α=1
R,α
ξ (ξ) (xc
i )α
2
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 22 / 55
NURBS-based discretization
m¨u + (kL + kNL) u =2
0 f −1
0 f
where
m = A
ξi+1
ξi
ρRT
RJdξ
kL = EA
ξi+1
ξi
BT
L BLJdξ
kNL = A
ξi+1
ξi
1
0PBT
NLBNLJdξ
1
0f = A
ξi+1
ξi
1
0PBT
L Jdξ
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 23 / 55
Form-finding of cable structures
The penalty method has been developed to solve the multi-point
constraints equations in FEA. For a global static problem:
kgug = fg
Global stiffness matrix
kg(∈ Ra×a
) =
ne
1
(kL + kNL)
Global force vector
fg =
ne
1
2
0f − 1
0f
Assume that the system has m constraint equations:
cug − ˆu = 0
in which
c(∈ Rm×a) is the constant matrix (m < a)
ˆu is the m-dimensional constant vector
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 24 / 55
Form-finding of cable structures
The penalty equation is written as
p = cug − ˆu
in which p = 0 imply all constraint equations are satisfied
The total potential energy of the system can be reformed as:
Π =
1
2
uT
g kug − uT
g f +
1
2
pT
∆p
where ∆ is the m × m diagonal matrix of chosen constant numbers or
so-called penalty numbers α, (∆ii = α).
δΠ = 0 ⇒ kg + cT
∆c uc = fg + cT
∆ˆu
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 25 / 55
Form-finding of cable structures
Starting configuration with
unstressed length 0
S
Initial equilibrium configuration
under self-weight
yû
xû
Prescribed
displacements
Firstly, the cable is modeled in the state of straight, stress-free
one.
Then, the prescribed displacements are applied to supports to
obtain the determined geometrical location
This procedure is carried out according to the incremental
scheme.
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 26 / 55
Finite element models
For static analysis
kg + cT
∆c uc = fg + cT
∆ˆu
For free vibration analysis
mg ¨uc + kg + cT
∆c uc = 0
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 27 / 55
Numerical examples
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 28 / 55
Isolated cable under concentrated load
121.92 m
152.4 m
304.8 m
30.48 m
x
P = 35.586 kN
z
L1 L2
1
2
3
Table: Properties of cable
Data Value
Cross-sectional area (A) 548.4 mm2
Elastic modulus (E) 131 kN/mm2
Unstressed length (L1) 125.88 m
Unstressed length (L2) 186.85 m
Self-weight (w) 46.12 kN/m
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 29 / 55
Isolated cable under concentrated load
P = 35.586 kN
1
2
3
7.93
ξ=0 ξL ξ=1
C0
ξL = L1/(L1 + L2)
Ξ = {(0)p+1, 2ξL/ne, ..., 2kξL/ne, (ξL)p, 2(1 − ξL)/ne, ...
, 2k(1 − ξL)/ne, (1)p+1}; k = ne/2
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 30 / 55
Isolated cable under concentrated load
Researcher Approach Displacements
Vertical Horizontal
Jayaraman and Knudson Elastic straight -5.4710 -0.8450
Jayaraman and Knudson Elastic catenary -5.6260 -0.8590
Yang and Tsay Elastic catenary -5.6250 -0.8590
Thai and Kim Elastic catenary -5.6260 -0.8590
Salehi Ahmad Abad et al. Discrete elastic catenary -5.5920 -0.8550
Continuous elastic catenary -5.6260 -0.8590
Discrete elastic catenary with point load -5.8300 -0.8730
This study Isogeometric cable element
Order No. of element
1 2 -5.8037 -0.8923
1 4 -5.6686 -0.8674
1 8 -5.6351 -0.8612
1 16 -5.6268 -0.8597
1 32 -5.6247 -0.8593
1 64 -5.6241 -0.8592
1 128 -5.6240 -0.8592
1 256 -5.6240 -0.8592
2 2 -5.6665 -0.8689
2 4 -5.6281 -0.8602
2 8 -5.6241 -0.8593
2 16 -5.6239 -0.8592
2 32 -5.6239 -0.8592
2 64 -5.6239 -0.8592
3 2 -5.6239 -0.8592
3 4 -5.6239 -0.8592
3 8 -5.6239 -0.8592
3 16 -5.6239 -0.8592
3 32 -5.6239 -0.8592
3 64 -5.6239 -0.8592
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 31 / 55
5-cables net
Table: Structure’s properties
Data Value
Axial stiffness (EA)
Elastic 5000 daN
Inelastic ∞
Cable length (L)
L1 1.2887 m
L2 1.2887 m
L3 0.5912 m
L4 1.8740 m
L5 2.0978 m
Self-weight (w) 2.0 daN/m
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 32 / 55
5-cables net
Firstly, each cable is
initially described as a
straight and free stressed
segment
Ξ = { (0)p+1, 1/ne, 2/ne,...,
(ne-1)/ne, (1)p+1 }
Nodes x y z
P3 0.0000 0.0000 0.0000
P4 1.0000 0.0000 0.0000
P5 0.0000 1.0000 0.0000
P6 1.0000 1.0000 1.0000
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 33 / 55
5-cables net
Researcher Node Unelastic Elastic
x y z x y z
P3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
P4 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
P5 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
P6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Greco et al. P1 0.5000 0.2500 -1.1143 0.4999 0.2499 -1.1148
P2 0.5000 0.7500 -0.9954 0.4994 0.7500 -0.9963
Isogeometric cable element
Order No. of element
1 1
P1 0.5000 0.2093 -1.1693 0.5000 0.2092 -1.1697
P2 0.5395 0.7838 -1.0355 0.5386 0.7839 -1.0363
1 2
P1 0.5007 0.2449 -1.1410 0.5007 0.2448 -1.1414
P2 0.5137 0.7577 -1.0163 0.5131 0.7577 -1.0171
1 4
P1 0.5003 0.2491 -1.1237 0.5003 0.2491 -1.1241
P2 0.5032 0.7525 -1.0036 0.5027 0.7524 -1.0043
1 8
P1 0.5001 0.2498 -1.1169 0.5000 0.2498 -1.1173
P2 0.5005 0.7507 -0.9980 0.5001 0.7507 -0.9987
1 16
P1 0.5000 0.2499 -1.1150 0.5000 0.2499 -1.1154
P2 0.5000 0.7502 -0.9963 0.4996 0.7502 -0.9970
1 32
P1 0.5000 0.2500 -1.1146 0.4999 0.2499 -1.1150
P2 0.4999 0.7501 -0.9958 0.4995 0.7501 -0.9965
2 1
P1 0.5003 0.2475 -1.1204 0.5001 0.2077 -1.1682
P2 0.5034 0.7527 -0.9996 0.5386 0.7814 -1.0339
2 2
P1 0.5001 0.2079 -1.1658 0.5002 0.2091 -1.1620
P2 0.5389 0.7801 -1.0309 0.5355 0.7789 -1.0280
2 4
P1 0.5005 0.2130 -1.1545 0.5007 0.2202 -1.1462
P2 0.5296 0.7769 -1.0220 0.5204 0.7726 -1.0165
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 34 / 55
5-cables net
Researcher Node Unelastic Elastic
x y z x y z
P3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
P4 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
P5 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
P6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Greco et al. P1 0.5000 0.2500 -1.1143 0.4999 0.2499 -1.1148
P2 0.5000 0.7500 -0.9954 0.4994 0.7500 -0.9963
Isogeometric cable element
Order No. of element
2 8
P1 0.5007 0.2316 -1.1356 0.5005 0.2417 -1.1272
P2 0.5129 0.7648 -1.0090 0.5067 0.7573 -1.0043
2 16
P1 0.5003 0.2475 -1.1204 0.5001 0.2493 -1.1175
P2 0.5034 0.7527 -0.9996 0.5010 0.7509 -0.9981
2 32
P1 0.5001 0.2499 -1.1154 0.5000 0.2499 -1.1151
P2 0.5004 0.7503 -0.9963 0.4996 0.7501 -0.9966
3 1
P1 0.5005 0.2491 -1.1331 0.5005 0.2491 -1.1333
P2 0.5087 0.7546 -1.0111 0.5083 0.7546 -1.0116
3 2
P1 0.5005 0.2462 -1.1329 0.5006 0.2468 -1.1322
P2 0.5078 0.7570 -1.0092 0.5094 0.7544 -1.0086
3 4
P1 0.5004 0.2493 -1.1238 0.5003 0.2492 -1.1221
P2 0.5052 0.7518 -1.0025 0.5036 0.7518 -1.0018
3 8
P1 0.5001 0.2499 -1.1162 0.5000 0.2499 -1.1159
P2 0.5005 0.7503 -0.9971 0.4999 0.7502 -0.9972
3 16
P1 0.5000 0.2500 -1.1146 0.4999 0.2499 -1.1149
P2 0.5000 0.7501 -0.9960 0.4995 0.7501 -0.9964
3 32 P1 0.5000 0.2500 -1.1145 0.4999 0.2499 -1.1148
P2 0.5000 0.7501 -0.9959 0.4995 0.7501 -0.9964
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 35 / 55
Single span cables
Table: Knot vectors for refinement strategies
Refinement strategy No. of element Order Knot vector
h-refinement ne p∗ (0)p+1, 1/ne, 2/ne, ..., (ne − 1)/ne, (1)p+1
p-refinement n∗
e p (0)p+1, (1/ne)p, (2/ne)p, ..., ((ne − 1)/ne)p, (1)p+1
k-refinement n∗
e p (0)p+1, 1/ne, 2/ne, ..., (ne − 1)/ne, (1)p+1
Note: * is a fixed value
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 36 / 55
Single span cables
Table: First 10 natural frequencies of single span cable (AE/mgl=1)obtained
from h-refinement
Order No. of elements Mode number
(p) (ne) 1 2 3 4 5 6 7 8 9 10
1 1 - - - - - - - - - -
2 2.9072 3.4107 - - - - - - - -
4 2.2517 3.0646 4.4873 5.7506 8.8941 12.7687 - - - -
8 2.0817 2.9901 3.9515 5.4914 6.0603 7.8206 8.9666 9.5934 12.5640 13.1790
16 2.0697 2.9736 3.8558 5.3081 5.7973 7.2685 8.6271 9.0377 10.8416 12.3923
32 2.0664 2.9693 3.8302 5.2540 5.7351 7.0835 8.5256 8.7089 10.2809 11.8373
64 2.0656 2.9682 3.8237 5.2399 5.7198 7.0366 8.4908 8.6342 10.1366 11.6278
2 1 3.2676 3.7138 - - - - - - - -
2 2.4001 3.2194 5.8614 7.0817 - - - - - -
4 2.1768 3.0165 4.3005 5.7950 6.4284 9.2443 12.2898 14.6199 - -
8 2.0751 2.9718 3.8655 5.3252 5.8420 7.4705 8.5994 9.4951 11.3043 12.2998
16 2.0658 2.9680 3.8233 5.2392 5.7193 7.0398 8.4927 8.6436 10.1812 11.7278
32 2.0654 2.9679 3.8217 5.2353 5.7149 7.0217 8.4776 8.6128 10.0921 11.5631
64 2.0653 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6116 10.0886 11.5568
3 1 2.4663 3.2292 5.8418 6.8394 - - - - - -
2 2.3233 3.0771 4.5029 6.1879 8.8315 10.6741 - - - -
4 2.1185 2.9908 4.0544 5.6260 6.8055 8.7888 8.9651 12.3486 16.6902 19.9130
8 2.0684 2.9689 3.8377 5.2755 5.7683 7.3018 8.5477 9.3457 11.3653 12.1999
16 2.0654 2.9679 3.8216 5.2354 5.7151 7.0231 8.4796 8.6164 10.1096 11.6083
32 2.0654 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6116 10.0885 11.5567
64 2.0654 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6115 10.0884 11.5565
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 37 / 55
Single span cables
Table: First 10 natural frequencies of single span cable (AE/mgl=1) obtained
from p-refinement
No. of elements Order Mode number
(ne) (p) 1 2 3 4 5 6 7 8 9 10
1 1 - - - - - - - - - -
2 3.2676 3.7138 - - - - - - - -
3 2.4663 3.2292 5.8418 6.8394
2 1 2.9072 3.4107 - - - - - - - -
2 2.3302 3.0731 4.4788 6.0783 9.1840 12.9009 - - - -
3 2.1364 3.0006 4.1414 5.6124 6.5785 8.8102 9.8508 13.2553 15.4267 24.2254
4 1 2.2517 3.0646 4.4873 5.7506 8.8941 12.7687 - - - -
2 2.0802 2.9879 3.9932 5.4386 6.1106 7.8126 8.8206 10.5660 12.7856 13.5716
3 2.0709 2.9687 3.8364 5.2852 5.7756 7.2402 8.5462 9.0612 11.0815 12.2131
8 1 2.0817 2.9901 3.9515 5.4914 6.0603 7.8206 8.9666 9.5934 12.5640 13.1790
2 2.0688 2.9696 3.8371 5.2677 5.7529 7.1481 8.5391 8.8454 10.4923 12.1775
3 2.0655 2.9679 3.8222 5.2362 5.7160 7.0298 8.4851 8.6283 10.1365 11.6421
16 1 2.0697 2.9736 3.8558 5.3081 5.7973 7.2685 8.6271 9.0377 10.8416 12.3923
2 2.0656 2.9680 3.8228 5.2377 5.7176 7.0315 8.4858 8.6273 10.1305 11.6269
3 2.0654 2.9679 3.8216 5.2352 5.7148 7.0211 8.4770 8.6118 10.0895 11.5586
32 1 2.0664 2.9693 3.8302 5.2540 5.7351 7.0835 8.5256 8.7089 10.2809 11.8373
2 2.0654 2.9679 3.8216 5.2353 5.7149 7.0216 8.4775 8.6126 10.0914 11.5615
3 2.0653 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6115 10.0884 11.5565
64 1 2.0656 2.9682 3.8237 5.2399 5.7198 7.0366 8.4908 8.6342 10.1366 11.6278
2 2.0653 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6116 10.0886 11.5568
3 2.0653 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6115 10.0884 11.5565
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 38 / 55
Single span cables
Table: First 10 natural frequencies of single span cable (AE/mgl=1) obtained
from k-refinement
No. of elements Order Mode number
(ne) (p) 1 2 3 4 5 6 7 8 9 10
1 1 - - - - - - - - - -
2 3.2676 3.7138 - - - - - - - -
3 2.4663 3.2292 5.8418 6.8394 - - - - - -
2 1 2.9072 3.4107 - - - - - - - -
2 2.4001 3.2194 5.8614 7.0817 - - - - - -
3 2.3233 3.0771 4.5029 6.1879 8.8315 10.6741 - - - -
4 1 2.2517 3.0646 4.4873 5.7506 8.8941 12.7687 - - - -
2 2.1768 3.0165 4.3005 5.7950 6.4284 9.2443 12.2898 14.6199 - -
3 2.1185 2.9908 4.0544 5.6260 6.8055 8.7888 8.9651 12.3486 16.6902 19.9130
8 1 2.0817 2.9901 3.9515 5.4914 6.0603 7.8206 8.9666 9.5934 12.5640 13.1790
2 2.0751 2.9718 3.8655 5.3252 5.8420 7.4705 8.5994 9.4951 11.3043 12.2998
3 2.0684 2.9689 3.8377 5.2755 5.7683 7.3018 8.5477 9.3457 11.3653 12.1999
16 1 2.0697 2.9736 3.8558 5.3081 5.7973 7.2685 8.6271 9.0377 10.8416 12.3923
2 2.0658 2.9680 3.8233 5.2392 5.7193 7.0398 8.4927 8.6436 10.1812 11.7278
3 2.0654 2.9679 3.8216 5.2354 5.7151 7.0231 8.4796 8.6164 10.1096 11.6083
32 1 2.0664 2.9693 3.8302 5.2540 5.7351 7.0835 8.5256 8.7089 10.2809 11.8373
2 2.0654 2.9679 3.8217 5.2353 5.7149 7.0217 8.4776 8.6128 10.0921 11.5631
3 2.0654 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6116 10.0885 11.5567
64 1 2.0656 2.9682 3.8237 5.2399 5.7198 7.0366 8.4908 8.6342 10.1366 11.6278
2 2.0653 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6116 10.0886 11.5568
3 2.0654 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6115 10.0884 11.5565
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 39 / 55
Single span cables
Table: First 10 natural frequencies of single span cable (AE/mgl=1000)
Researcher Mode number
1 2 3 4 5 6 7 8 9 10
Current study 4.8025 7.4751 10.4182 13.0157 15.8359 18.4249 21.2096 23.7867 26.5644 29.1087
Henghold and Russell 4.8782 7.7553
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 40 / 55
Single span cables
AE/mgl=1
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 41 / 55
Single span cables
AE/mgl=1000
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 42 / 55
Flat cable nets
L
L
L
L
L
LL
L
L
L
2´2 3´3 4´4
5´5 6´6
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 43 / 55
Flat cable nets
Data Value
Cross-sectional area (A) 322.56 mm2
Elastic modulus (E) 137.895 kN/mm2
Cable’s length (L) 3.048 m
Prestress force (P) 333.673 kN
Self-weight (w) 46.12 kN/m
L
L
L
L
2´2 3´3
C0
C0
C0
C0
C0
C0
C0
C0
C0
C0
C0
C0
C0
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 44 / 55
Flat cable nets
Table: The first 10 natural frequencies of 2×2 flat cable net
Order No. of elements Mode number
(p) (ne) 1 2 3 4 5 6 7 8 9 10
1 12 61.5943 97.3892 97.3892 137.7291 360.9097 360.9097 409.3435 409.3435 695.4976 695.4976
24 59.5562 90.6061 90.6061 123.1886 184.1342 184.1342 191.0658 191.0658 191.4927 191.4927
48 59.0497 88.8907 88.8907 119.1123 172.1924 172.1924 178.0680 178.0680 178.3798 178.3798
96 58.9235 88.4641 88.4641 118.0995 169.2512 169.2512 174.8143 174.8143 175.0977 175.0977
192 58.8920 88.3577 88.3577 117.8470 168.5216 168.5216 174.0059 174.0059 174.2824 174.2824
2 12 58.9280 88.6538 88.6538 119.0457 169.1005 169.1005 174.7843 174.7843 175.0537 175.0537
24 58.8847 88.3474 88.3474 117.8740 169.0818 169.0818 174.7605 174.7605 175.0514 175.0514
48 58.8817 88.3237 88.3237 117.7694 168.3162 168.3162 173.7839 173.7839 174.0588 174.0588
96 58.8815 88.3223 88.3223 117.7633 168.2812 168.2812 173.7396 173.7396 174.0139 174.0139
192 58.8815 88.3222 88.3223 117.7630 168.2792 168.2792 173.7371 173.7372 174.0113 174.0114
3 12 58.8818 88.3282 88.3282 117.8051 169.0808 169.0808 174.7593 174.7593 175.0513 175.0513
24 58.8815 88.3224 88.3224 117.7647 168.2956 168.2956 173.7576 173.7576 174.0320 174.0320
48 58.8815 88.3222 88.3222 117.7630 168.2796 168.2796 173.7377 173.7377 174.0119 174.0119
96 58.8815 88.3222 88.3222 117.7629 168.2791 168.2791 173.7370 173.7370 174.0112 174.0112
192 58.8815 88.3222 88.3222 117.7629 168.2790 168.2790 173.7370 173.7370 174.0112 174.0112
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 45 / 55
Flat cable nets
Table: The first 10 natural frequencies of 2×2 to 6×6 flat cable net
Reseacher Cable model Mode number
1 2 3 4 5 6 7 8 9 10
Current work 2×2 58.8818 88.3282 88.3282 117.8051 169.0808 169.0808 174.7593 174.7593 175.0513 175.0513
3×3 58.8815 90.6725 90.6725 117.7710 117.7710 117.7710 144.8874 144.8874 176.7675 213.9293
4×4 58.8815 91.6137 91.6137 117.7651 123.5273 123.5273 147.2137 147.2137 147.2137 147.2137
5×5 58.8815 92.0917 92.0917 117.7637 126.2845 126.2845 148.2328 148.2328 155.9521 155.9521
6×6 58.8815 92.3694 92.3694 117.7632 127.8269 127.8269 148.7847 148.7847 160.6813 160.6813
Dhoopar et al. 2×2 58.9100 88.3500 88.3500 117.8100 - - - - - -
3×3 58.9100 90.7000 90.7000 117.8100 - - - - - -
4×4 58.9100 91.6400 91.6400 117.8100 - - - - - -
5×5 58.9100 92.1200 92.1200 117.8100 - - - - - -
6×6 58.9100 92.4000 92.4000 117.8100 - - - - - -
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 46 / 55
Flat cable nets
2 × 2
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 47 / 55
Flat cable nets
3 × 3
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 48 / 55
Flat cable nets
4 × 4
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 49 / 55
Flat cable nets
5 × 5
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 50 / 55
Flat cable nets
6 × 6
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 51 / 55
Conclusions and remarks
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 52 / 55
Conclusions
The application of NURBS-based IGA cable elements to analyze
the cable structures has no restrictions and limitations
For a certain number of refinement cycles, the converged
solutions of displacements and natural frequencies are obtained
with a reasonable number of elements
No particular effort is required since all cables are firstly modeled
in the configuration of straights elements. Higher order basis
function could be applied systematically
Generally, the higher order basis functions can provider better
convergence rate in p-and k-refinement schemes.
The favorable characteristics of the present NURBS-based
isogeometric cable element can overcome drawbacks of the
traditional FEA (complex geometries in cable nets and large sad
cables)
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 53 / 55
Remarks
The successful application of the proposed NURBS-based IGA
cable element to the static and free vibration analysis of cable
structure once again validate the efficiency and the versatility of
the isogeometric analysis approach in solving problems related to
solid and structural mechanics
It is undeniable that cables are merely simple tension structures
having 1D mechanical behavior, hence the advanced features of
IGA approach are not fully employed.
This simple study, however, can be considered as an fundamental
basis for some further potential considerations
The proposed elements can be taken into consideration with other
structural elements to stimulate the whole structures like
suspended cable bridge, stay cable bridges or cable roof systems.
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 54 / 55
The End
THANK YOU FOR YOUR ATTENTION!
Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 55 / 55

More Related Content

Similar to IGA Cable Structures

Isogeometric_analysis_An_overview_and_computer_implementation_aspects.pdf
Isogeometric_analysis_An_overview_and_computer_implementation_aspects.pdfIsogeometric_analysis_An_overview_and_computer_implementation_aspects.pdf
Isogeometric_analysis_An_overview_and_computer_implementation_aspects.pdf
esmaeelghafari2
 
Parameter identification of rockfall protection
Parameter identification of rockfall protectionParameter identification of rockfall protection
Parameter identification of rockfall protection
Juan Escallón
 
Zhen-Yu Li from Taiwan Resume 150720
Zhen-Yu Li from Taiwan Resume 150720Zhen-Yu Li from Taiwan Resume 150720
Zhen-Yu Li from Taiwan Resume 150720
Zhen-Yu Li
 

Similar to IGA Cable Structures (20)

IRJET-Authentication System – Overview of Graphical Passwords
IRJET-Authentication System – Overview of Graphical PasswordsIRJET-Authentication System – Overview of Graphical Passwords
IRJET-Authentication System – Overview of Graphical Passwords
 
IRJET- Structural Analysis of Transmission Tower: State of Art
IRJET-  	  Structural Analysis of Transmission Tower: State of ArtIRJET-  	  Structural Analysis of Transmission Tower: State of Art
IRJET- Structural Analysis of Transmission Tower: State of Art
 
Isogeometric_analysis_An_overview_and_computer_implementation_aspects.pdf
Isogeometric_analysis_An_overview_and_computer_implementation_aspects.pdfIsogeometric_analysis_An_overview_and_computer_implementation_aspects.pdf
Isogeometric_analysis_An_overview_and_computer_implementation_aspects.pdf
 
Compressing Graphs and Indexes with Recursive Graph Bisection
Compressing Graphs and Indexes with Recursive Graph Bisection Compressing Graphs and Indexes with Recursive Graph Bisection
Compressing Graphs and Indexes with Recursive Graph Bisection
 
PPPTHH
PPPTHHPPPTHH
PPPTHH
 
IRJET - Design And Analysis of Belt Conveyor for Weight Reduction in Foundry
IRJET -  	  Design And Analysis of Belt Conveyor for Weight Reduction in FoundryIRJET -  	  Design And Analysis of Belt Conveyor for Weight Reduction in Foundry
IRJET - Design And Analysis of Belt Conveyor for Weight Reduction in Foundry
 
Parameter identification of rockfall protection
Parameter identification of rockfall protectionParameter identification of rockfall protection
Parameter identification of rockfall protection
 
IRJET- Non-Linear Numerical Analysis of Pre-Cast Reinforced Concrete Dapped E...
IRJET- Non-Linear Numerical Analysis of Pre-Cast Reinforced Concrete Dapped E...IRJET- Non-Linear Numerical Analysis of Pre-Cast Reinforced Concrete Dapped E...
IRJET- Non-Linear Numerical Analysis of Pre-Cast Reinforced Concrete Dapped E...
 
IRJET- Optimum Design of Fan, Queen and Pratt Trusses
IRJET-  	  Optimum Design of Fan, Queen and Pratt TrussesIRJET-  	  Optimum Design of Fan, Queen and Pratt Trusses
IRJET- Optimum Design of Fan, Queen and Pratt Trusses
 
Curve Fitting - Linear Algebra
Curve Fitting - Linear AlgebraCurve Fitting - Linear Algebra
Curve Fitting - Linear Algebra
 
Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...
Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...
Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...
 
NIST-JARVIS infrastructure for Improved Materials Design
NIST-JARVIS infrastructure for Improved Materials DesignNIST-JARVIS infrastructure for Improved Materials Design
NIST-JARVIS infrastructure for Improved Materials Design
 
Analytical Study on Flexural Behaviour of RCC Slabs with Concealed Beams usin...
Analytical Study on Flexural Behaviour of RCC Slabs with Concealed Beams usin...Analytical Study on Flexural Behaviour of RCC Slabs with Concealed Beams usin...
Analytical Study on Flexural Behaviour of RCC Slabs with Concealed Beams usin...
 
BEAM COLUMN JOINT ANALYSIS FOR VARIOUS LOADING USING FINITE ELEMENT METHOD FO...
BEAM COLUMN JOINT ANALYSIS FOR VARIOUS LOADING USING FINITE ELEMENT METHOD FO...BEAM COLUMN JOINT ANALYSIS FOR VARIOUS LOADING USING FINITE ELEMENT METHOD FO...
BEAM COLUMN JOINT ANALYSIS FOR VARIOUS LOADING USING FINITE ELEMENT METHOD FO...
 
NS-CUK Seminar: H.B.Kim, Review on "Inductive Representation Learning on Lar...
NS-CUK Seminar: H.B.Kim,  Review on "Inductive Representation Learning on Lar...NS-CUK Seminar: H.B.Kim,  Review on "Inductive Representation Learning on Lar...
NS-CUK Seminar: H.B.Kim, Review on "Inductive Representation Learning on Lar...
 
[Term project] Junction-point process
[Term project] Junction-point process[Term project] Junction-point process
[Term project] Junction-point process
 
Three Dimensional Non-Linear Seismic Analysis of a Cable Stayed Bridge using ...
Three Dimensional Non-Linear Seismic Analysis of a Cable Stayed Bridge using ...Three Dimensional Non-Linear Seismic Analysis of a Cable Stayed Bridge using ...
Three Dimensional Non-Linear Seismic Analysis of a Cable Stayed Bridge using ...
 
Design stress analysis of crane hook
Design stress analysis of crane hook Design stress analysis of crane hook
Design stress analysis of crane hook
 
Zhen-Yu Li from Taiwan Resume 150720
Zhen-Yu Li from Taiwan Resume 150720Zhen-Yu Li from Taiwan Resume 150720
Zhen-Yu Li from Taiwan Resume 150720
 
Application of ANFIS in Civil Engineering- A Critical Review
Application of ANFIS in Civil Engineering- A Critical ReviewApplication of ANFIS in Civil Engineering- A Critical Review
Application of ANFIS in Civil Engineering- A Critical Review
 

Recently uploaded

Recently uploaded (20)

Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Basic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationBasic Intentional Injuries Health Education
Basic Intentional Injuries Health Education
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 

IGA Cable Structures

  • 1. STATIC AND VIBRATION ANALYSIS OF CABLE STRUCTURES USING ISOGEOMETRIC APPROACH Thai Son Sejong University Advanced Structural Engineering Laboratory MASTER’S THESIS DEFENSE November 20, 2014 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 1 / 55
  • 2. Contents 1 Introduction Analyses of cable structures Goals and Objectives 2 IGA-based analysis of cable structures Isogeometric analysis Cable formulation NURBS-based discretization Form-finding of cable structures Finite element models 3 Numerical examples Static analysis Free vibration analysis 4 Conclusions and remarks Conclusions Remarks Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 2 / 55
  • 3. Introduction Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 3 / 55
  • 4. Cable structures Distinctive characteristics: Light weight High strength to weigh ratio Aesthetic appearance Low-cost construction Drawbacks: Highly geometrical non-linearity Unstable and sensitive to the effects of external loads Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 4 / 55
  • 5. Analysis of cable structures Up until the present, there are 2 prevailing approaches to analyze the cable structures’ behavior: Exact elastic catenary expression Finite element analysis Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 5 / 55
  • 6. Elastic catenary expression Features Firstly introduced by Obrien and Francis in 1964 Based on mathematical analysis The geometries are assumed to be represented by parabolic curves Advantage The nonlinear effects are considered accurately with a small number of elements Disadvantages Only acceptable when small curvatures are considered Having problems in cases extremely high pretension cables are taken into account Having some restrictions due to the limitation of mathematical expression For vibration analysis, the complexities arise due to various cases in reality make the general explicit solutions cannot be obtained Generally restrictive to apply in engineering practices Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 6 / 55
  • 7. Traditional finite element approach Features Normally employed Lagrangian functions to represent the geometry and the displacement fields Advantage Versatile with no limitation and restriction regarding geometries and loading conditions Disadvantages Need a fine mesh to generate the smooth curve of cables Difficult to obtained the solutions for cables having a relatively large sag Mesh generation is generally time-consuming and costly Generally less attractive to investigators recently Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 7 / 55
  • 8. Motivations Propose an alternative approach, which can take advantage of the versatility of FEA but also derive the precise geometry of the structures Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 8 / 55
  • 9. Motivations Propose an alternative approach, which can take advantage of the versatility of FEA but also derive the precise geometry of the structures =⇒ ISOGEOMETRIC ANALYSIS APPROACH Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 8 / 55
  • 10. Recently Isogeometric approach Bridge the gap between finite element analysis (FEA) and conventional computer-aided design tools Employ B-splines, NURBS or currently T-splines as the attractive alternatives of interpolation functions Inherit the isoparametric concept from FEA, in which both physical geometry and dependent variables of problems are expressed by the same basis Have the ability to present exact geometry of object, which is virtually approximated in traditional FEA Provide advantages in computational cost concerning to accuracy with the newly introduced k-refinement scheme Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 9 / 55
  • 11. Objectives Develop the NURBS-based isogeometric cable element as an alternative approach to deal with static and free vibration problems of cable structures Employ the NURBS basis functions to model exactly the geometry of cable structures and the displacement field Utilize the penalty method to handle the form-finding for determining the initial equilibrium geometries Perform the refinement tests and compare the converged solutions with those obtained form previous research to demonstrate the accuracy and the efficiency of proposed approach Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 10 / 55
  • 12. IGA-based analysis of cable structures Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 11 / 55
  • 13. Knot vector and Basis functions Knot vector Ξ = ξ1, ξ2, ξ3, ..., ξi, ..., ξn+p+1 , ξi ≤ ξi+1 B-spline basis functions Ni,0 (ξ) = 1 ξi ≤ ξ < ξi+1 0 otherwise Ni,p = ξ − ξi ξi+p − ξi Ni,p−1 (ξ) + ξi+p+1 − ξ ξi+p+1 − ξi+1 Ni,p−1 (ξ) 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 1,3N 2,3N 3,3N 4,3N 5,3N 6,3N 7,3N 8,3N 9,3N Ξ={0, 0, 0, 0, 0.25, 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1} Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 12 / 55
  • 14. Knot vector and Basis functions The characteristics of B-spline basis functions: constituting the partition of unity, which means n 1 Ni,p (ξ) = 1 linear independent, which means n 1 αiNi,p (ξ) = 0 ⇔ αi = 0, i = 1, ..., n having compact support Compared to shape function in traditional FEA, the B-splines are also: non-negative over the entire parameter space Cp−1 continuity across the element boundaries when knot vector is uniform. Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 13 / 55
  • 15. Control points and B-spline curves B-spline curves are constructed with respect to a set of control points (Pi, i=1,...,n) by a linear combination of basis functions: C (ξ) =   x y z   (ξ) = n i=1 PiNi,p (ξ) = n i=1   xi yi zi   Ni,p (ξ) 1C 2C 3C 4C 5C 6C 7C 8C Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 14 / 55
  • 16. Refinement schemes h-refinement additional knots are inserted to split the knot span, thence rendering more elements both physical geometry and parameterization are not changed the number of control point is increased; besides, the continuities over the newly created knots are similar to the inner original ones 0 0.25 0.5 0.75 1 0 0.5 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 {0, 0, 0, 0.5, 1, 1, 1} ⇒ {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 15 / 55
  • 17. Refinement schemes p-refinement elevates polynomial order of basis functions by increasing the multiplicity of each knot value by one the geometry and parameterization of the physical curve are not changed the number of basis function and control points are increased the number of elements and the continuity across inner knots remains the same 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 {0, 0, 0.5, 1, 1} ⇒ {0, 0, 0, 0.5, 0.5, 1, 1, 1} Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 16 / 55
  • 18. Refinement schemes k-refinement newly introduced refinement schemes compared to FEA both order of basic functions and the continuity across the knot values (element boundaries) are increased change the control points but still maintain the original geometry and the parameterization of physical domain 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 {0, 0, 0.5, 1, 1} ⇒ {0, 0, 0, 0.5, 1, 1, 1} Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 17 / 55
  • 19. Non-Uniform Rational B-splines (NURBS) NURBS is the generalized form of B-spline in the frame work of partition of unity with weighted values wi Rp i (ξ) = Ni,p (ξ) wi W (ξ) = Ni,p (ξ) wi n i=1 Ni,p (ξ)wi While B-splines only can represent conical sections or curves, NURBS have the ability to describe arbitrary physical domain The NURBS and B-splines basis functions share the same tensor product nature and refinement schemes The NURBS curves are defined by a linear combination of the NURBS basis functions and coefficients (control points) over the parametric space C (ξ) = n i=1 PiRp i (ξ) Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 18 / 55
  • 20. Incremental equation The initial undeformed configuration (C0), the last known deformed configuration (C1), and the current deformed configuration (C2) 0 C0 C1 C2 0 ix 00 ii d xx +0 dS 1 0 0 ii ux + 1 0 0 ii ux + d x d ui i0 0 1 + +1 dS 2 0 0 ii ux + 2 0 0 ii ux + d x d ui i0 0 2 + +2 dS 0 x2 ,1 x2 ,2 x2 0 x1 ,1 x1 ,2 x1 0 x3 ,1 x3 ,2 x3 1 dS 2 = d0 xi + d1 0 ui · d0 xi + d1 0 ui 2 dS 2 = d0 xi + d2 0 ui · d0 xi + d2 0 ui Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 19 / 55
  • 21. Incremental equation 0ε = 1 2 2dS 2 − 1dS 2 (0dS) 2 =0e+0η where 0e and 0η 0e = d0xi 0dS dui 0dS + dui 0dS d1 0 ui 0dS 0η = 1 2 dui 0dS dui 0dS Incremental equation 0S Aρ¨uiδuidS + 0S AE0eδ (0e) dS + 0S A1 0Pδ (0η) dS = δ 2 0R − 0S A1 0Pδ (0e) dS Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 20 / 55
  • 22. NURBS-based discretization Geometry and displacement fields xi = ncp α=1 Rα (ξ) (xc i )α, (i = 1, 2, 3) or x = Rxc ui = ncp α=1 Rα (ξ) (uc i )α; (i = 1, 2, 3) or u = Ruc in which xc = x1 1 , x1 2 , x1 3 , ..., xncp 1 , xncp 2 , xncp 3 T uc = u1 1, u1 2, u1 3, ..., uncp 1 , uncp 2 , uncp 3 T R =   R1 0 0 0 R1 0 0 0 R1 ... Rncp 0 0 0 Rncp 0 0 0 Rncp   Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 21 / 55
  • 23. NURBS-based discretization 0e = 1 (J)2 xT c R,T ξ R,ξ +1 0 uT c R,T ξ R,ξ · uc = BLuc δ (0e) = 1 (J)2 xT c R,T ξ R,ξ +1 0 uT c R,T ξ R,ξ · δuc = BLδuc 0η = 1 2(J)2 uT c R,T ξ R,ξ · uc = 1 2 uT c BT NLBNLuc δ (0η) = 1 (J)2 R,T ξ R,ξ · δuc = BT NLBNLδuc J = dS dξ = 3 i=1 ncp α=1 R,α ξ (ξ) (xc i )α 2 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 22 / 55
  • 24. NURBS-based discretization m¨u + (kL + kNL) u =2 0 f −1 0 f where m = A ξi+1 ξi ρRT RJdξ kL = EA ξi+1 ξi BT L BLJdξ kNL = A ξi+1 ξi 1 0PBT NLBNLJdξ 1 0f = A ξi+1 ξi 1 0PBT L Jdξ Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 23 / 55
  • 25. Form-finding of cable structures The penalty method has been developed to solve the multi-point constraints equations in FEA. For a global static problem: kgug = fg Global stiffness matrix kg(∈ Ra×a ) = ne 1 (kL + kNL) Global force vector fg = ne 1 2 0f − 1 0f Assume that the system has m constraint equations: cug − ˆu = 0 in which c(∈ Rm×a) is the constant matrix (m < a) ˆu is the m-dimensional constant vector Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 24 / 55
  • 26. Form-finding of cable structures The penalty equation is written as p = cug − ˆu in which p = 0 imply all constraint equations are satisfied The total potential energy of the system can be reformed as: Π = 1 2 uT g kug − uT g f + 1 2 pT ∆p where ∆ is the m × m diagonal matrix of chosen constant numbers or so-called penalty numbers α, (∆ii = α). δΠ = 0 ⇒ kg + cT ∆c uc = fg + cT ∆ˆu Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 25 / 55
  • 27. Form-finding of cable structures Starting configuration with unstressed length 0 S Initial equilibrium configuration under self-weight yû xû Prescribed displacements Firstly, the cable is modeled in the state of straight, stress-free one. Then, the prescribed displacements are applied to supports to obtain the determined geometrical location This procedure is carried out according to the incremental scheme. Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 26 / 55
  • 28. Finite element models For static analysis kg + cT ∆c uc = fg + cT ∆ˆu For free vibration analysis mg ¨uc + kg + cT ∆c uc = 0 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 27 / 55
  • 29. Numerical examples Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 28 / 55
  • 30. Isolated cable under concentrated load 121.92 m 152.4 m 304.8 m 30.48 m x P = 35.586 kN z L1 L2 1 2 3 Table: Properties of cable Data Value Cross-sectional area (A) 548.4 mm2 Elastic modulus (E) 131 kN/mm2 Unstressed length (L1) 125.88 m Unstressed length (L2) 186.85 m Self-weight (w) 46.12 kN/m Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 29 / 55
  • 31. Isolated cable under concentrated load P = 35.586 kN 1 2 3 7.93 ξ=0 ξL ξ=1 C0 ξL = L1/(L1 + L2) Ξ = {(0)p+1, 2ξL/ne, ..., 2kξL/ne, (ξL)p, 2(1 − ξL)/ne, ... , 2k(1 − ξL)/ne, (1)p+1}; k = ne/2 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 30 / 55
  • 32. Isolated cable under concentrated load Researcher Approach Displacements Vertical Horizontal Jayaraman and Knudson Elastic straight -5.4710 -0.8450 Jayaraman and Knudson Elastic catenary -5.6260 -0.8590 Yang and Tsay Elastic catenary -5.6250 -0.8590 Thai and Kim Elastic catenary -5.6260 -0.8590 Salehi Ahmad Abad et al. Discrete elastic catenary -5.5920 -0.8550 Continuous elastic catenary -5.6260 -0.8590 Discrete elastic catenary with point load -5.8300 -0.8730 This study Isogeometric cable element Order No. of element 1 2 -5.8037 -0.8923 1 4 -5.6686 -0.8674 1 8 -5.6351 -0.8612 1 16 -5.6268 -0.8597 1 32 -5.6247 -0.8593 1 64 -5.6241 -0.8592 1 128 -5.6240 -0.8592 1 256 -5.6240 -0.8592 2 2 -5.6665 -0.8689 2 4 -5.6281 -0.8602 2 8 -5.6241 -0.8593 2 16 -5.6239 -0.8592 2 32 -5.6239 -0.8592 2 64 -5.6239 -0.8592 3 2 -5.6239 -0.8592 3 4 -5.6239 -0.8592 3 8 -5.6239 -0.8592 3 16 -5.6239 -0.8592 3 32 -5.6239 -0.8592 3 64 -5.6239 -0.8592 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 31 / 55
  • 33. 5-cables net Table: Structure’s properties Data Value Axial stiffness (EA) Elastic 5000 daN Inelastic ∞ Cable length (L) L1 1.2887 m L2 1.2887 m L3 0.5912 m L4 1.8740 m L5 2.0978 m Self-weight (w) 2.0 daN/m Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 32 / 55
  • 34. 5-cables net Firstly, each cable is initially described as a straight and free stressed segment Ξ = { (0)p+1, 1/ne, 2/ne,..., (ne-1)/ne, (1)p+1 } Nodes x y z P3 0.0000 0.0000 0.0000 P4 1.0000 0.0000 0.0000 P5 0.0000 1.0000 0.0000 P6 1.0000 1.0000 1.0000 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 33 / 55
  • 35. 5-cables net Researcher Node Unelastic Elastic x y z x y z P3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 P4 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 P5 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 P6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Greco et al. P1 0.5000 0.2500 -1.1143 0.4999 0.2499 -1.1148 P2 0.5000 0.7500 -0.9954 0.4994 0.7500 -0.9963 Isogeometric cable element Order No. of element 1 1 P1 0.5000 0.2093 -1.1693 0.5000 0.2092 -1.1697 P2 0.5395 0.7838 -1.0355 0.5386 0.7839 -1.0363 1 2 P1 0.5007 0.2449 -1.1410 0.5007 0.2448 -1.1414 P2 0.5137 0.7577 -1.0163 0.5131 0.7577 -1.0171 1 4 P1 0.5003 0.2491 -1.1237 0.5003 0.2491 -1.1241 P2 0.5032 0.7525 -1.0036 0.5027 0.7524 -1.0043 1 8 P1 0.5001 0.2498 -1.1169 0.5000 0.2498 -1.1173 P2 0.5005 0.7507 -0.9980 0.5001 0.7507 -0.9987 1 16 P1 0.5000 0.2499 -1.1150 0.5000 0.2499 -1.1154 P2 0.5000 0.7502 -0.9963 0.4996 0.7502 -0.9970 1 32 P1 0.5000 0.2500 -1.1146 0.4999 0.2499 -1.1150 P2 0.4999 0.7501 -0.9958 0.4995 0.7501 -0.9965 2 1 P1 0.5003 0.2475 -1.1204 0.5001 0.2077 -1.1682 P2 0.5034 0.7527 -0.9996 0.5386 0.7814 -1.0339 2 2 P1 0.5001 0.2079 -1.1658 0.5002 0.2091 -1.1620 P2 0.5389 0.7801 -1.0309 0.5355 0.7789 -1.0280 2 4 P1 0.5005 0.2130 -1.1545 0.5007 0.2202 -1.1462 P2 0.5296 0.7769 -1.0220 0.5204 0.7726 -1.0165 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 34 / 55
  • 36. 5-cables net Researcher Node Unelastic Elastic x y z x y z P3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 P4 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 P5 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 P6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Greco et al. P1 0.5000 0.2500 -1.1143 0.4999 0.2499 -1.1148 P2 0.5000 0.7500 -0.9954 0.4994 0.7500 -0.9963 Isogeometric cable element Order No. of element 2 8 P1 0.5007 0.2316 -1.1356 0.5005 0.2417 -1.1272 P2 0.5129 0.7648 -1.0090 0.5067 0.7573 -1.0043 2 16 P1 0.5003 0.2475 -1.1204 0.5001 0.2493 -1.1175 P2 0.5034 0.7527 -0.9996 0.5010 0.7509 -0.9981 2 32 P1 0.5001 0.2499 -1.1154 0.5000 0.2499 -1.1151 P2 0.5004 0.7503 -0.9963 0.4996 0.7501 -0.9966 3 1 P1 0.5005 0.2491 -1.1331 0.5005 0.2491 -1.1333 P2 0.5087 0.7546 -1.0111 0.5083 0.7546 -1.0116 3 2 P1 0.5005 0.2462 -1.1329 0.5006 0.2468 -1.1322 P2 0.5078 0.7570 -1.0092 0.5094 0.7544 -1.0086 3 4 P1 0.5004 0.2493 -1.1238 0.5003 0.2492 -1.1221 P2 0.5052 0.7518 -1.0025 0.5036 0.7518 -1.0018 3 8 P1 0.5001 0.2499 -1.1162 0.5000 0.2499 -1.1159 P2 0.5005 0.7503 -0.9971 0.4999 0.7502 -0.9972 3 16 P1 0.5000 0.2500 -1.1146 0.4999 0.2499 -1.1149 P2 0.5000 0.7501 -0.9960 0.4995 0.7501 -0.9964 3 32 P1 0.5000 0.2500 -1.1145 0.4999 0.2499 -1.1148 P2 0.5000 0.7501 -0.9959 0.4995 0.7501 -0.9964 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 35 / 55
  • 37. Single span cables Table: Knot vectors for refinement strategies Refinement strategy No. of element Order Knot vector h-refinement ne p∗ (0)p+1, 1/ne, 2/ne, ..., (ne − 1)/ne, (1)p+1 p-refinement n∗ e p (0)p+1, (1/ne)p, (2/ne)p, ..., ((ne − 1)/ne)p, (1)p+1 k-refinement n∗ e p (0)p+1, 1/ne, 2/ne, ..., (ne − 1)/ne, (1)p+1 Note: * is a fixed value Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 36 / 55
  • 38. Single span cables Table: First 10 natural frequencies of single span cable (AE/mgl=1)obtained from h-refinement Order No. of elements Mode number (p) (ne) 1 2 3 4 5 6 7 8 9 10 1 1 - - - - - - - - - - 2 2.9072 3.4107 - - - - - - - - 4 2.2517 3.0646 4.4873 5.7506 8.8941 12.7687 - - - - 8 2.0817 2.9901 3.9515 5.4914 6.0603 7.8206 8.9666 9.5934 12.5640 13.1790 16 2.0697 2.9736 3.8558 5.3081 5.7973 7.2685 8.6271 9.0377 10.8416 12.3923 32 2.0664 2.9693 3.8302 5.2540 5.7351 7.0835 8.5256 8.7089 10.2809 11.8373 64 2.0656 2.9682 3.8237 5.2399 5.7198 7.0366 8.4908 8.6342 10.1366 11.6278 2 1 3.2676 3.7138 - - - - - - - - 2 2.4001 3.2194 5.8614 7.0817 - - - - - - 4 2.1768 3.0165 4.3005 5.7950 6.4284 9.2443 12.2898 14.6199 - - 8 2.0751 2.9718 3.8655 5.3252 5.8420 7.4705 8.5994 9.4951 11.3043 12.2998 16 2.0658 2.9680 3.8233 5.2392 5.7193 7.0398 8.4927 8.6436 10.1812 11.7278 32 2.0654 2.9679 3.8217 5.2353 5.7149 7.0217 8.4776 8.6128 10.0921 11.5631 64 2.0653 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6116 10.0886 11.5568 3 1 2.4663 3.2292 5.8418 6.8394 - - - - - - 2 2.3233 3.0771 4.5029 6.1879 8.8315 10.6741 - - - - 4 2.1185 2.9908 4.0544 5.6260 6.8055 8.7888 8.9651 12.3486 16.6902 19.9130 8 2.0684 2.9689 3.8377 5.2755 5.7683 7.3018 8.5477 9.3457 11.3653 12.1999 16 2.0654 2.9679 3.8216 5.2354 5.7151 7.0231 8.4796 8.6164 10.1096 11.6083 32 2.0654 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6116 10.0885 11.5567 64 2.0654 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6115 10.0884 11.5565 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 37 / 55
  • 39. Single span cables Table: First 10 natural frequencies of single span cable (AE/mgl=1) obtained from p-refinement No. of elements Order Mode number (ne) (p) 1 2 3 4 5 6 7 8 9 10 1 1 - - - - - - - - - - 2 3.2676 3.7138 - - - - - - - - 3 2.4663 3.2292 5.8418 6.8394 2 1 2.9072 3.4107 - - - - - - - - 2 2.3302 3.0731 4.4788 6.0783 9.1840 12.9009 - - - - 3 2.1364 3.0006 4.1414 5.6124 6.5785 8.8102 9.8508 13.2553 15.4267 24.2254 4 1 2.2517 3.0646 4.4873 5.7506 8.8941 12.7687 - - - - 2 2.0802 2.9879 3.9932 5.4386 6.1106 7.8126 8.8206 10.5660 12.7856 13.5716 3 2.0709 2.9687 3.8364 5.2852 5.7756 7.2402 8.5462 9.0612 11.0815 12.2131 8 1 2.0817 2.9901 3.9515 5.4914 6.0603 7.8206 8.9666 9.5934 12.5640 13.1790 2 2.0688 2.9696 3.8371 5.2677 5.7529 7.1481 8.5391 8.8454 10.4923 12.1775 3 2.0655 2.9679 3.8222 5.2362 5.7160 7.0298 8.4851 8.6283 10.1365 11.6421 16 1 2.0697 2.9736 3.8558 5.3081 5.7973 7.2685 8.6271 9.0377 10.8416 12.3923 2 2.0656 2.9680 3.8228 5.2377 5.7176 7.0315 8.4858 8.6273 10.1305 11.6269 3 2.0654 2.9679 3.8216 5.2352 5.7148 7.0211 8.4770 8.6118 10.0895 11.5586 32 1 2.0664 2.9693 3.8302 5.2540 5.7351 7.0835 8.5256 8.7089 10.2809 11.8373 2 2.0654 2.9679 3.8216 5.2353 5.7149 7.0216 8.4775 8.6126 10.0914 11.5615 3 2.0653 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6115 10.0884 11.5565 64 1 2.0656 2.9682 3.8237 5.2399 5.7198 7.0366 8.4908 8.6342 10.1366 11.6278 2 2.0653 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6116 10.0886 11.5568 3 2.0653 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6115 10.0884 11.5565 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 38 / 55
  • 40. Single span cables Table: First 10 natural frequencies of single span cable (AE/mgl=1) obtained from k-refinement No. of elements Order Mode number (ne) (p) 1 2 3 4 5 6 7 8 9 10 1 1 - - - - - - - - - - 2 3.2676 3.7138 - - - - - - - - 3 2.4663 3.2292 5.8418 6.8394 - - - - - - 2 1 2.9072 3.4107 - - - - - - - - 2 2.4001 3.2194 5.8614 7.0817 - - - - - - 3 2.3233 3.0771 4.5029 6.1879 8.8315 10.6741 - - - - 4 1 2.2517 3.0646 4.4873 5.7506 8.8941 12.7687 - - - - 2 2.1768 3.0165 4.3005 5.7950 6.4284 9.2443 12.2898 14.6199 - - 3 2.1185 2.9908 4.0544 5.6260 6.8055 8.7888 8.9651 12.3486 16.6902 19.9130 8 1 2.0817 2.9901 3.9515 5.4914 6.0603 7.8206 8.9666 9.5934 12.5640 13.1790 2 2.0751 2.9718 3.8655 5.3252 5.8420 7.4705 8.5994 9.4951 11.3043 12.2998 3 2.0684 2.9689 3.8377 5.2755 5.7683 7.3018 8.5477 9.3457 11.3653 12.1999 16 1 2.0697 2.9736 3.8558 5.3081 5.7973 7.2685 8.6271 9.0377 10.8416 12.3923 2 2.0658 2.9680 3.8233 5.2392 5.7193 7.0398 8.4927 8.6436 10.1812 11.7278 3 2.0654 2.9679 3.8216 5.2354 5.7151 7.0231 8.4796 8.6164 10.1096 11.6083 32 1 2.0664 2.9693 3.8302 5.2540 5.7351 7.0835 8.5256 8.7089 10.2809 11.8373 2 2.0654 2.9679 3.8217 5.2353 5.7149 7.0217 8.4776 8.6128 10.0921 11.5631 3 2.0654 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6116 10.0885 11.5567 64 1 2.0656 2.9682 3.8237 5.2399 5.7198 7.0366 8.4908 8.6342 10.1366 11.6278 2 2.0653 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6116 10.0886 11.5568 3 2.0654 2.9679 3.8216 5.2351 5.7147 7.0209 8.4769 8.6115 10.0884 11.5565 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 39 / 55
  • 41. Single span cables Table: First 10 natural frequencies of single span cable (AE/mgl=1000) Researcher Mode number 1 2 3 4 5 6 7 8 9 10 Current study 4.8025 7.4751 10.4182 13.0157 15.8359 18.4249 21.2096 23.7867 26.5644 29.1087 Henghold and Russell 4.8782 7.7553 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 40 / 55
  • 42. Single span cables AE/mgl=1 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 41 / 55
  • 43. Single span cables AE/mgl=1000 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 42 / 55
  • 44. Flat cable nets L L L L L LL L L L 2´2 3´3 4´4 5´5 6´6 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 43 / 55
  • 45. Flat cable nets Data Value Cross-sectional area (A) 322.56 mm2 Elastic modulus (E) 137.895 kN/mm2 Cable’s length (L) 3.048 m Prestress force (P) 333.673 kN Self-weight (w) 46.12 kN/m L L L L 2´2 3´3 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 44 / 55
  • 46. Flat cable nets Table: The first 10 natural frequencies of 2×2 flat cable net Order No. of elements Mode number (p) (ne) 1 2 3 4 5 6 7 8 9 10 1 12 61.5943 97.3892 97.3892 137.7291 360.9097 360.9097 409.3435 409.3435 695.4976 695.4976 24 59.5562 90.6061 90.6061 123.1886 184.1342 184.1342 191.0658 191.0658 191.4927 191.4927 48 59.0497 88.8907 88.8907 119.1123 172.1924 172.1924 178.0680 178.0680 178.3798 178.3798 96 58.9235 88.4641 88.4641 118.0995 169.2512 169.2512 174.8143 174.8143 175.0977 175.0977 192 58.8920 88.3577 88.3577 117.8470 168.5216 168.5216 174.0059 174.0059 174.2824 174.2824 2 12 58.9280 88.6538 88.6538 119.0457 169.1005 169.1005 174.7843 174.7843 175.0537 175.0537 24 58.8847 88.3474 88.3474 117.8740 169.0818 169.0818 174.7605 174.7605 175.0514 175.0514 48 58.8817 88.3237 88.3237 117.7694 168.3162 168.3162 173.7839 173.7839 174.0588 174.0588 96 58.8815 88.3223 88.3223 117.7633 168.2812 168.2812 173.7396 173.7396 174.0139 174.0139 192 58.8815 88.3222 88.3223 117.7630 168.2792 168.2792 173.7371 173.7372 174.0113 174.0114 3 12 58.8818 88.3282 88.3282 117.8051 169.0808 169.0808 174.7593 174.7593 175.0513 175.0513 24 58.8815 88.3224 88.3224 117.7647 168.2956 168.2956 173.7576 173.7576 174.0320 174.0320 48 58.8815 88.3222 88.3222 117.7630 168.2796 168.2796 173.7377 173.7377 174.0119 174.0119 96 58.8815 88.3222 88.3222 117.7629 168.2791 168.2791 173.7370 173.7370 174.0112 174.0112 192 58.8815 88.3222 88.3222 117.7629 168.2790 168.2790 173.7370 173.7370 174.0112 174.0112 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 45 / 55
  • 47. Flat cable nets Table: The first 10 natural frequencies of 2×2 to 6×6 flat cable net Reseacher Cable model Mode number 1 2 3 4 5 6 7 8 9 10 Current work 2×2 58.8818 88.3282 88.3282 117.8051 169.0808 169.0808 174.7593 174.7593 175.0513 175.0513 3×3 58.8815 90.6725 90.6725 117.7710 117.7710 117.7710 144.8874 144.8874 176.7675 213.9293 4×4 58.8815 91.6137 91.6137 117.7651 123.5273 123.5273 147.2137 147.2137 147.2137 147.2137 5×5 58.8815 92.0917 92.0917 117.7637 126.2845 126.2845 148.2328 148.2328 155.9521 155.9521 6×6 58.8815 92.3694 92.3694 117.7632 127.8269 127.8269 148.7847 148.7847 160.6813 160.6813 Dhoopar et al. 2×2 58.9100 88.3500 88.3500 117.8100 - - - - - - 3×3 58.9100 90.7000 90.7000 117.8100 - - - - - - 4×4 58.9100 91.6400 91.6400 117.8100 - - - - - - 5×5 58.9100 92.1200 92.1200 117.8100 - - - - - - 6×6 58.9100 92.4000 92.4000 117.8100 - - - - - - Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 46 / 55
  • 48. Flat cable nets 2 × 2 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 47 / 55
  • 49. Flat cable nets 3 × 3 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 48 / 55
  • 50. Flat cable nets 4 × 4 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 49 / 55
  • 51. Flat cable nets 5 × 5 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 50 / 55
  • 52. Flat cable nets 6 × 6 Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 51 / 55
  • 53. Conclusions and remarks Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 52 / 55
  • 54. Conclusions The application of NURBS-based IGA cable elements to analyze the cable structures has no restrictions and limitations For a certain number of refinement cycles, the converged solutions of displacements and natural frequencies are obtained with a reasonable number of elements No particular effort is required since all cables are firstly modeled in the configuration of straights elements. Higher order basis function could be applied systematically Generally, the higher order basis functions can provider better convergence rate in p-and k-refinement schemes. The favorable characteristics of the present NURBS-based isogeometric cable element can overcome drawbacks of the traditional FEA (complex geometries in cable nets and large sad cables) Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 53 / 55
  • 55. Remarks The successful application of the proposed NURBS-based IGA cable element to the static and free vibration analysis of cable structure once again validate the efficiency and the versatility of the isogeometric analysis approach in solving problems related to solid and structural mechanics It is undeniable that cables are merely simple tension structures having 1D mechanical behavior, hence the advanced features of IGA approach are not fully employed. This simple study, however, can be considered as an fundamental basis for some further potential considerations The proposed elements can be taken into consideration with other structural elements to stimulate the whole structures like suspended cable bridge, stay cable bridges or cable roof systems. Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 54 / 55
  • 56. The End THANK YOU FOR YOUR ATTENTION! Thai Son (Sejong University) IGA-based analysis of cable structures November 20, 2014 55 / 55