SlideShare a Scribd company logo
ViTPose:
Simple Vision Transformer Baselines
for Human Pose Estimation
Yufei Xu, Jing Zhang, Qiming ZHANG, Dacheng Tao
NeurIPS 2022
髙間勇作(名工大玉木研)
2024/5/16
姿勢推定
◼姿勢推定
• コンピュータビジョンにおける基本的なタスクの一つ
• CNNベースで取り組まれていたが,近年ViTが導入されている
ViTPose [Xu+, NeurIPS 2022]
従来手法
◼HRFormer [YUAN+, NeurIPS 2021]
• Transformerを用いて特徴量を抽出
• 多解像並列変換モジュールを介して高解像度表現を導入
◼従来手法の問題点
• 特徴抽出のための余分なCNNが必要(TransPose [Yang+, ICCV 2021])
• Transformerの構造を注意深く設計する必要
→プレーンなViT [Dosovitskiy+, ICLR 2021]はどの程度姿勢推定に有効なのか
HRFormer [YUAN+, NeurIPS]
ViTPoseの概要
◼プレーンなViTがどの程度姿勢推定に有効か
◼ViTPoseというシンプルなモデルを提案
• バックボーンはプレーンで非階層なViTを採用
• 姿勢推定のための軽量なデコーダを採用
• シンプルな構造にもかかわらず,優れた性能を持つ
◼性能のほか優れた能力をもつ
• 次のスライド
◼一般的なベンチマークを用いた実験を実施
ViTPoseの優れた能力
◼シンプルさ
• 設計に特定のドメイン知識を必要としない
• デコーダをシンプル化
◼拡張性
• Transformer層の数,特徴次元を増減
• 推論速度と性能の調整が可能
◼柔軟性
• 入力解像度や特徴解像度へ容易に適応可能
• デコーダを追加することで複数のデータセットに適応可能
ViTPoseのシンプルさ
The Transformer Block The classic decoder The simple decoder
複数のデータセット
のためのデコーダ群
ViTPoseのシンプルさ:デコーダ
◼ViTから抽出された特徴を処理するための,2種類の軽量デコーダ
• クラシックなデコーダ
• Deconv : 転置畳み込み(アップサンプリング)
• BN : バッチ正規化
• Predictor : 畳み込み層でヒートマップを出力
• カーネルサイズ 1 × 1
• シンプルなデコーダ
• Bilinear : バイリニア補完で4倍アップサンプリング
• Predictor : カーネルサイズ 3 × 3
デコンボリューション
ブロック
ViTPoseの拡張性
◼Transfomer層の数,特徴次元を増減
◼推論速度と性能を容易に制御可能
ViTPoseの柔軟性
◼事前学習データの柔軟性
• Masked Autoencoder (MAE) [He+, CVPR 2022] を使って事前学習
• 異なるスケールのデータでも柔軟に学習可能
◼解像度の柔軟性
• 入力の解像度を変更可能
• 特徴量の解像度をダウンサンプリング比 d によって変更可能
入力画像
𝑋 ∈ 𝑅𝐻 × 𝑊 ×3
Patch Embedding layer
F ∈ 𝑅
𝐻
𝑑
×
𝑊
𝑑
×𝐶
𝑐 : チャネル数
Ablation study(構造のシンプルさと拡張性)
◼クラシックとシンプルなデコーダでそれぞれ学習
• SimpleBaseline [Xiao+, ECCV 2018] を2つのデコーダで学習
• バックボーン:ResNet [He+, CVPR 2016]
• シンプルなデコーダでも,わずかな性能低下
→プレーンなViTには複雑なデコーダは必要ない
Ablation study(事前学習データの影響)
◼異なるデータセットで事前学習
• ViTPose-B
• MS COCO [Lin+, arXiv 2014] + AI Challenger [Wu+, arXiv 2017]
• cropping:人物のみを切り出す
• 性能:ImageNet-1k [Deng+, CVPR 2009]と同等
• データセットの量は半分
• 人物を切り出さず画像を直接使っても同等の性能
→下流タスクのデータで事前学習を行う方が効率が良い
Ablation study(入力解像度の影響)
◼異なる入力画像サイズで学習
• ViTPose-B
• 入力解像度の増加とともに性能が向上
• 256 × 256 のようなアスペクト比が 1 : 1 のものはあまり向上せず
• MS COCOにおける人物の平均的なアスペクト比が 4 : 3 であるから
従来手法との比較
◼MS COCOにおける比較(※はマルチデータセット)
• ViTPose:モデルサイズは大きいが,速度と精度のトレードオフが良好
定性的結果
◼MS COCO [Lin+, arXiv 2014]での姿勢推定の結果
• 困難なケースでも,正確な姿勢推定結果を生成可能
まとめ
◼ViTPose
• ViTに基づく,シンプルな人物姿勢推定モデル
◼MS COCO [Lin+, arXiv 2014]を用いた実験
• シンプルさ,拡張性,柔軟性を実証
Deconvolution
バイリニア補完
バイリニア補完
ViTPoseのシンプルさ:デコーダ
(a) (b)

More Related Content

Similar to 論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation

文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
Toru Tamaki
 
文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
Toru Tamaki
 
Sprint17
Sprint17Sprint17
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
cvpaper. challenge
 
Sprint17
Sprint17Sprint17
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
cvpaper. challenge
 
「解説資料」MetaFormer is Actually What You Need for Vision
「解説資料」MetaFormer is Actually What You Need for Vision「解説資料」MetaFormer is Actually What You Need for Vision
「解説資料」MetaFormer is Actually What You Need for Vision
Takumi Ohkuma
 
[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision
Deep Learning JP
 
「解説資料」MetaFormer is Actually What You Need for Vision
「解説資料」MetaFormer is Actually What You Need for Vision「解説資料」MetaFormer is Actually What You Need for Vision
「解説資料」MetaFormer is Actually What You Need for Vision
Takumi Ohkuma
 
[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision
Deep Learning JP
 

Similar to 論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation (10)

文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
 
文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
文献紹介:Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
 
Sprint17
Sprint17Sprint17
Sprint17
 
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
 
Sprint17
Sprint17Sprint17
Sprint17
 
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
 
「解説資料」MetaFormer is Actually What You Need for Vision
「解説資料」MetaFormer is Actually What You Need for Vision「解説資料」MetaFormer is Actually What You Need for Vision
「解説資料」MetaFormer is Actually What You Need for Vision
 
[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision
 
「解説資料」MetaFormer is Actually What You Need for Vision
「解説資料」MetaFormer is Actually What You Need for Vision「解説資料」MetaFormer is Actually What You Need for Vision
「解説資料」MetaFormer is Actually What You Need for Vision
 
[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision
 

More from Toru Tamaki

論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
Toru Tamaki
 
論文紹介:A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, a...
論文紹介:A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, a...論文紹介:A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, a...
論文紹介:A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, a...
Toru Tamaki
 
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
Toru Tamaki
 
論文紹介:Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation
論文紹介:Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation論文紹介:Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation
論文紹介:Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation
Toru Tamaki
 
論文紹介:Multi-criteria Token Fusion with One-step-ahead Attention for Efficient ...
論文紹介:Multi-criteria Token Fusion with One-step-ahead Attention for Efficient ...論文紹介:Multi-criteria Token Fusion with One-step-ahead Attention for Efficient ...
論文紹介:Multi-criteria Token Fusion with One-step-ahead Attention for Efficient ...
Toru Tamaki
 
論文紹介:ArcFace: Additive Angular Margin Loss for Deep Face Recognition
論文紹介:ArcFace: Additive Angular Margin Loss for Deep Face Recognition論文紹介:ArcFace: Additive Angular Margin Loss for Deep Face Recognition
論文紹介:ArcFace: Additive Angular Margin Loss for Deep Face Recognition
Toru Tamaki
 
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
Toru Tamaki
 
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
Toru Tamaki
 
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
Toru Tamaki
 
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
Toru Tamaki
 
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
Toru Tamaki
 
論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet
Toru Tamaki
 
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
Toru Tamaki
 
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
Toru Tamaki
 
論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video Segmentation論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video Segmentation
Toru Tamaki
 
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
Toru Tamaki
 
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
Toru Tamaki
 
論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt Tuning論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt Tuning
Toru Tamaki
 
論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in Movies論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in Movies
Toru Tamaki
 
論文紹介:Discovering Universal Geometry in Embeddings with ICA
論文紹介:Discovering Universal Geometry in Embeddings with ICA論文紹介:Discovering Universal Geometry in Embeddings with ICA
論文紹介:Discovering Universal Geometry in Embeddings with ICA
Toru Tamaki
 

More from Toru Tamaki (20)

論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
 
論文紹介:A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, a...
論文紹介:A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, a...論文紹介:A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, a...
論文紹介:A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, a...
 
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
 
論文紹介:Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation
論文紹介:Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation論文紹介:Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation
論文紹介:Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation
 
論文紹介:Multi-criteria Token Fusion with One-step-ahead Attention for Efficient ...
論文紹介:Multi-criteria Token Fusion with One-step-ahead Attention for Efficient ...論文紹介:Multi-criteria Token Fusion with One-step-ahead Attention for Efficient ...
論文紹介:Multi-criteria Token Fusion with One-step-ahead Attention for Efficient ...
 
論文紹介:ArcFace: Additive Angular Margin Loss for Deep Face Recognition
論文紹介:ArcFace: Additive Angular Margin Loss for Deep Face Recognition論文紹介:ArcFace: Additive Angular Margin Loss for Deep Face Recognition
論文紹介:ArcFace: Additive Angular Margin Loss for Deep Face Recognition
 
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
 
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
 
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
 
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
 
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
 
論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet
 
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
 
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
 
論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video Segmentation論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video Segmentation
 
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
 
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
 
論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt Tuning論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt Tuning
 
論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in Movies論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in Movies
 
論文紹介:Discovering Universal Geometry in Embeddings with ICA
論文紹介:Discovering Universal Geometry in Embeddings with ICA論文紹介:Discovering Universal Geometry in Embeddings with ICA
論文紹介:Discovering Universal Geometry in Embeddings with ICA
 

Recently uploaded

iMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptxiMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptx
kitamisetagayaxxx
 
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
Shinichi Hirauchi
 
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
Yuki Miyazaki
 
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
Seiya Shimabukuro
 
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
Osaka University
 
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDDなぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
ssuserfcafd1
 
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
azuma satoshi
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
osamut
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
tazaki1
 
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
sugiuralab
 
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
ARISE analytics
 
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
Takuya Minagawa
 
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
Osaka University
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
嶋 是一 (Yoshikazu SHIMA)
 
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
Osaka University
 

Recently uploaded (15)

iMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptxiMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptx
 
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
 
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
 
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
 
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
 
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDDなぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
 
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
 
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
 
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
 
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
 
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
 
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
 

論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation