Vector Databases
An Overview of Vector Databases and
Their Applications
What are Vector Databases?
• • Specialized databases for high-dimensional
vector data.
• • Enable efficient similarity search and
retrieval.
• • Used in AI/ML applications like image
search, NLP, recommendations.
Why Do We Need Vector
Databases?
• • Traditional databases are inefficient for high-
dimensional data.
• • Need for semantic search, fast similarity
matching.
• • Applications in real-time personalization and
intelligent systems.
How Vector Databases Work
• • Store vector embeddings instead of scalar
values.
• • Use similarity metrics like cosine similarity
and Euclidean distance.
• • Search retrieves nearest neighbors of a
query vector.
Architecture of Vector Databases
• • Components:
• - Vector Indexing Engine
• - Metadata Store
• - API & Query Interface
• • Designed for scalability, indexing, and
efficient retrieval.
What are Vector Embeddings?
• • Numerical representation of data (text,
images, audio).
• • Preserve semantic/contextual relationships.
• • Enable machine understanding of
unstructured data.
Vector Embedding Techniques
• • Text: Word2Vec, GloVe, BERT, OpenAI
Embeddings
• • Image: CNN, ResNet, CLIP
• • Audio: Spectrogram-based embeddings
Similarity Search Techniques
• • Brute Force (linear scan): Accurate but slow.
• • ANN Methods:
• - HNSW (Hierarchical Navigable Small World)
• - FAISS (Facebook AI)
• - Annoy (Spotify)
• - ScaNN (Google)
Applications in the Modern World
• • Recommendation Engines
• • Semantic Search
• • Image and Video Retrieval
• • Personalized Content Delivery
• • Fraud Detection
• • Virtual Assistants and Chatbots
Thank You
• • Questions?
• • Let's discuss more about use-cases and
implementations!

Vector_Databases_Detailed_Presentation.pptx

  • 1.
    Vector Databases An Overviewof Vector Databases and Their Applications
  • 2.
    What are VectorDatabases? • • Specialized databases for high-dimensional vector data. • • Enable efficient similarity search and retrieval. • • Used in AI/ML applications like image search, NLP, recommendations.
  • 3.
    Why Do WeNeed Vector Databases? • • Traditional databases are inefficient for high- dimensional data. • • Need for semantic search, fast similarity matching. • • Applications in real-time personalization and intelligent systems.
  • 4.
    How Vector DatabasesWork • • Store vector embeddings instead of scalar values. • • Use similarity metrics like cosine similarity and Euclidean distance. • • Search retrieves nearest neighbors of a query vector.
  • 5.
    Architecture of VectorDatabases • • Components: • - Vector Indexing Engine • - Metadata Store • - API & Query Interface • • Designed for scalability, indexing, and efficient retrieval.
  • 6.
    What are VectorEmbeddings? • • Numerical representation of data (text, images, audio). • • Preserve semantic/contextual relationships. • • Enable machine understanding of unstructured data.
  • 7.
    Vector Embedding Techniques •• Text: Word2Vec, GloVe, BERT, OpenAI Embeddings • • Image: CNN, ResNet, CLIP • • Audio: Spectrogram-based embeddings
  • 8.
    Similarity Search Techniques •• Brute Force (linear scan): Accurate but slow. • • ANN Methods: • - HNSW (Hierarchical Navigable Small World) • - FAISS (Facebook AI) • - Annoy (Spotify) • - ScaNN (Google)
  • 9.
    Applications in theModern World • • Recommendation Engines • • Semantic Search • • Image and Video Retrieval • • Personalized Content Delivery • • Fraud Detection • • Virtual Assistants and Chatbots
  • 10.
    Thank You • •Questions? • • Let's discuss more about use-cases and implementations!