SlideShare a Scribd company logo
1 of 68
Download to read offline
1
Predictor Model for the United
States Unemployment Rate
Veshal Arul Prakash | Sloane Castleman | Nathan Hwang
STA375H
May 7, 2018
2
SUMMARY
One of many factors that determine the overall quality of life in the United States is the
unemployment rate. The unemployment rate is an important metric to consider because
unemployment can significantly transform the lifestyle of a household. Our goal for this project
was to identify the best predictor model for unemployment rate. The United States government or
an individual could use this simple predictor model to determine a forecasted unemployment rate
one year into the future. With the ability to predict the unemployment rate one year in advance,
the United States government could better prepare for and pass fiscal policies necessary to control
the economy, and thus, unemployment too. Individuals could use it to plan their personal financials
and lives. We collected data on the United States unemployment rate and other prospective
explanatory variables from 1990 to 2016. Through our research and data analysis using individual
regressions between each variable and the unemployment rate, we realized that the following
individual explanatory variables are statistically significant according to the p-value: Federal
Funds Interest Rate, Net Income from Abroad, GDP Growth, GDP Per Capita Growth, Exports of
Goods and Services, General Government Final Consumption Expenditure, and General
Government Debt. To find the best predictor model leveraging backwards regression, we ran
approximately seventy different models by using various combinations of at least four of the seven
explanatory variables. Thus, the best predictor model for the United States unemployment rate is
𝑌𝑈𝑅 = −0.2239 − 0.3006𝑋 𝐹𝐹𝐼𝑅 − 2.0133𝑋 𝑁𝐼𝐴 + 0.5168𝑋 𝐸𝐺𝑆 + 1.6161𝑋 𝐺𝐹𝐶𝐸. Lastly, we
confirmed that our model satisfied the regression assumptions. While we acknowledge that our
model has limitations, it can decently approximate the unemployment rate a year from the present.
INTRODUCTION
Our initial idea for this project was to seek a prediction for the overall quality of life in the
United States based on macroeconomic metrics and indicators. In further honing our idea, we
decided to use the unemployment rate as our measure that was representative of the overall quality
of life for people in the United States. Having experienced the financial crisis of 2008, our group
has seen the effects of unemployment through close friends and family. The high rates of
unemployment at the time introduced new difficulties for many families in the United States. Our
group experienced first-hand how such an event had a significant impact on not only our overall
quality of life but also how we go about our day-to-day lives. Our group believed that exploring
this important macroeconomic indicator could produce thought-provoking results and prove useful
in predicting future economic events.
As defined by “Focus Economics”, “unemployment rate” is the percent of unemployed
workers in the total labor force. The unemployment rate “provides insights into the economy’s
spare capacity and unused resources”, as it is “cyclical” and maintains an inverse relationship with
3
the growth of the economy. Although there is no absolute measure for overall quality of life, we
felt that unemployment rate was the most comprehensive as a lower unemployment rate indicates
security, prosperity, and happiness for society.
The unemployment rate is a closely watched economic indicator that directly affects
people’s quality of life – a high unemployment rate is a universal sign of financial distress and a
struggling economy. With that said, we understand that the other end of the extreme with 0%
unemployment rate is also not good for the economy, as the natural unemployment rate is between
4.5% and 5%. We believe the unemployment rate is an indicator that most strongly and directly
impacts the people in the country’s financial security. Unemployment also has other qualitative
adverse effects on an individual besides an absence of steady income. Consequently, a lack of
income is closely associated with poor mental health, higher crime and suicide rates, and higher
rates of drug abuse and alcoholism.
We sought to determine a relationship, if any, between various macroeconomic indicators
and the unemployment rate of the United States from 1990 to 2016, attempting to find a predictor
model for the unemployment rate based on the metrics from the previous year. We felt that
identifying statistically significant relationships between the economic metrics from the previous
year and the unemployment rate of the current year could, in theory, be useful in preparing fiscal
policy. Understanding what affects the unemployment rate in the short term (one year) can help
predict the unemployment rate, allow the government to keep a strong pulse on the economic state
of the country, and enable the government and individuals to better prepare for circumstances
driven by the unemployment rate, especially when it is high.
We chose to analyze eleven economic metrics of the United States to determine which ones
might predict the unemployment rate most accurately. The selected explanatory variables are
among the most widely used metrics to understand the state of the economy and government
spending, which is the cornerstone of our logical reasoning for selecting them. Therefore, we
hypothesized that these metrics would be the best measures of the future (short-term) economic
state, including the unemployment rate. The eleven explanatory variables we looked at are the
following:
• Inflation measured by the Consumer Price Index → CPI
• Federal Funds Rate → FFIR
• Net Income from Abroad (% of GDP) → NIA
• GDP Growth (Annual %) → GDP Growth
• GDP Per Capita Growth (Annual %) → GDP Per Capita Growth
• Trade (% of GDP) → Trade
• Imports of Goods and Services (Annual % Growth) → IGS
• Exports of Goods and Services (% of GDP) → EGS
4
• Household Final Consumption Expenditure, etc. (% of GDP) → HFCE
• General Government Final Consumption Expenditure (% of GDP) → GFCE
• Central Government Debt, total (% of GDP) → CGD
Initially, based on prior knowledge and exploring the topic through news articles, we
believed that the Consumer Price Index (CPI) and Federal Funds Interest Rate would be the best
predictors of the unemployment rate. Our reasoning behind the CPI and interest rates is that, when
inflation is growing, that is a sign of growth in economic activity and rapid economic development.
High levels of economic activity and economic development typically creates more jobs, which
then decreases the unemployment rate. The Federal Reserve uses interest rate hikes throughout the
year to slow down economic activity and limit inflation, so we believe that if the interest rate
increased in the past year, unemployment will also increase due to subdued economic activity.
This hypothesis was rigorously tested, and our findings can be found in detail in the analysis and
results section. In addition, the paper will cover which explanatory variables are the most
statistically significant regarding impacting the unemployment rate, and how those factors would
play a role in the predictor model.
DATA COLLECTION
Our data sets were extracted from the World Bank online database. The original
spreadsheet displayed every country in the world along with numerous economic metrics such as
GDP, net savings, imports & exports, etc. We filtered the dataset spreadsheet to remain with just
the United States data for the above-mentioned eleven explanatory variables and the
unemployment rate. We evaluated the data with a time frame ranging from the beginning of 1990
to the beginning of 2016 for several reasons.
5
Rationale
Technical
1. 1990 was the first year with reliable data available for all the explanatory variables.
On the other hand, 2016 was the final year with reliable data available for all the
explanatory variables.
2. 1990 – 2016 provides 27 years of data, which we believe was sufficient to build a
valid predictor model for unemployment rate. This accounted for potential financial
or world crises that are associated with the macroeconomic ebbs and flows. The
longer period allowed us to identify outliers in our data that may skew the
relationships present in the dataset.
Contextual
1. The early 1990’s marked the conclusion of the United States-Soviet Union Cold
War. The reason why this is significant is because both countries invested large
amounts of capital to compete against each other which impacted various sectors of
the economy.
2. The early 1990’s marked the rise of the Internet Age, and ever since, the lifestyle of
Americans has significantly transformed. The way people find information and
communicate information drastically changed. The landscape of the economy and
available professional opportunities replaced parts of what existed before.
By examining the data and running histograms and boxplots on each of our explanatory
variables, we found that 2009 was a significant year with outliers in some of the explanatory
variables due to the financial crisis beginning in 2008. 2009 was the only year in which the CPI
was negative. Percent GDP growth was -.0277 in 2009, and the next closest case has GDP growth
at -.0029 in 2008. Percent GDP per capita growth was -.036 in 2009, and the next closest -.012 in
2008. Lastly, the percent growth of imported goods and services was -.137 in 2009 and the next
closest was -.028 in 2001. We believe these outliers will not skew our data dramatically. First,
these outliers only represent a year’s worth of data in a data set comprised of 27 data points.
Second, only a few explanatory variables have outliers. Finally, these outliers in 2009 helps build
a more complete and accurate story about their effect on the unemployment rate. In 2009, the
unemployment rate in the United States was relatively high.
Before running regressions and analyzing the data, we lagged several of the explanatory
variables by one year: CPI, interest rate, net income from abroad, trade, exports of goods and
services, household final consumption expenditure, general government final consumption
expenditure, and central government debt. However, GDP growth, GDP per capita growth, and
imports of goods and services were not lagged because these variables already accounted for the
change in the metric from the past year. We chose to lag the data by one year because we wanted
to get a predictor model of the unemployment rate in a given year based on the metrics from the
previous year. The goal was to create a short-term, more immediate predictor model for
unemployment rate. Also, considering that the average length of the United States business cycle
6
after World War II is 56 months, which is almost five years, a one-year lag seemed reasonable to
assume that relationships would exist between the explanatory variables and the unemployment
rate.
ANALYSIS AND RESULTS
Elimination of Statistically Insignificant Explanatory Variables
After introducing a lag into the data set to help with creating a predictor function, our initial
goal with a multivariable regression was to discover a model with as few explanatory variables as
possible, where all the explanatory variables are significant. There are different methods –
backward regression, forward regression, stepwise regression, and best subsets regression. With
eleven initially selected prospective variables, a backward regression was the most practical
option. The backward regression process starts with several variables and helps eliminate variables
until all remaining variables are significant. The p-value was used to determine whether each
explanatory variable was statistically significant in predicting the unemployment rate a year from
now.
We ran single-variable linear regressions for each of the eleven initial prospective
explanatory variables. Of those eleven prospective explanatory variables, any that had a p-value
greater than 0.05 was eliminated from further continuing in the process for discovering the
predictor model due to statistical insignificance. Any of the prospective explanatory variables with
a p-value less than 0.05 were confirmed as statistically significant explanatory variables.
As displayed in the table below, only seven of the eleven prospective explanatory variables
were statistically significant. Federal funds interest rate, net income from abroad, GDP growth,
GDP per capita growth, exports of goods and services, general government final consumption
expenditure, and central government debt are considered statistically significant because the p-
value was less than 0.05. In contrast, the consumer price index to track inflation, trade, imports of
goods and services, and household final consumption expenditure are considered statistically
insignificant because the p-value is greater than 0.05.
7
Variable Y-Intercept Coefficients Std.
Error
t-value p-value Statistically
Significant?
Consumer Price
Index
0.062568 -0.329428 0.24668
9
-1.335 0.194 No
Federal Funds
Interest Rate
0.065775 -0.374297 0.09868
0
-3.793 0.000841 Yes
Net Income from
Abroad (% of
GDP)
0.03727 2.28428 0.53561 4.265 0.00025 Yes
GDP Growth
(Annual %)
0.065154 -0.444310 0.16053
8
-2.768 0.0105 Yes
GDP Per Capita
Growth (Annual
%)
0.060641 -0.444886 0.16967
6
-2.622 0.0147 Yes
Trade (% of GDP) 0.02543 0.11649 0.08016 1.453 0.159 No
Imports of Goods
and Services
(Annual %
Growth)
0.058746 -0.081839 0.04783
0
-1.711 0.0995 No
Exports of Goods
and Services (% of
GDP)
0.01004 0.40441 0.18631 2.171 0.0397 Yes
Household Final
Consumption
Expenditure (% of
GDP)
-0.1755 0.3450 0.1772 1.947 0.0628 No
General
Government Final
Consumption
Expenditure (% of
GDP)
-0.17491 1.50739 0.20038 7.523 7.08e-08 Yes
Central
Government Debt
(% of GDP)
0.03299 0.03555 0.01092 3.256 0.00324 Yes
Explanation of the Independent Variables
Our group was surprised by some of the results we returned from running regressions on
each variable individually against the unemployment rate. To justify and seek an explanation for
our results, we have provided qualitative or potential regression factors that could have affected
our results:
8
Consumer Price Index: The consumer price index is the weighted average of prices of a basket
of consumer goods and services. Based on our regression of just the CPI lagged by a year against
the unemployment rate, we found the previous year’s CPI to be statistically insignificant with a
high p-value. This was our most surprising result, as we had believed that the CPI would be a
strong predictor of unemployment rate. We believe that this could be statistically insignificant in
our case because our data is less than thirty years and thus may not completely reflect the different
cyclical fluctuations in the economy. Another reason our data disconfirmed CPI could be the
amount that we chose to lag is because the Federal Reserve typically raises interest rates to control
growing inflation. Lagging inflation by one year may not capture the effect of inflation on
unemployment because this effect is less immediate than some of the other explanatory variables
and could require more time for fiscal policy to play out in the actual economy.
Federal Funds Interest Rate: The Federal Funds Interest Rate is the interest rate at which
depository institutions trade federal funds. The Federal Reserve, by increasing or decreasing this
rate, controls the national interest rates because, historically, private banks match this rate. In
accordance with our initial hypothesis, the Federal funds rate lagged by a year has a significant
explanatory relationship with the unemployment rate. However, we found that an increase in the
interest rate in one year led to a decrease in the unemployment rate in the next. We found this to
make sense because the Fed raises interest rates when the economy is booming and on the rise.
The manifestation of increased interest rates probably takes more than a year and does not slow
down the economy within the year. Instead, the interest rates being raised indicates an active
economy and continued falling of the unemployment rate until investment spending responds to
increased interest rates.
Net Income from Abroad: The Net Income from Abroad is the difference between the total values
of the primary incomes receivable from, and payable to, non-residents. We found that when the
percent of net income from abroad in the GDP increased, the unemployment rate increased. In
other words, as foreign buyers contribute more to US GDP, that signals more economic inactivity
from US citizens. As citizen’s purchasing slows, that indicates economic slump which is then
reflected in a hike in the unemployment rate.
GDP Growth: The GDP Growth is the change in the market value of all the goods and services
produced in a country in a select period. Our results state that as GDP growth increases in one
year, the unemployment rate decreases in the next. This outcome logically follows economic
theory: as the economy grows more, unemployment drops.
GDP Per Capita Growth: The GDP Per Capita Growth represents the GDP changes divided by
the population. These results are nearly the exact same as GDP growth with small fluctuations
based on change in population.
Trade: Trade is the international exchange of goods, services, and capital. We found no
statistically significant predictor relationship between trade and unemployment rate. We believe
that trade is necessary regardless of the state of economy and a steadier metric than the others
because it includes both imports and exports. Thus, changes in trade are not necessarily predictors
9
of changes in unemployment rate because changes in trade are more arbitrary rather than indicative
of economic fluctuation.
Change in Imports of Goods and Services: The Imports of Goods and Services represents the
goods and services that are sourced into the United States from another country. This also did not
have a statistically significant relationship with the unemployment rate. This could be because this
metric was represented by the annual percent growth of imports rather than the percent of GDP.
Exports of Goods and Services: The Exports of Goods and Services represent the amount of
goods produced in one country and shipped to another country for possible future sales. Unlike the
imports, the exports of goods and services reflected is a significant predictor of the unemployment
rate. As more goods are exported, companies require an increase in labor, so the unemployment
rate decreases. An increase in exports of goods and services often goes hand in hand with a weaker
dollar, which could be an underlying variable that strengthens the relationship between exports
and unemployment.
Household Final Consumption Expenditure: The Household Final Consumption Expenditure
is the market value of all goods and services purchased by households. We thought that this
variable would be a more specific metric of household spending and use of disposable income. We
found, however, that this did not have a statistically significant relationship with the
unemployment rate and thus increased household consumption does not predict unemployment
rate. In this case, decreased unemployment could possibly be a predictor of a future increase in
household consumption.
General Government Final Consumption Expenditure: The General Government Final
Consumption Expenditure represents the total transaction amount of government expenditure on
goods and services that are used for direct satisfaction of individual needs. Our results show that
an increase in government consumption expenditure strongly predicts an increase in
unemployment. So, as the government injects more money into the economy on consumption
expenditures, which is an instrument the government uses in fiscal policy, employment decreases.
We believe this is because government spending can cause crowding out, which discourages
private investment and then winds up adversely affecting employment.
General Government Debt: The General Government Debt represents the amount the central
government borrows to finance all its planned expenditure. We found that as government debt as
a percent of GDP increases, unemployment also increases. This aligns with the government final
consumption expenditure, as increased government spending, in consumption and investment,
could increase debt.
Discovery of Strongest Predictor Model
After identifying the seven statistically significant explanatory variables for unemployment
rate, the next step was to discover the best predictor model for the unemployment rate. Initially,
all the seven statistically significant explanatory variables were combined into one function. This,
however, yielded in only two of the seven – Federal Funds Rate and General Government Final
10
Consumption Expenditure – to be statistically significant according to the p-value. Having said
that, the p-value for the overall model suggested that the model is statistically significant.
Furthermore, the R-squared value shows that a large percentage of the unemployment rate can be
explained by combining these factors. The results for this model can be seen below:
Although this model is overall statistically significant, there was still an interest in finding
a stronger model that is more representative of predicting the unemployment rate, especially using
fewer variables. At first, each of the seven variables were removed one-at-a-time, and the results
were observed. Then, two of the seven variables were removed in all possible combinations to
observe the results. Next, three of the seven variables were removed in every possible combination
to view the results. Thus, approximately 70 more models with unique combinations of explanatory
variables were tested. No more than three explanatory variables were removed at a time to test the
models because we believed that at least half of the seven individual statistically significant
explanatory variables should be represented in the model.
Another filtration process followed with searching for the models with the maximum
number of statistically significant explanatory variables. This narrowed down the list of possible
models from approximately 70 to under 10, as a handful of the models had the same number of
statistically significant explanatory variables. The overall p-values of the remaining models were
then compared against one another to identify the model with the lowest overall p-value, which
should therefore be the best predictor model for unemployment rate. The results for the best model
can be viewed below:
11
Multivariable Predictor Model for Unemployment Rate:
As seen above, the overall p-value for this predictor model is 2.155e-09, which confirms
that the model is extremely statistically significant, further proving that the model should be able
to predict the unemployment rate. Even though the “net income abroad” explanatory variable
marginally missed out on statistical significance, it is important to note that none of the 70 or so
tested models had all the explanatory variables to be statistically significant. Across all the models,
there was a maximum of three explanatory variables per model that were statistically significant.
As mentioned earlier, we decided to not compromise on our belief that at least half of the seven
individual statistically significant explanatory variables should be represented in the data, so we
chose to continue with the best model available to predict the unemployment rate. Despite the
limitation present in our forecasting model, this model should be a strong predictor of
unemployment rate due to the high overall statistical significance displayed in the extremely low
p-value and high R squared.
Testing the Regression Assumptions
To verify the validity of our regression, we tested our results to check whether they satisfied
the linear regression assumptions. We first tested linearity, which confirms that the relationship
between the dependent and independent variables is linear, and that the data points are randomly
distributed around the regression line. We plotted the residuals of the regression against the
unemployment rate and found consistent linearity around the regression line as shown by the graph
below. To test that the error terms are normally distributed, we created a histogram of the residuals.
While the residuals did not have a perfectly normal curve, the residuals have a somewhat normal
distribution centered at around 0 with an outlier at -.02 as seen in the graph below to the right. We
𝑌𝑈𝑅 = −0.2239 − 0.3006𝑋 𝐹𝐹𝐼𝑅 − 2.0133𝑋 𝑁𝐼𝐴 + 0.5168𝑋 𝐸𝐺𝑆 + 1.6161𝑋 𝐺𝐹𝐶𝐸
12
also created a QQ plot for the residuals vs. the normal distribution and compared these to a line
corresponding to percentiles of normal distribution. Though the data around the most extreme ends
of the plot is a little off, it stayed on the line for the most part. Finally, we plotted the residuals
against time to test if the residuals are independent of each other. We found that the residuals were
slightly correlated, where negative values briefly followed negative values from 2000 to 2005. We
then calculated the correlations between all the variables and found that the interest rate was the
variable that correlated with the rest. This is not surprising because the interest rate is a main driver
in executing fiscal policy and a large factor in the economy. Ultimately, we decided to keep it in
our regression despite some multicollinearity. In conclusion, none of our results when testing the
regression assumptions are perfect. However, the implication of working with real world data is
typically imperfect results, which is what we expected when running our analysis. We believe our
data meets the standards of the regression assumptions necessary to confirm the validity of our
regression models.
13
CONCLUSION
For this report, we sought to find which macroeconomic factors would best predict the
unemployment rate of the next year. Our initial hypothesis was that the Federal Funds interest rate
and inflation as measured by the Consumer Price Index would hold the strongest predictive
relationship. To do this, we used data from 1990 to 2016 and conducted backward regression by
running individual regressions to eliminate some of our eleven initial explanatory variables. We
narrowed these variables down to seven and then tested approximately 70 different combinations
of the seven variables to identify the model with the greatest statistical significance based on the
lowest p-value. We used backwards regression to avoid including an insignificant explanatory
variable or omitting a significant explanatory variable. Through this, we found that the Federal
Funds interest rate, net income from abroad, exports of goods and services, and government
consumption expenditures together are the most significant predictors. We then tested our model
against the regression assumptions to confirm its validity. Our regression satisfied all the
assumptions well except for the independence of the explanatory variables. We found that they
were correlated across time, but, upon further inspection, the Federal fund interest rate was the
underlying variable that was correlated with the rest. We decided not to exclude the interest rate
after this because it is a significant variable in predicting the unemployment rate and an established
driver of the economy.
Our results are important because the ability to predict the unemployment rate in the short
term can affect many individuals lives. The unemployment rate is a widely followed metric of the
economy and directly affects the individuals in the country. Unemployment can be harmful for
families and the overall economic health of the country. The ability for both individuals and the
government to predict and appropriately prepare for heightened unemployment can be helpful to
maintain the financial security and stability for many individuals. Also, the government can shape
fiscal policies and other legislative and executive matters to mitigate against harmful
unemployment rates.
14
Works Cited
Amadeo, K. (2018, March 26). Why Zero Unemployment Isn't as Good as It Sounds. Retrieved
May 7, 2018, from https://www.thebalance.com/natural-rate-of-unemployment-
definition-and-trends-3305950
Bachman, D. (2014, December 12). Business cycle length and the probability of a recession.
Retrieved May 7, 2018, from https://www2.deloitte.com/insights/us/en/economy/behind-
the-numbers/business-cycle-length.html
Belle, D., & Bullock, H. (n.d.). The Psychological Consequences of Unemployment. Retrieved
May 7, 2018, from
https://www.spssi.org/index.cfm?fuseaction=page.viewpage&pageid=1457
Effective Federal Funds Rate. (2018, May 01). Retrieved from
https://fred.stlouisfed.org/series/FEDFUNDS
FocusEconomics. (n.d.). What is the unemployment rate?
Retrieved from https://www.focus-economics.com/economicindicator/unemployment-
rate
Fouladi, M. (2010). The Impact of Government Expenditure on GDP, Employment and Private
Investment a CGE Model Approach. Iranian Economic Review,15(27). Retrieved May 7,
2018, from ftp://ftp.repec.org/opt/ReDIF/RePEc/eut/journl/20103-4.pdf.
Simpson, C. S. (2017, May 05). The Cost of Unemployment to the Economy. Retrieved from
https://www.investopedia.com/financial-edge/0811/the-cost-of-unemployment-to-the-
economy.aspx
World Bank Group - International Development, Poverty, & Sustainability. (n.d.). Retrieved
from http://www.worldbank.org/
15
APPENDIX A
R Code
data <- read_xlsx("C:/Users/vesha/OneDrive/Spring 2018 Courses/STA 375/Project 2/Project.xlsx")
library(Hmisc)
data <- Project[-28,]
library(dplyr)
lag(data$CPI, n=1L)
lag(data$FFIR, n=1L)
lag(data$NIA, n=1L)
lag(data$GDP_Growth, n=0L)
lag(data$GDP_Per_Capita_Growth, n=0L)
lag(data$Trade, n=1L)
lag(data$EGS, n=1L)
lag(data$HFCE, n=1L)
lag(data$GFCE, n=1L)
lag(data$CGD, n=1L)
hist(data$UR)
boxplot(data$UR)
boxplot(data$CPI)
boxplot(data$FFIR)
boxplot(data$NIA)
boxplot(data$`GDP Growth`)
boxplot(data$`GDP Per Capita Growth`)
boxplot(data$Trade)
boxplot(data$IGS)
boxplot(data$EGS)
boxplot(data$HFCE)
boxplot(data$GFCE)
boxplot(data$CGD)
lm1 = lm(UR ~ CPI, data=data)
summary(lm1)
plot(Project$CPI,Project$UR, ylab="Unemployment Rate", xlab="CPI", main="Plot")
abline(lm1)
lm2 = lm(UR ~ FFIR, data=data)
summary(lm2)
plot(Project$FFIR,Project$UR, ylab="Unemployment Rate", xlab="FFIR", main="Plot")
abline(lm2)
16
lm3 = lm(UR ~ NIA, data=data)
summary(lm3)
plot(Project$NIA,Project$UR, ylab="Unemployment Rate", xlab="NIA", main="Plot")
abline(lm3)
lm4 = lm(UR ~ GDP_Growth, data=data)
summary(lm4)
plot(Project$GDP_Growth,Project$UR, ylab="Unemployment Rate", xlab="GDP Growth", main="Plot")
abline(lm4)
lm5 = lm(UR ~ GDP_Per_Capita_Growth, data=data)
summary(lm5)
plot(Project$GDP_Per_Capita_Growth,Project$UR, ylab="Unemployment Rate", xlab="GDP Per Capita
Growth", main="Plot")
abline(lm5)
lm6 = lm(UR ~ Trade, data=data)
summary(lm6)
plot(Project$Trade,Project$UR, ylab="Unemployment Rate", xlab="Trade", main="Plot")
abline(lm6)
lm7 = lm(UR ~ IGS, data=data)
summary(lm7)
plot(Project$IGS,Project$UR, ylab="Unemployment Rate", xlab="IGS", main="Plot")
abline(lm7)
lm8 = lm(UR ~ EGS, data=data)
summary(lm8)
plot(Project$EGS,Project$UR, ylab="Unemployment Rate", xlab="EGS", main="Plot")
abline(lm8)
lm9 = lm(UR ~ HFCE, data=data)
summary(lm9)
plot(Project$HFCE,Project$UR, ylab="Unemployment Rate", xlab="HFCE", main="Plot")
abline(lm9)
lm10 = lm(UR ~ GFCE, data=data)
summary(lm10)
plot(Project$GFCE,Project$UR, ylab="Unemployment Rate", xlab="GFCE", main="Plot")
abline(lm10)
lm11 = lm(UR ~ CGD, data=data)
summary(lm11)
plot(Project$CGD,Project$UR, ylab="Unemployment Rate", xlab="CGD", main="Plot")
17
abline(lm11)
lmall = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD,
data=data)
summary(lmall)
lmall_FFIR = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD,
data=data)
summary(lmall_FFIR)
lmall_NIA = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD,
data=data)
summary(lmall_NIA)
lmall_GDP_Growth = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS + GFCE + CGD,
data=data)
summary(lmall_GDP_Growth)
lmall_GDP_Per_Capita_Growth = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE + CGD,
data=data)
summary(lmall_GDP_Per_Capita_Growth)
lmall_EGS = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD,
data=data)
summary(lmall_EGS)
lmall_GFCE = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD,
data=data)
summary(lmall_GFCE)
lmall_CGD = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE,
data=data)
summary(lmall_CGD)
#Take out FFIR and another variable
lmall_FFIR2 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data)
summary(lmall_FFIR2)
lmall_FFIR3 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data)
summary(lmall_FFIR3)
lmall_FFIR4 = lm(UR ~ NIA + GDP_Growth + EGS + GFCE + CGD, data=data)
summary(lmall_FFIR4)
18
lmall_FFIR5 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data=data)
summary(lmall_FFIR5)
lmall_FFIR6 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data)
summary(lmall_FFIR6)
lmall_FFIR7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE,
data=data)
summary(lmall_FFIR7)
#Take out NIA and another variable
lmall_NIA3 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data)
summary(lmall_NIA3)
lmall_NIA4 = lm(UR ~ FFIR + GDP_Growth + EGS + GFCE + CGD, data=data)
summary(lmall_NIA4)
lmall_NIA5 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data=data)
summary(lmall_NIA5)
lmall_NIA6 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD,
data=data)
summary(lmall_NIA6)
lmall_NIA7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data)
summary(lmall_NIA7)
#Take out GDP_Growth and another variable
lmall_GDP_Growth4 = lm(UR ~ FFIR + NIA + EGS + GFCE + CGD, data=data)
summary(lmall_GDP_Growth4)
lmall_GDP_Growth5 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + GFCE + CGD, data=data)
summary(lmall_GDP_Growth5)
lmall_GDP_Growth6 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS + CGD, data=data)
summary(lmall_GDP_Growth6)
lmall_GDP_Growth7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS +
GFCE, data=data)
summary(lmall_GDP_Growth7)
#Take out GDP_Per_Capita_Growth and another variable
lmall_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + NIA + GDP_Growth + GFCE + CGD, data=data)
summary(lmall_GDP_Per_Capita_Growth5)
19
lmall_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + CGD, data=data)
summary(lmall_GDP_Per_Capita_Growth6)
lmall_GDP_Per_Capita_Growth7 = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE, data=data)
summary(lmall_GDP_Per_Capita_Growth7)
#Take out EGS and another variable
lmall_EGS6 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data)
summary(lmall_EGS6)
lmall_EGS7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data)
summary(lmall_EGS7)
#Take out GFCE and another variable
lmall_GFCE7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data)
summary(lmall_GFCE7)
##Take out FFIR, NIA, and another variable
lmall_FFIR_NIA3 = lm(UR ~ GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data)
summary(lmall_FFIR_NIA3)
lmall_FFIR_NIA4 = lm(UR ~ GDP_Growth + EGS + GFCE + CGD, data=data)
summary(lmall_FFIR_NIA4)
lmall_FFIR_NIA5 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data=data)
summary(lmall_FFIR_NIA5)
lmall_FFIR_NIA6 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data)
summary(lmall_FFIR_NIA6)
lmall_FFIR_NIA7 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data)
summary(lmall_FFIR_NIA7)
##Take out FFIR, GDP_Growth, and another variable
lmall_FFIR_GDP_Growth4 = lm(UR ~ NIA + EGS + GFCE + CGD, data=data)
summary(lmall_FFIR_GDP_Growth4)
lmall_FFIR_GDP_Growth5 = lm(UR ~ NIA + GDP_Per_Capita_Growth + GFCE + CGD, data=data)
summary(lmall_FFIR_GDP_Growth5)
lmall_FFIR_GDP_Growth6 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + CGD, data=data)
summary(lmall_FFIR_GDP_Growth6)
20
lmall_FFIR_GDP_Growth7 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE, data=data)
summary(lmall_FFIR_GDP_Growth7)
##Take out FFIR, GDP_Per_Capita_Growth, and another variable
lmall_FFIR_GDP_Per_Capita_Growth5 = lm(UR ~ NIA + GDP_Growth + GFCE + CGD, data=data)
summary(lmall_FFIR_GDP_Per_Capita_Growth5)
lmall_FFIR_GDP_Per_Capita_Growth6 = lm(UR ~ NIA + GDP_Growth + EGS + CGD, data=data)
summary(lmall_FFIR_GDP_Per_Capita_Growth6)
lmall_FFIR_GDP_Per_Capita_Growth7 = lm(UR ~ NIA + GDP_Growth + EGS + GFCE, data=data)
summary(lmall_FFIR_GDP_Per_Capita_Growth7)
##Take out FFIR, EGS, and another variable
lmall_FFIR_EGS6 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data)
summary(lmall_FFIR_EGS6)
lmall_FFIR_EGS7 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data)
summary(lmall_FFIR_EGS7)
##Take out FFIR, GFCE, and another variable
lmall_FFIR_GFCE_7 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data)
summary(lmall_FFIR_GFCE_7)
##Take out NIA, GDP_Growth, and another variable
lmall_NIA_GDP_Growth4 = lm(UR ~ FFIR + EGS + GFCE + CGD, data=data)
summary(lmall_NIA_GDP_Growth4)
lmall_NIA_GDP_Growth5 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + GFCE + CGD, data=data)
summary(lmall_NIA_GDP_Growth5)
lmall_NIA_GDP_Growth6 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + CGD, data=data)
summary(lmall_NIA_GDP_Growth6)
lmall_NIA_GDP_Growth7 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE, data=data)
summary(lmall_NIA_GDP_Growth7)
##Take out NIA, GDP_Per_Capita_Growth, and another variable
lmall_NIA_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + GDP_Growth + GFCE + CGD, data=data)
summary(lmall_NIA_GDP_Per_Capita_Growth5)
lmall_NIA_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + GDP_Growth + EGS + CGD, data=data)
summary(lmall_NIA_GDP_Per_Capita_Growth6)
21
lmall_NIA_GDP_Per_Capita_Growth7 = lm(UR ~ FFIR + GDP_Growth + EGS + GFCE, data=data)
summary(lmall_NIA_GDP_Growth7)
##Take out NIA, EGS, and another variable
lmall_NIA_EGS6 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data)
summary(lmall_NIA_EGS6)
lmall_NIA_EGS7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data)
summary(lmall_NIA_EGS7)
##Take out NIA, GFCE, and another variable
lmall_NIA_GFCE_7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data)
summary(lmall_NIA_GFCE_7)
##Take out GDP_Growth, GDP_Per_Capita_Growth, and another variable
lmall_GDP_Growth_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + NIA + GFCE + CGD, data=data)
summary(lmall_GDP_Growth_GDP_Per_Capita_Growth5)
lmall_GDP_Growth_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + NIA + EGS + CGD, data=data)
summary(lmall_GDP_Growth_GDP_Per_Capita_Growth6)
lmall_GDP_Growth_GDP_Per_Capita_Growth7 = lm(UR ~ FFIR + NIA + EGS + GFCE, data=data) ###
Most Significant Model
summary(lmall_GDP_Growth_GDP_Per_Capita_Growth7)
##Take out GDP_Growth, EGS, and another variable
lmall_GDP_Growth_EGS6 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + CGD, data=data)
summary(lmall_GDP_Growth_EGS6)
lmall_GDP_Growth_EGS7 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + GFCE, data=data)
summary(lmall_GDP_Growth_EGS7)
##Take out GDP_Growth, GFCE, and another variable
lmall_GDP_Growth_GFCE7 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS, data=data)
summary(lmall_GDP_Growth_GFCE7)
##Take out GDP_Per_Capita_Growth, EGS, and another variable
lmall_GDP_Per_Capita_Growth_EGS6 = lm(UR ~ FFIR + NIA + GDP_Growth + CGD, data=data)
summary(lmall_GDP_Per_Capita_Growth_EGS6)
lmall_GDP_Per_Capita_Growth_EGS7 = lm(UR ~ FFIR + NIA + GDP_Growth + GFCE, data=data)
summary(lmall_GDP_Per_Capita_Growth_EGS7)
##Take out GDP_Per_Capita_Growth, GFCE, and another variable
22
lmall_GDP_Per_Capita_Growth_GFCE7 = lm(UR ~ FFIR + NIA + GDP_Growth + EGS, data=data)
summary(lmall_GDP_Per_Capita_Growth_GFCE7)
##Take out EGS, GFCE, and another variable
lmall_EGS_GFCE7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth, data=data)
summary(lmall_EGS_GFCE7)
#FINAL BEST REGRESSION!!!
FinalModel = lm(UR ~ FFIR + NIA + EGS + GFCE, data=data) ### Most Significant Model
summary(FinalModel)
#testing the linear regression assumptions
residdata <- resid(FinalModel)
plot(data$UR, residdata, main="",xlab="Unemployment Rate", ylab="Residuals")
abline(0,0)
hist(residdata, breaks=50, xlab="Residuals")
qqnorm(residdata)
qqline(residdata)
plot(data$Year, residdata, xlab="Year", ylab="Residuals")
plot(data$FFIR, data$UR)
plot(data$NIA, data$UR)
plot(data$EGS, data$UR)
plot(data$GFCE, data$UR)
cor(data$FFIR, data$NIA)
cor(data$FFIR, data$EGS)
cor(data$GFCE, data$EGS)
23
APPENDIX B
Results from R-Code
> data <- read_xlsx("C:/Users/vesha/OneDrive/Spring 2018 Courses/STA 375/Proj
ect 2/Project.xlsx")
> library(Hmisc)
> data <- Project[-28,]
> library(dplyr)
>
> lag(data$CPI, n=1L)
[1] NA 0.0540 0.0423 0.0303 0.0295 0.0261 0.0281 0.0293 0.0234
0.0155 0.0219 0.0338 0.0283 0.0159
[15] 0.0227 0.0268 0.0339 0.0323 0.0285 0.0384 -0.0036 0.0164 0.0316
0.0207 0.0146 0.0162 0.0012
> lag(data$FFIR, n=1L)
[1] NA 0.0810 0.0569 0.0352 0.0302 0.0420 0.0584 0.0530 0.0546 0.0535 0.
0497 0.0624 0.0389 0.0167 0.0113 0.0135
[17] 0.0321 0.0496 0.0502 0.0193 0.0016 0.0018 0.0010 0.0014 0.0011 0.0009 0.
0013
> lag(data$NIA, n=1L)
[1] NA 0.0058 0.0051 0.0048 0.0047 0.0033 0.0038 0.0039 0.0028 0.0020 0.
0028 0.0036 0.0049 0.0044 0.0058 0.0073
[17] 0.0071 0.0049 0.0087 0.0117 0.0105 0.0138 0.0159 0.0147 0.0146 0.0135 0.
0113
> lag(data$GDP_Growth, n=0L)
[1] 0.0191937030 -0.0007408453 0.0355539615 0.0274585672 0.0403764342 0
.0271897579 0.0379588123 0.0448702649
[9] 0.0444991096 0.0468519961 0.0409217645 0.0097598183 0.0178612769 0
.0280677596 0.0378574285 0.0334521606
[17] 0.0266662583 0.0177857024 -0.0029162146 -0.0277552957 0.0253192062 0
.0160145467 0.0222403085 0.0167733153
[25] 0.0256919359 0.0286158702 0.0148527919
> lag(data$GDP_Per_Capita_Growth, n=0L)
[1] 0.0077451620 -0.0140047356 0.0212911448 0.0139986184 0.0276962460 0
.0150306531 0.0259530525 0.0323658668
[9] 0.0323939248 0.0348993353 0.0294029178 -0.0001848978 0.0084612595 0
.0192695688 0.0282965349 0.0239704602
[17] 0.0168141646 0.0081518822 -0.0123028217 -0.0362412411 0.0167789814 0
.0084671683 0.0146385095 0.0096781066
[25] 0.0180980214 0.0211370521 0.0078461771
> lag(data$Trade, n=1L)
[1] NA 0.1976061 0.1973551 0.1989274 0.1998590 0.2099351 0.2238218 0.
2261124 0.2334412 0.2275974 0.2319303
[12] 0.2498318 0.2280314 0.2214966 0.2245059 0.2429492 0.2550066 0.2687362 0.
2795893 0.2994141 0.2476583 0.2818245
[23] 0.3088516 0.3071463 0.3022626 0.3016366 0.2789004
> lag(data$EGS, n=1L)
[1] NA 0.09229297 0.09636020 0.09680747 0.09519216 0.09864047 0.1060
5515 0.10710722 0.11079797 0.10484799
[11] 0.10268281 0.10664643 0.09666071 0.09132386 0.09037519 0.09625368 0.0999
6398 0.10654792 0.11497907 0.12514398
[21] 0.11011656 0.12378301 0.13573792 0.13606609 0.13639312 0.13620044 0.1249
9044
> lag(data$HFCE, n=1L)
[1] NA 0.6397819 0.6414195 0.6446652 0.6499764 0.6486765 0.6503306 0.
6503627 0.6459569 0.6494581 0.6528588
[12] 0.6604312 0.6687275 0.6726521 0.6746372 0.6729177 0.6716280 0.6714830 0.
6734877 0.6803402 0.6829286 0.6817649
[23] 0.6888355 0.6840268 0.6806556 0.6787599 0.6805613
> lag(data$GFCE, n=1L)
24
[1] NA 0.1585383 0.1626278 0.1604534 0.1561593 0.1518135 0.1493310 0.
1452431 0.1422576 0.1399592 0.1405263
[12] 0.1404185 0.1454676 0.1504315 0.1525187 0.1522569 0.1512211 0.1508273 0.
1526300 0.1609235 0.1693672 0.1685476
[23] 0.1630927 0.1574813 0.1511981 0.1470478 0.1440782
> lag(data$CGD, n=1L)
[1] NA 0.4082137 0.4394803 0.4591654 0.4810475 0.4721406 0.4705978 0.
4658551 0.4395880 0.4100991 0.3761227
[12] 0.3315822 0.1510873 0.5362950 0.5598549 0.5639581 0.5630342 0.5530589 0.
5564672 0.6403726 0.7633746 0.8562236
[23] 0.9019787 0.9440677 0.9661282 0.9689284 0.9737481
>
> hist(data$UR)
> boxplot(data$UR)
> boxplot(data$CPI)
> boxplot(data$FFIR)
> boxplot(data$NIA)
> boxplot(data$`GDP Growth`)
> boxplot(data$`GDP Per Capita Growth`)
> boxplot(data$Trade)
> boxplot(data$IGS)
> boxplot(data$EGS)
> boxplot(data$HFCE)
> boxplot(data$GFCE)
> boxplot(data$CGD)
>
> lm1 = lm(UR ~ CPI, data=data)
> summary(lm1)
Call:
lm(formula = UR ~ CPI, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.019354 -0.011853 -0.004440 0.009595 0.032634
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.062568 0.006772 9.240 1.54e-09 ***
CPI -0.329428 0.246689 -1.335 0.194
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01497 on 25 degrees of freedom
Multiple R-squared: 0.06658, Adjusted R-squared: 0.02925
F-statistic: 1.783 on 1 and 25 DF, p-value: 0.1938
> plot(Project$CPI,Project$UR, ylab="Unemployment Rate", xlab="CPI", main="Pl
ot")
> abline(lm1)
>
> lm2 = lm(UR ~ FFIR, data=data)
> summary(lm2)
Call:
lm(formula = UR ~ FFIR, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.019678 -0.008428 -0.006185 0.008439 0.024699
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.065775 0.003829 17.177 2.36e-15 ***
25
FFIR -0.374297 0.098680 -3.793 0.000841 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01235 on 25 degrees of freedom
Multiple R-squared: 0.3653, Adjusted R-squared: 0.3399
F-statistic: 14.39 on 1 and 25 DF, p-value: 0.0008414
> plot(Project$FFIR,Project$UR, ylab="Unemployment Rate", xlab="FFIR", main="
Plot")
> abline(lm2)
>
> lm3 = lm(UR ~ NIA, data=data)
> summary(lm3)
Call:
lm(formula = UR ~ NIA, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.016883 -0.008127 -0.000966 0.006886 0.024945
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03727 0.00461 8.084 1.94e-08 ***
NIA 2.28428 0.53561 4.265 0.00025 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01179 on 25 degrees of freedom
Multiple R-squared: 0.4211, Adjusted R-squared: 0.398
F-statistic: 18.19 on 1 and 25 DF, p-value: 0.0002504
> plot(Project$NIA,Project$UR, ylab="Unemployment Rate", xlab="NIA", main="Pl
ot")
> abline(lm3)
>
> lm4 = lm(UR ~ GDP_Growth, data=data)
> summary(lm4)
Call:
lm(formula = UR ~ GDP_Growth, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.019118 -0.007682 -0.004040 0.007750 0.035895
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.065154 0.004685 13.907 2.86e-13 ***
GDP_Growth -0.444310 0.160538 -2.768 0.0105 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01356 on 25 degrees of freedom
Multiple R-squared: 0.2345, Adjusted R-squared: 0.2039
F-statistic: 7.66 on 1 and 25 DF, p-value: 0.01047
> plot(Project$GDP_Growth,Project$UR, ylab="Unemployment Rate", xlab="GDP Gro
wth", main="Plot")
> abline(lm4)
>
> lm5 = lm(UR ~ GDP_Per_Capita_Growth, data=data)
> summary(lm5)
26
Call:
lm(formula = UR ~ GDP_Per_Capita_Growth, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.019023 -0.008355 -0.003542 0.006684 0.036624
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.060641 0.003559 17.038 2.86e-15 ***
GDP_Per_Capita_Growth -0.444886 0.169676 -2.622 0.0147 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01372 on 25 degrees of freedom
Multiple R-squared: 0.2157, Adjusted R-squared: 0.1843
F-statistic: 6.875 on 1 and 25 DF, p-value: 0.01467
> plot(Project$GDP_Per_Capita_Growth,Project$UR, ylab="Unemployment Rate", xl
ab="GDP Per Capita Growth", main="Plot")
> abline(lm5)
>
> lm6 = lm(UR ~ Trade, data=data)
> summary(lm6)
Call:
lm(formula = UR ~ Trade, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.020237 -0.010269 -0.003872 0.009965 0.031916
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.02543 0.02013 1.264 0.218
Trade 0.11649 0.08016 1.453 0.159
Residual standard error: 0.01488 on 25 degrees of freedom
Multiple R-squared: 0.0779, Adjusted R-squared: 0.04102
F-statistic: 2.112 on 1 and 25 DF, p-value: 0.1586
> plot(Project$Trade,Project$UR, ylab="Unemployment Rate", xlab="Trade", main
="Plot")
> abline(lm6)
>
> lm7 = lm(UR ~ IGS, data=data)
> summary(lm7)
Call:
lm(formula = UR ~ IGS, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.019367 -0.009660 -0.003846 0.007430 0.041461
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.058746 0.003802 15.451 2.68e-14 ***
IGS -0.081839 0.047830 -1.711 0.0995 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01466 on 25 degrees of freedom
27
Multiple R-squared: 0.1048, Adjusted R-squared: 0.06903
F-statistic: 2.928 on 1 and 25 DF, p-value: 0.09945
> plot(Project$IGS,Project$UR, ylab="Unemployment Rate", xlab="IGS", main="Pl
ot")
> abline(lm7)
>
> lm8 = lm(UR ~ EGS, data=data)
> summary(lm8)
Call:
lm(formula = UR ~ EGS, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.018866 -0.012164 -0.004327 0.008326 0.031631
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01004 0.02061 0.487 0.6306
EGS 0.40441 0.18631 2.171 0.0397 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01421 on 25 degrees of freedom
Multiple R-squared: 0.1586, Adjusted R-squared: 0.1249
F-statistic: 4.712 on 1 and 25 DF, p-value: 0.03966
> plot(Project$EGS,Project$UR, ylab="Unemployment Rate", xlab="EGS", main="Pl
ot")
> abline(lm8)
>
> lm9 = lm(UR ~ HFCE, data=data)
> summary(lm9)
Call:
lm(formula = UR ~ HFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.018116 -0.011171 -0.003518 0.010798 0.030023
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1755 0.1181 -1.486 0.1498
HFCE 0.3450 0.1772 1.947 0.0628 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01444 on 25 degrees of freedom
Multiple R-squared: 0.1317, Adjusted R-squared: 0.09697
F-statistic: 3.792 on 1 and 25 DF, p-value: 0.06281
> plot(Project$HFCE,Project$UR, ylab="Unemployment Rate", xlab="HFCE", main="
Plot")
> abline(lm9)
> lm10 = lm(UR ~ GFCE, data=data)
> summary(lm10)
Call:
lm(formula = UR ~ GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
28
-0.0157611 -0.0039801 0.0000711 0.0050946 0.0146987
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.17491 0.03052 -5.730 5.71e-06 ***
GFCE 1.50739 0.20038 7.523 7.08e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.008578 on 25 degrees of freedom
Multiple R-squared: 0.6936, Adjusted R-squared: 0.6813
F-statistic: 56.59 on 1 and 25 DF, p-value: 7.076e-08
> plot(Project$GFCE,Project$UR, ylab="Unemployment Rate", xlab="GFCE", main="
Plot")
> abline(lm10)
>
> lm11 = lm(UR ~ CGD, data=data)
> summary(lm11)
Call:
lm(formula = UR ~ CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.023749 -0.009569 -0.001123 0.006084 0.026369
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03299 0.00703 4.694 8.24e-05 ***
CGD 0.03555 0.01092 3.256 0.00324 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01299 on 25 degrees of freedom
Multiple R-squared: 0.2977, Adjusted R-squared: 0.2696
F-statistic: 10.6 on 1 and 25 DF, p-value: 0.003242
> plot(Project$CGD,Project$UR, ylab="Unemployment Rate", xlab="CGD", main="Pl
ot")
> abline(lm11)
>
> lmall = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFC
E + CGD, data=data)
> summary(lmall)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth +
EGS + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0173060 -0.0012923 0.0001622 0.0034333 0.0062708
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.216801 0.053892 -4.023 0.000727 ***
FFIR -0.296128 0.098943 -2.993 0.007478 **
NIA -0.968539 1.471743 -0.658 0.518376
GDP_Growth 1.430112 1.548151 0.924 0.367198
GDP_Per_Capita_Growth -1.343881 1.592779 -0.844 0.409316
EGS 0.356238 0.244587 1.456 0.161586
GFCE 1.508723 0.346141 4.359 0.000338 ***
CGD 0.005186 0.013293 0.390 0.700766
29
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006044 on 19 degrees of freedom
Multiple R-squared: 0.8844, Adjusted R-squared: 0.8418
F-statistic: 20.76 on 7 and 19 DF, p-value: 1.211e-07
>
> lmall_FFIR = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE
+ CGD, data=data)
> summary(lmall_FFIR)
Call:
lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth +
EGS + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.014866 -0.002998 0.001088 0.003799 0.010622
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.20796 0.06362 -3.269 0.00384 **
NIA -0.09977 1.70589 -0.058 0.95394
GDP_Growth 0.69627 1.80731 0.385 0.70412
GDP_Per_Capita_Growth -0.59348 1.85970 -0.319 0.75294
EGS 0.13521 0.27568 0.490 0.62915
GFCE 1.48553 0.40915 3.631 0.00166 **
CGD 0.02287 0.01408 1.624 0.12000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.007146 on 20 degrees of freedom
Multiple R-squared: 0.8299, Adjusted R-squared: 0.7788
F-statistic: 16.26 on 6 and 20 DF, p-value: 9.582e-07
>
> lmall_NIA = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE
+ CGD, data=data)
> summary(lmall_NIA)
Call:
lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth +
EGS + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0173172 -0.0019026 0.0005505 0.0034549 0.0073301
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.189055 0.033088 -5.714 1.36e-05 ***
FFIR -0.283286 0.095614 -2.963 0.00769 **
GDP_Growth 2.153897 1.074010 2.005 0.05863 .
GDP_Per_Capita_Growth -2.079922 1.117837 -1.861 0.07756 .
EGS 0.224550 0.138634 1.620 0.12095
GFCE 1.327721 0.207155 6.409 2.98e-06 ***
CGD 0.004169 0.013014 0.320 0.75204
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.005958 on 20 degrees of freedom
Multiple R-squared: 0.8817, Adjusted R-squared: 0.8463
F-statistic: 24.85 on 6 and 20 DF, p-value: 2.812e-08
30
>
> lmall_GDP_Growth = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS + GFCE
+ CGD, data=data)
> summary(lmall_GDP_Growth)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS +
GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0170926 -0.0009726 0.0010440 0.0027262 0.0068811
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.244436 0.044661 -5.473 2.34e-05 ***
FFIR -0.281652 0.097335 -2.894 0.00898 **
NIA -1.934368 1.031983 -1.874 0.07556 .
GDP_Per_Capita_Growth 0.124594 0.098940 1.259 0.22242
EGS 0.475986 0.206647 2.303 0.03212 *
GFCE 1.746758 0.230264 7.586 2.62e-07 ***
CGD 0.003698 0.013146 0.281 0.78138
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006022 on 20 degrees of freedom
Multiple R-squared: 0.8792, Adjusted R-squared: 0.8429
F-statistic: 24.26 on 6 and 20 DF, p-value: 3.464e-08
>
> lmall_GDP_Per_Capita_Growth = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE
+ CGD, data=data)
> summary(lmall_GDP_Per_Capita_Growth)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE + CGD,
data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0170397 -0.0009566 0.0010515 0.0027066 0.0068433
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.242762 0.043924 -5.527 2.07e-05 ***
FFIR -0.282987 0.097003 -2.917 0.00852 **
NIA -1.840503 1.040275 -1.769 0.09210 .
GDP_Growth 0.126426 0.095824 1.319 0.20196
EGS 0.464665 0.206602 2.249 0.03593 *
GFCE 1.730748 0.223247 7.753 1.89e-07 ***
CGD 0.003745 0.013087 0.286 0.77772
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006001 on 20 degrees of freedom
Multiple R-squared: 0.88, Adjusted R-squared: 0.8441
F-statistic: 24.46 on 6 and 20 DF, p-value: 3.231e-08
>
> lmall_EGS = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE
+ CGD, data=data)
> summary(lmall_EGS)
31
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth +
GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0155434 -0.0030581 0.0001123 0.0042705 0.0079657
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.15489 0.03404 -4.550 0.000195 ***
FFIR -0.25262 0.09693 -2.606 0.016903 *
NIA 0.78521 0.86968 0.903 0.377341
GDP_Growth 2.62520 1.34913 1.946 0.065862 .
GDP_Per_Capita_Growth -2.56276 1.39269 -1.840 0.080634 .
GFCE 1.16490 0.26016 4.478 0.000230 ***
CGD 0.01044 0.01315 0.794 0.436267
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006211 on 20 degrees of freedom
Multiple R-squared: 0.8715, Adjusted R-squared: 0.8329
F-statistic: 22.6 on 6 and 20 DF, p-value: 6.333e-08
>
> lmall_GFCE = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS
+ CGD, data=data)
> summary(lmall_GFCE)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth +
EGS + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.016960 -0.005444 0.001594 0.004306 0.015305
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.004507 0.024899 0.181 0.858183
FFIR -0.286472 0.136346 -2.101 0.048514 *
NIA 4.128706 1.231646 3.352 0.003172 **
GDP_Growth 6.453556 1.424793 4.529 0.000204 ***
GDP_Per_Capita_Growth -6.621714 1.426287 -4.643 0.000157 ***
EGS -0.370809 0.246568 -1.504 0.148240
CGD 0.008331 0.018295 0.455 0.653736
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.008331 on 20 degrees of freedom
Multiple R-squared: 0.7688, Adjusted R-squared: 0.6994
F-statistic: 11.08 on 6 and 20 DF, p-value: 1.8e-05
>
> lmall_CGD = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS +
GFCE, data=data)
> summary(lmall_CGD)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth +
EGS + GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
32
-0.0179255 -0.0012048 0.0006153 0.0032649 0.0063004
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.21696 0.05274 -4.114 0.000539 ***
FFIR -0.31328 0.08674 -3.612 0.001740 **
NIA -0.90176 1.43044 -0.630 0.535565
GDP_Growth 1.35690 1.50381 0.902 0.377632
GDP_Per_Capita_Growth -1.26401 1.54573 -0.818 0.423139
EGS 0.38215 0.23035 1.659 0.112714
GFCE 1.51605 0.33823 4.482 0.000228 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.005915 on 20 degrees of freedom
Multiple R-squared: 0.8835, Adjusted R-squared: 0.8485
F-statistic: 25.27 on 6 and 20 DF, p-value: 2.439e-08
>
> #Take out FFIR and another variable
> lmall_FFIR2 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD
, data=data)
> summary(lmall_FFIR2)
Call:
lm(formula = UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS +
GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.014878 -0.003039 0.001083 0.003780 0.010495
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.20503 0.03822 -5.365 2.55e-05 ***
GDP_Growth 0.77725 1.13353 0.686 0.500
GDP_Per_Capita_Growth -0.67586 1.18517 -0.570 0.575
EGS 0.12212 0.15716 0.777 0.446
GFCE 1.46624 0.23625 6.206 3.71e-06 ***
CGD 0.02268 0.01337 1.697 0.105
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006975 on 21 degrees of freedom
Multiple R-squared: 0.8298, Adjusted R-squared: 0.7893
F-statistic: 20.48 on 5 and 21 DF, p-value: 1.973e-07
>
> lmall_FFIR3 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=
data)
> summary(lmall_FFIR3)
Call:
lm(formula = UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE +
CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.014819 -0.002619 0.001145 0.003817 0.010534
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.22197 0.05112 -4.342 0.000287 ***
NIA -0.60330 1.07379 -0.562 0.580170
33
GDP_Per_Capita_Growth 0.12154 0.11500 1.057 0.302569
EGS 0.20041 0.21317 0.940 0.357844
GFCE 1.60497 0.26152 6.137 4.34e-06 ***
CGD 0.02169 0.01346 1.611 0.122067
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.007 on 21 degrees of freedom
Multiple R-squared: 0.8286, Adjusted R-squared: 0.7878
F-statistic: 20.31 on 5 and 21 DF, p-value: 2.124e-07
>
> lmall_FFIR4 = lm(UR ~ NIA + GDP_Growth + EGS + GFCE + CGD, data=data)
> summary(lmall_FFIR4)
Call:
lm(formula = UR ~ NIA + GDP_Growth + EGS + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.014794 -0.002661 0.001120 0.003880 0.010587
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.21989 0.05036 -4.367 0.00027 ***
NIA -0.51209 1.08982 -0.470 0.64328
GDP_Growth 0.12066 0.11163 1.081 0.29202
EGS 0.18875 0.21402 0.882 0.38781
GFCE 1.58653 0.25367 6.254 3.34e-06 ***
CGD 0.02186 0.01342 1.628 0.11835
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006992 on 21 degrees of freedom
Multiple R-squared: 0.829, Adjusted R-squared: 0.7883
F-statistic: 20.36 on 5 and 21 DF, p-value: 2.075e-07
>
> lmall_FFIR5 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD
, data=data)
> summary(lmall_FFIR5)
Call:
lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth +
GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.014279 -0.003748 0.001288 0.004087 0.010150
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.18265 0.03652 -5.001 5.98e-05 ***
NIA 0.57932 0.97825 0.592 0.560039
GDP_Growth 1.24039 1.40068 0.886 0.385880
GDP_Per_Capita_Growth -1.14856 1.44873 -0.793 0.436757
GFCE 1.34336 0.28349 4.739 0.000111 ***
CGD 0.02398 0.01364 1.758 0.093379 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.007016 on 21 degrees of freedom
Multiple R-squared: 0.8278, Adjusted R-squared: 0.7868
F-statistic: 20.19 on 5 and 21 DF, p-value: 2.226e-07
34
>
> lmall_FFIR6 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD,
data=data)
> summary(lmall_FFIR6)
Call:
lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth +
EGS + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0146034 -0.0062463 0.0007995 0.0053779 0.0158686
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.009772 0.026711 0.366 0.718131
NIA 4.893717 1.268650 3.857 0.000913 ***
GDP_Growth 5.668534 1.482502 3.824 0.000990 ***
GDP_Per_Capita_Growth -5.816883 1.481374 -3.927 0.000774 ***
EGS -0.573919 0.244574 -2.347 0.028834 *
CGD 0.025397 0.017676 1.437 0.165503
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.008983 on 21 degrees of freedom
Multiple R-squared: 0.7177, Adjusted R-squared: 0.6505
F-statistic: 10.68 on 5 and 21 DF, p-value: 3.304e-05
>
> lmall_FFIR7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS
+ GFCE, data=data)
> summary(lmall_FFIR7)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth +
EGS + GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0179255 -0.0012048 0.0006153 0.0032649 0.0063004
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.21696 0.05274 -4.114 0.000539 ***
FFIR -0.31328 0.08674 -3.612 0.001740 **
NIA -0.90176 1.43044 -0.630 0.535565
GDP_Growth 1.35690 1.50381 0.902 0.377632
GDP_Per_Capita_Growth -1.26401 1.54573 -0.818 0.423139
EGS 0.38215 0.23035 1.659 0.112714
GFCE 1.51605 0.33823 4.482 0.000228 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.005915 on 20 degrees of freedom
Multiple R-squared: 0.8835, Adjusted R-squared: 0.8485
F-statistic: 25.27 on 6 and 20 DF, p-value: 2.439e-08
>
> #Take out NIA and another variable
> lmall_NIA3 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=
data)
> summary(lmall_NIA3)
35
Call:
lm(formula = UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE +
CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.016702 -0.001513 0.001936 0.003753 0.008306
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.188954 0.035388 -5.339 2.70e-05 ***
FFIR -0.200329 0.092197 -2.173 0.0414 *
GDP_Per_Capita_Growth 0.153467 0.103417 1.484 0.1527
EGS 0.189364 0.147082 1.287 0.2119
GFCE 1.502681 0.200953 7.478 2.39e-07 ***
CGD -0.003441 0.013314 -0.258 0.7986
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006372 on 21 degrees of freedom
Multiple R-squared: 0.858, Adjusted R-squared: 0.8241
F-statistic: 25.37 on 5 and 21 DF, p-value: 3.096e-08
>
> lmall_NIA4 = lm(UR ~ FFIR + GDP_Growth + EGS + GFCE + CGD, data=data)
> summary(lmall_NIA4)
Call:
lm(formula = UR ~ FFIR + GDP_Growth + EGS + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.016535 -0.001314 0.001593 0.003513 0.008684
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.192053 0.034932 -5.498 1.87e-05 ***
FFIR -0.207863 0.091533 -2.271 0.0338 *
GDP_Growth 0.163013 0.098197 1.660 0.1118
EGS 0.193620 0.145479 1.331 0.1975
GFCE 1.508073 0.193514 7.793 1.25e-07 ***
CGD -0.003029 0.013134 -0.231 0.8198
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006298 on 21 degrees of freedom
Multiple R-squared: 0.8613, Adjusted R-squared: 0.8282
F-statistic: 26.08 on 5 and 21 DF, p-value: 2.43e-08
>
> lmall_NIA5 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD
, data=data)
> summary(lmall_NIA5)
Call:
lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth +
GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0139184 -0.0035991 -0.0001288 0.0045611 0.0077425
Coefficients:
Estimate Std. Error t value Pr(>|t|)
36
(Intercept) -0.16681 0.03124 -5.339 2.70e-05 ***
FFIR -0.24467 0.09611 -2.546 0.0188 *
GDP_Growth 1.93374 1.10579 1.749 0.0949 .
GDP_Per_Capita_Growth -1.86283 1.15187 -1.617 0.1208
GFCE 1.29707 0.21411 6.058 5.19e-06 ***
CGD 0.01770 0.01035 1.710 0.1020
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006184 on 21 degrees of freedom
Multiple R-squared: 0.8662, Adjusted R-squared: 0.8344
F-statistic: 27.2 on 5 and 21 DF, p-value: 1.671e-08
>
> lmall_NIA6 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS
+ CGD, data=data)
> summary(lmall_NIA6)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth +
EGS + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.016960 -0.005444 0.001594 0.004306 0.015305
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.004507 0.024899 0.181 0.858183
FFIR -0.286472 0.136346 -2.101 0.048514 *
NIA 4.128706 1.231646 3.352 0.003172 **
GDP_Growth 6.453556 1.424793 4.529 0.000204 ***
GDP_Per_Capita_Growth -6.621714 1.426287 -4.643 0.000157 ***
EGS -0.370809 0.246568 -1.504 0.148240
CGD 0.008331 0.018295 0.455 0.653736
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.008331 on 20 degrees of freedom
Multiple R-squared: 0.7688, Adjusted R-squared: 0.6994
F-statistic: 11.08 on 6 and 20 DF, p-value: 1.8e-05
>
> lmall_NIA7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE
, data=data)
> summary(lmall_NIA7)
Call:
lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth +
EGS + GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.017821 -0.001797 0.000468 0.003549 0.007427
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.19075 0.03196 -5.969 6.35e-06 ***
FFIR -0.29799 0.08207 -3.631 0.00156 **
GDP_Growth 2.05358 1.00515 2.043 0.05380 .
GDP_Per_Capita_Growth -1.97349 1.04426 -1.890 0.07266 .
EGS 0.25307 0.10398 2.434 0.02396 *
GFCE 1.34386 0.19659 6.836 9.30e-07 ***
---
37
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.005829 on 21 degrees of freedom
Multiple R-squared: 0.8811, Adjusted R-squared: 0.8528
F-statistic: 31.14 on 5 and 21 DF, p-value: 4.946e-09
>
> #Take out GDP_Growth and another variable
> lmall_GDP_Growth4 = lm(UR ~ FFIR + NIA + EGS + GFCE + CGD, data=data)
> summary(lmall_GDP_Growth4)
Call:
lm(formula = UR ~ FFIR + NIA + EGS + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0188040 -0.0014285 0.0009466 0.0032988 0.0064950
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.226089 0.042803 -5.282 3.09e-05 ***
FFIR -0.280345 0.098678 -2.841 0.00978 **
NIA -2.136694 1.033521 -2.067 0.05124 .
EGS 0.493518 0.209033 2.361 0.02797 *
GFCE 1.626726 0.212513 7.655 1.66e-07 ***
CGD 0.005722 0.013228 0.433 0.66975
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006105 on 21 degrees of freedom
Multiple R-squared: 0.8696, Adjusted R-squared: 0.8386
F-statistic: 28.01 on 5 and 21 DF, p-value: 1.284e-08
> lmall_GDP_Growth5 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + GFCE + CGD, data=data)
> summary(lmall_GDP_Growth5)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Per_Capita_Growth + GFCE +
CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.013486 -0.003680 0.001423 0.004738 0.007236
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.17231 0.03496 -4.929 7.09e-05 ***
FFIR -0.17833 0.09482 -1.881 0.074 .
NIA -0.17542 0.76200 -0.230 0.820
GDP_Per_Capita_Growth 0.13995 0.10836 1.291 0.211
GFCE 1.47751 0.21778 6.784 1.04e-06 ***
CGD 0.01116 0.01399 0.798 0.434
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006611 on 21 degrees of freedom
Multiple R-squared: 0.8471, Adjusted R-squared: 0.8107
F-statistic: 23.28 on 5 and 21 DF, p-value: 6.582e-08
>
> lmall_GDP_Growth6 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS + CGD, data=data)
> summary(lmall_GDP_Growth6)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS +
38
CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.018351 -0.007444 -0.001330 0.007092 0.021584
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.07821 0.02618 2.988 0.00701 **
FFIR -0.12452 0.18276 -0.681 0.50309
NIA 2.49268 1.63554 1.524 0.14241
GDP_Per_Capita_Growth -0.18609 0.17307 -1.075 0.29447
EGS -0.31979 0.34213 -0.935 0.36056
CGD -0.00171 0.02523 -0.068 0.94659
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01157 on 21 degrees of freedom
Multiple R-squared: 0.5316, Adjusted R-squared: 0.4201
F-statistic: 4.766 on 5 and 21 DF, p-value: 0.004571
>
> lmall_GDP_Growth7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFC
> summary(lmall_GDP_Growth7)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth +
EGS + GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0179255 -0.0012048 0.0006153 0.0032649 0.0063004
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.21696 0.05274 -4.114 0.000539 ***
FFIR -0.31328 0.08674 -3.612 0.001740 **
NIA -0.90176 1.43044 -0.630 0.535565
GDP_Growth 1.35690 1.50381 0.902 0.377632
GDP_Per_Capita_Growth -1.26401 1.54573 -0.818 0.423139
EGS 0.38215 0.23035 1.659 0.112714
GFCE 1.51605 0.33823 4.482 0.000228 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.005915 on 20 degrees of freedom
Multiple R-squared: 0.8835, Adjusted R-squared: 0.8485
F-statistic: 25.27 on 6 and 20 DF, p-value: 2.439e-08
>
> #Take out GDP_Per_Capita_Growth and another variable
> lmall_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + NIA + GDP_Growth + GFCE + CGD, data=data)
> summary(lmall_GDP_Per_Capita_Growth5)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.013429 -0.003538 0.001474 0.004634 0.007427
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.17364 0.03428 -5.065 5.14e-05 ***
39
FFIR -0.18311 0.09421 -1.944 0.0654 .
NIA -0.10562 0.76243 -0.139 0.8911
GDP_Growth 0.14924 0.10409 1.434 0.1664
GFCE 1.47409 0.20960 7.033 6.09e-07 ***
CGD 0.01086 0.01387 0.783 0.4423
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006555 on 21 degrees of freedom
Multiple R-squared: 0.8497, Adjusted R-squared: 0.8139
F-statistic: 23.75 on 5 and 21 DF, p-value: 5.531e-08
>
> lmall_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + CGD, data=data)
> summary(lmall_GDP_Per_Capita_Growth6)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + EGS + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.018060 -0.008100 -0.001749 0.007616 0.020946
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.081637 0.026088 3.129 0.00507 **
FFIR -0.116467 0.184749 -0.630 0.53523
NIA 2.706156 1.678065 1.613 0.12175
GDP_Growth -0.135933 0.175090 -0.776 0.44619
EGS -0.354064 0.346806 -1.021 0.31891
CGD -0.003094 0.025502 -0.121 0.90458
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01172 on 21 degrees of freedom
Multiple R-squared: 0.5196, Adjusted R-squared: 0.4052
F-statistic: 4.542 on 5 and 21 DF, p-value: 0.005791
>
> lmall_GDP_Per_Capita_Growth7 = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE, data=data)
> summary(lmall_GDP_Per_Capita_Growth7)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0175061 -0.0008857 0.0010477 0.0026146 0.0068400
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.24175 0.04281 -5.647 1.33e-05 ***
FFIR -0.29616 0.08350 -3.547 0.00191 **
NIA -1.75343 0.97278 -1.802 0.08584 .
GDP_Growth 0.12957 0.09309 1.392 0.17854
EGS 0.47896 0.19604 2.443 0.02348 *
GFCE 1.72644 0.21782 7.926 9.55e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.005868 on 21 degrees of freedom
Multiple R-squared: 0.8796, Adjusted R-squared: 0.8509
F-statistic: 30.67 on 5 and 21 DF, p-value: 5.668e-09
40
>
> #Take out EGS and another variable
> lmall_EGS6 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data)
> summary(lmall_EGS6)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth +
CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0202371 -0.0039093 0.0001407 0.0042674 0.0173053
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0178276 0.0205767 -0.866 0.396063
FFIR -0.3668627 0.1291426 -2.841 0.009791 **
NIA 2.9764112 0.9928418 2.998 0.006855 **
GDP_Growth 6.3556734 1.4654380 4.337 0.000290 ***
GDP_Per_Capita_Growth -6.5903367 1.4683501 -4.488 0.000202 ***
CGD -0.0005061 0.0178388 -0.028 0.977636
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.008578 on 21 degrees of freedom
Multiple R-squared: 0.7426, Adjusted R-squared: 0.6813
F-statistic: 12.12 on 5 and 21 DF, p-value: 1.311e-05
>
> lmall_EGS7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data)
> summary(lmall_EGS7)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth +
GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0166115 -0.0025485 0.0006497 0.0044017 0.0087594
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.14545 0.03162 -4.600 0.000155 ***
FFIR -0.28303 0.08826 -3.207 0.004238 **
NIA 1.20781 0.68195 1.771 0.091057 .
GDP_Growth 2.65507 1.33671 1.986 0.060209 .
GDP_Per_Capita_Growth -2.58190 1.38020 -1.871 0.075392 .
GFCE 1.12646 0.25336 4.446 0.000224 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006157 on 21 degrees of freedom
Multiple R-squared: 0.8674, Adjusted R-squared: 0.8358
F-statistic: 27.48 on 5 and 21 DF, p-value: 1.525e-08
>
> #Take out GFCE and another variable
> lmall_GFCE7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data)
> summary(lmall_GFCE7)
Call:
lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth +
EGS, data = data)
41
Residuals:
Min 1Q Median 3Q Max
-0.017956 -0.005359 0.001605 0.004389 0.015045
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.005976 0.024219 0.247 0.807495
FFIR -0.314037 0.119844 -2.620 0.015985 *
NIA 4.276207 1.165652 3.669 0.001431 **
GDP_Growth 6.374933 1.387347 4.595 0.000157 ***
GDP_Per_Capita_Growth -6.534342 1.386395 -4.713 0.000118 ***
EGS -0.334744 0.229054 -1.461 0.158703
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.008173 on 21 degrees of freedom
Multiple R-squared: 0.7664, Adjusted R-squared: 0.7108
F-statistic: 13.78 on 5 and 21 DF, p-value: 4.948e-06
>
> ##Take out FFIR, NIA, and another variable
> lmall_FFIR_NIA3 = lm(UR ~ GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data)
> summary(lmall_FFIR_NIA3)
Call:
lm(formula = UR ~ GDP_Per_Capita_Growth + EGS + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.014922 -0.002573 0.001173 0.004077 0.009403
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.20290 0.03763 -5.392 2.05e-05 ***
GDP_Per_Capita_Growth 0.13312 0.11136 1.195 0.245
EGS 0.11982 0.15522 0.772 0.448
GFCE 1.52590 0.21698 7.033 4.68e-07 ***
CGD 0.01689 0.01024 1.649 0.113
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.00689 on 22 degrees of freedom
Multiple R-squared: 0.826, Adjusted R-squared: 0.7944
F-statistic: 26.12 on 4 and 22 DF, p-value: 4.455e-08
>
> lmall_FFIR_NIA4 = lm(UR ~ GDP_Growth + EGS + GFCE + CGD, data=data)
> summary(lmall_FFIR_NIA4)
Call:
lm(formula = UR ~ GDP_Growth + EGS + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.014825 -0.002591 0.001365 0.004109 0.009552
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.20453 0.03762 -5.437 1.84e-05 ***
GDP_Growth 0.13377 0.10615 1.260 0.2208
EGS 0.12067 0.15471 0.780 0.4437
GFCE 1.52307 0.21088 7.222 3.09e-07 ***
CGD 0.01787 0.01022 1.749 0.0942 .
---
42
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006867 on 22 degrees of freedom
Multiple R-squared: 0.8272, Adjusted R-squared: 0.7958
F-statistic: 26.33 on 4 and 22 DF, p-value: 4.14e-08
>
> lmall_FFIR_NIA5 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data=data)
> summary(lmall_FFIR_NIA5)
Call:
lm(formula = UR ~ GDP_Growth + GDP_Per_Capita_Growth + GFCE +
CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.013100 -0.004285 0.001455 0.004005 0.011534
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.19086 0.03328 -5.734 9.09e-06 ***
GDP_Growth 0.75842 1.12301 0.675 0.5065
GDP_Per_Capita_Growth -0.66097 1.17429 -0.563 0.5792
GFCE 1.43751 0.23123 6.217 2.95e-06 ***
CGD 0.02906 0.01044 2.783 0.0109 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006912 on 22 degrees of freedom
Multiple R-squared: 0.825, Adjusted R-squared: 0.7931
F-statistic: 25.92 on 4 and 22 DF, p-value: 4.764e-08
>
> lmall_FFIR_NIA6 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data)
> summary(lmall_FFIR_NIA6)
Call:
lm(formula = UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS +
CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.023689 -0.005461 -0.001174 0.006009 0.028019
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.004955 0.033761 -0.147 0.88465
GDP_Growth 3.368442 1.733362 1.943 0.06488 .
GDP_Per_Capita_Growth -3.778970 1.767413 -2.138 0.04386 *
EGS -0.030505 0.255319 -0.119 0.90598
CGD 0.056799 0.020037 2.835 0.00964 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01147 on 22 degrees of freedom
Multiple R-squared: 0.5177, Adjusted R-squared: 0.4301
F-statistic: 5.905 on 4 and 22 DF, p-value: 0.002197
>
> lmall_FFIR_NIA7 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data)
> summary(lmall_FFIR_NIA7)
Call:
lm(formula = UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS +
43
GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.017546 -0.001332 0.002255 0.003533 0.010590
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.22284 0.03828 -5.821 7.41e-06 ***
GDP_Growth -0.43661 0.91596 -0.477 0.6383
GDP_Per_Capita_Growth 0.59131 0.95869 0.617 0.5437
EGS 0.28610 0.12911 2.216 0.0374 *
GFCE 1.63112 0.22434 7.271 2.78e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.007266 on 22 degrees of freedom
Multiple R-squared: 0.8065, Adjusted R-squared: 0.7713
F-statistic: 22.93 on 4 and 22 DF, p-value: 1.404e-07
>
> ##Take out FFIR, GDP_Growth, and another variable
> lmall_FFIR_GDP_Growth4 = lm(UR ~ NIA + EGS + GFCE + CGD, data=data)
> summary(lmall_FFIR_GDP_Growth4)
Call:
lm(formula = UR ~ NIA + EGS + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.016498 -0.003501 0.002151 0.004372 0.008593
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.20418 0.04840 -4.219 0.000354 ***
NIA -0.80672 1.05920 -0.762 0.454370
EGS 0.21876 0.21303 1.027 0.315622
GFCE 1.48850 0.23780 6.259 2.67e-06 ***
CGD 0.02358 0.01338 1.763 0.091815 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.007018 on 22 degrees of freedom
Multiple R-squared: 0.8195, Adjusted R-squared: 0.7867
F-statistic: 24.97 on 4 and 22 DF, p-value: 6.638e-08
>
> lmall_FFIR_GDP_Growth5 = lm(UR ~ NIA + GDP_Per_Capita_Growth + GFCE + CGD, data=data)
> summary(lmall_FFIR_GDP_Growth5)
Call:
lm(formula = UR ~ NIA + GDP_Per_Capita_Growth + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.013336 -0.003696 0.001508 0.004518 0.009250
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.18782 0.03587 -5.236 2.98e-05 ***
NIA 0.07595 0.79225 0.096 0.924
GDP_Per_Capita_Growth 0.13035 0.11431 1.140 0.266
GFCE 1.48884 0.22990 6.476 1.63e-06 ***
CGD 0.02215 0.01342 1.651 0.113
44
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006981 on 22 degrees of freedom
Multiple R-squared: 0.8214, Adjusted R-squared: 0.7889
F-statistic: 25.29 on 4 and 22 DF, p-value: 5.92e-08
>
> lmall_FFIR_GDP_Growth6 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + CGD, data=data)
> summary(lmall_FFIR_GDP_Growth6)
Call:
lm(formula = UR ~ NIA + GDP_Per_Capita_Growth + EGS + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.018844 -0.007101 -0.001579 0.007309 0.021490
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.076485 0.025735 2.972 0.00704 **
NIA 2.942660 1.477947 1.991 0.05904 .
GDP_Per_Capita_Growth -0.175826 0.170302 -1.032 0.31308
EGS -0.417495 0.306820 -1.361 0.18738
CGD 0.006826 0.021626 0.316 0.75525
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01143 on 22 degrees of freedom
Multiple R-squared: 0.5212, Adjusted R-squared: 0.4342
F-statistic: 5.988 on 4 and 22 DF, p-value: 0.00204
>
> lmall_FFIR_GDP_Growth7 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE, data=data)
> summary(lmall_FFIR_GDP_Growth7)
Call:
lm(formula = UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.017476 -0.001457 0.002505 0.003611 0.011204
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2073 0.0521 -3.979 0.000634 ***
NIA 0.4948 0.8594 0.576 0.570645
GDP_Per_Capita_Growth 0.1462 0.1180 1.239 0.228577
EGS 0.2129 0.2206 0.965 0.345134
GFCE 1.5292 0.2664 5.740 8.98e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.007249 on 22 degrees of freedom
Multiple R-squared: 0.8074, Adjusted R-squared: 0.7724
F-statistic: 23.06 on 4 and 22 DF, p-value: 1.335e-07
>
> ##Take out FFIR, GDP_Per_Capita_Growth, and another variable
> lmall_FFIR_GDP_Per_Capita_Growth5 = lm(UR ~ NIA + GDP_Growth + GFCE + CGD, data=data)
> summary(lmall_FFIR_GDP_Per_Capita_Growth5)
Call:
lm(formula = UR ~ NIA + GDP_Growth + GFCE + CGD, data = data)
45
Residuals:
Min 1Q Median 3Q Max
-0.013346 -0.003624 0.001426 0.004394 0.009470
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.18852 0.03546 -5.316 2.46e-05 ***
NIA 0.13854 0.79808 0.174 0.864
GDP_Growth 0.13343 0.11013 1.212 0.239
GFCE 1.48079 0.22241 6.658 1.08e-06 ***
CGD 0.02223 0.01335 1.665 0.110
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006956 on 22 degrees of freedom
Multiple R-squared: 0.8227, Adjusted R-squared: 0.7904
F-statistic: 25.52 on 4 and 22 DF, p-value: 5.478e-08
>
> lmall_FFIR_GDP_Per_Capita_Growth6 = lm(UR ~ NIA + GDP_Growth + EGS + CGD, data=data)
> summary(lmall_FFIR_GDP_Per_Capita_Growth6)
Call:
lm(formula = UR ~ NIA + GDP_Growth + EGS + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.018539 -0.007698 -0.001482 0.007161 0.020892
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.079837 0.025574 3.122 0.00497 **
NIA 3.117112 1.524943 2.044 0.05310 .
GDP_Growth -0.128970 0.172332 -0.748 0.46216
EGS -0.443950 0.311780 -1.424 0.16850
CGD 0.004992 0.021737 0.230 0.82049
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01156 on 22 degrees of freedom
Multiple R-squared: 0.5105, Adjusted R-squared: 0.4215
F-statistic: 5.736 on 4 and 22 DF, p-value: 0.002558
>
> lmall_FFIR_GDP_Per_Capita_Growth7 = lm(UR ~ NIA + GDP_Growth + EGS + GFCE, data=data)
> summary(lmall_FFIR_GDP_Per_Capita_Growth7)
Call:
lm(formula = UR ~ NIA + GDP_Growth + EGS + GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.017520 -0.001558 0.002530 0.003572 0.011351
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.20425 0.05126 -3.985 0.000626 ***
NIA 0.60949 0.87570 0.696 0.493713
GDP_Growth 0.14228 0.11492 1.238 0.228727
EGS 0.19973 0.22180 0.900 0.377624
GFCE 1.50355 0.25765 5.836 7.16e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
46
Residual standard error: 0.007249 on 22 degrees of freedom
Multiple R-squared: 0.8074, Adjusted R-squared: 0.7724
F-statistic: 23.06 on 4 and 22 DF, p-value: 1.336e-07
>
> ##Take out FFIR, EGS, and another variable
> lmall_FFIR_EGS6 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data)
> summary(lmall_FFIR_EGS6)
Call:
lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth +
CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0193865 -0.0047941 -0.0009346 0.0049120 0.0198149
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02837 0.02326 -1.220 0.23556
NIA 3.17895 1.13833 2.793 0.01061 *
GDP_Growth 5.08663 1.60435 3.171 0.00443 **
GDP_Per_Capita_Growth -5.34644 1.61108 -3.319 0.00312 **
CGD 0.01799 0.01909 0.943 0.35616
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.00986 on 22 degrees of freedom
Multiple R-squared: 0.6437, Adjusted R-squared: 0.5789
F-statistic: 9.937 on 4 and 22 DF, p-value: 9.487e-05
>
> lmall_FFIR_EGS7 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data)
> summary(lmall_FFIR_EGS7)
Call:
lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth +
GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.016770 -0.001686 0.002221 0.004263 0.012479
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.16607 0.03692 -4.498 0.000179 ***
NIA 1.66143 0.79550 2.089 0.048537 *
GDP_Growth 0.86807 1.44882 0.599 0.555190
GDP_Per_Capita_Growth -0.73742 1.49607 -0.493 0.626962
GFCE 1.29724 0.29537 4.392 0.000232 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.007341 on 22 degrees of freedom
Multiple R-squared: 0.8025, Adjusted R-squared: 0.7666
F-statistic: 22.35 on 4 and 22 DF, p-value: 1.753e-07
>
> ##Take out FFIR, GFCE, and another variable
> lmall_FFIR_GFCE_7 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data)
> summary(lmall_FFIR_GFCE_7)
47
Call:
lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth +
EGS, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.017521 -0.005249 0.001422 0.005780 0.017972
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01727 0.02682 0.644 0.52622
NIA 5.73321 1.15302 4.972 5.63e-05 ***
GDP_Growth 5.08323 1.45951 3.483 0.00211 **
GDP_Per_Capita_Growth -5.19113 1.44976 -3.581 0.00167 **
EGS -0.51119 0.24640 -2.075 0.04992 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.009198 on 22 degrees of freedom
Multiple R-squared: 0.69, Adjusted R-squared: 0.6336
F-statistic: 12.24 on 4 and 22 DF, p-value: 2.184e-05
>
> ##Take out NIA, GDP_Growth, and another variable
> lmall_NIA_GDP_Growth4 = lm(UR ~ FFIR + EGS + GFCE + CGD, data=data)
> summary(lmall_NIA_GDP_Growth4)
Call:
lm(formula = UR ~ FFIR + EGS + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.018811 -0.002139 0.001322 0.004829 0.006376
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.158469 0.029592 -5.355 2.24e-05 ***
FFIR -0.187941 0.094294 -1.993 0.0588 .
EGS 0.173652 0.150655 1.153 0.2614
GFCE 1.318934 0.162540 8.115 4.66e-08 ***
CGD -0.001829 0.013627 -0.134 0.8945
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006544 on 22 degrees of freedom
Multiple R-squared: 0.8431, Adjusted R-squared: 0.8145
F-statistic: 29.55 on 4 and 22 DF, p-value: 1.46e-08
>
> lmall_NIA_GDP_Growth5 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + GFCE + CGD, data=data)
> summary(lmall_NIA_GDP_Growth5)
Call:
lm(formula = UR ~ FFIR + GDP_Per_Capita_Growth + GFCE + CGD,
data = data)
Residuals:
Min 1Q Median 3Q Max
-0.013843 -0.003433 0.001646 0.004359 0.007390
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.169894 0.032620 -5.208 3.19e-05 ***
FFIR -0.174497 0.091323 -1.911 0.0692 .
48
GDP_Per_Capita_Growth 0.143882 0.104678 1.375 0.1831
GFCE 1.461087 0.201282 7.259 2.85e-07 ***
CGD 0.008826 0.009437 0.935 0.3598
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006467 on 22 degrees of freedom
Multiple R-squared: 0.8468, Adjusted R-squared: 0.8189
F-statistic: 30.39 on 4 and 22 DF, p-value: 1.129e-08
>
> lmall_NIA_GDP_Growth6 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + CGD, data=data)
> summary(lmall_NIA_GDP_Growth6)
Call:
lm(formula = UR ~ FFIR + GDP_Per_Capita_Growth + EGS + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.022251 -0.007082 -0.002145 0.007218 0.026688
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.05851 0.02344 2.497 0.0205 *
FFIR -0.23699 0.17215 -1.377 0.1825
GDP_Per_Capita_Growth -0.32303 0.15230 -2.121 0.0454 *
EGS 0.01255 0.27144 0.046 0.9635
CGD 0.01038 0.02465 0.421 0.6777
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01192 on 22 degrees of freedom
Multiple R-squared: 0.4798, Adjusted R-squared: 0.3852
F-statistic: 5.072 on 4 and 22 DF, p-value: 0.004742
>
> lmall_NIA_GDP_Growth7 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE, data=data)
> summary(lmall_NIA_GDP_Growth7)
Call:
lm(formula = UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE,
data = data)
Residuals:
Min 1Q Median 3Q Max
-0.016221 -0.001846 0.001916 0.003884 0.008260
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.18742 0.03414 -5.490 1.62e-05 ***
FFIR -0.18358 0.06418 -2.860 0.00909 **
GDP_Per_Capita_Growth 0.15129 0.10086 1.500 0.14785
EGS 0.16216 0.10053 1.613 0.12099
GFCE 1.49547 0.19474 7.679 1.16e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006236 on 22 degrees of freedom
Multiple R-squared: 0.8575, Adjusted R-squared: 0.8316
F-statistic: 33.1 on 4 and 22 DF, p-value: 5.127e-09
>
> ##Take out NIA, GDP_Per_Capita_Growth, and another variable
> lmall_NIA_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + GDP_Growth + GFCE + CGD, data=data)
49
> summary(lmall_NIA_GDP_Per_Capita_Growth5)
Call:
lm(formula = UR ~ FFIR + GDP_Growth + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.013633 -0.003384 0.001594 0.004603 0.007712
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.172314 0.032177 -5.355 2.24e-05 ***
FFIR -0.180964 0.090825 -1.992 0.0589 .
GDP_Growth 0.152207 0.099562 1.529 0.1406
GFCE 1.464791 0.194078 7.547 1.53e-07 ***
CGD 0.009470 0.009342 1.014 0.3217
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006407 on 22 degrees of freedom
Multiple R-squared: 0.8496, Adjusted R-squared: 0.8222
F-statistic: 31.06 on 4 and 22 DF, p-value: 9.232e-09
>
> lmall_NIA_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + GDP_Growth + EGS + CGD, data=data)
> summary(lmall_NIA_GDP_Per_Capita_Growth6)
Call:
lm(formula = UR ~ FFIR + GDP_Growth + EGS + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.022424 -0.007278 -0.002546 0.007850 0.026589
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.062299 0.023997 2.596 0.0165 *
FFIR -0.232209 0.176322 -1.317 0.2014
GDP_Growth -0.287546 0.152988 -1.880 0.0735 .
EGS 0.003099 0.276416 0.011 0.9912
CGD 0.009609 0.025122 0.382 0.7058
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01214 on 22 degrees of freedom
Multiple R-squared: 0.4601, Adjusted R-squared: 0.3619
F-statistic: 4.687 on 4 and 22 DF, p-value: 0.006888
>
> lmall_NIA_GDP_Per_Capita_Growth7 = lm(UR ~ FFIR + GDP_Growth + EGS + GFCE, data=data)
> summary(lmall_NIA_GDP_Growth7)
Call:
lm(formula = UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE,
data = data)
Residuals:
Min 1Q Median 3Q Max
-0.016221 -0.001846 0.001916 0.003884 0.008260
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.18742 0.03414 -5.490 1.62e-05 ***
FFIR -0.18358 0.06418 -2.860 0.00909 **
50
GDP_Per_Capita_Growth 0.15129 0.10086 1.500 0.14785
EGS 0.16216 0.10053 1.613 0.12099
GFCE 1.49547 0.19474 7.679 1.16e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006236 on 22 degrees of freedom
Multiple R-squared: 0.8575, Adjusted R-squared: 0.8316
F-statistic: 33.1 on 4 and 22 DF, p-value: 5.127e-09
>
> ##Take out NIA, EGS, and another variable
> lmall_NIA_EGS6 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data)
> summary(lmall_NIA_EGS6)
Call:
lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth +
CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0200263 -0.0039673 -0.0004585 0.0023024 0.0247340
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.00234 0.02270 0.103 0.91885
FFIR -0.39466 0.15038 -2.624 0.01549 *
GDP_Growth 4.86803 1.60982 3.024 0.00624 **
GDP_Per_Capita_Growth -5.24262 1.63197 -3.212 0.00401 **
CGD 0.03288 0.01627 2.020 0.05568 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01001 on 22 degrees of freedom
Multiple R-squared: 0.6325, Adjusted R-squared: 0.5657
F-statistic: 9.465 on 4 and 22 DF, p-value: 0.0001315
>
> lmall_NIA_EGS7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data)
> summary(lmall_NIA_EGS7)
Call:
lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth +
GFCE, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0144425 -0.0025935 0.0007452 0.0048754 0.0089290
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.15861 0.03220 -4.927 6.29e-05 ***
FFIR -0.31546 0.09044 -3.488 0.00208 **
GDP_Growth 1.00671 1.00499 1.002 0.32738
GDP_Per_Capita_Growth -0.89437 1.04591 -0.855 0.40171
GFCE 1.38561 0.21665 6.396 1.96e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006449 on 22 degrees of freedom
Multiple R-squared: 0.8476, Adjusted R-squared: 0.8199
F-statistic: 30.59 on 4 and 22 DF, p-value: 1.062e-08
>
51
> ##Take out NIA, GFCE, and another variable
> lmall_NIA_GFCE_7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data)
> summary(lmall_NIA_GFCE_7)
Call:
lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth +
EGS, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.0194226 -0.0043323 -0.0000213 0.0031121 0.0245960
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.00624 0.03002 -0.208 0.837269
FFIR -0.52375 0.13182 -3.973 0.000644 ***
GDP_Growth 4.64708 1.63315 2.845 0.009410 **
GDP_Per_Capita_Growth -5.02265 1.65667 -3.032 0.006126 **
EGS 0.31508 0.18174 1.734 0.096980 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01023 on 22 degrees of freedom
Multiple R-squared: 0.6167, Adjusted R-squared: 0.547
F-statistic: 8.847 on 4 and 22 DF, p-value: 0.0002045
>
> ##Take out GDP_Growth, GDP_Per_Capita_Growth, and another variable
> lmall_GDP_Growth_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + NIA + GFCE + CGD, data=data)
> summary(lmall_GDP_Growth_GDP_Per_Capita_Growth5)
Call:
lm(formula = UR ~ FFIR + NIA + GFCE + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.015267 -0.004288 0.002410 0.004754 0.007979
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.14861 0.03020 -4.921 6.39e-05 ***
FFIR -0.17256 0.09615 -1.795 0.0865 .
NIA -0.33061 0.76380 -0.433 0.6693
GFCE 1.33088 0.18864 7.055 4.45e-07 ***
CGD 0.01375 0.01405 0.979 0.3384
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.00671 on 22 degrees of freedom
Multiple R-squared: 0.835, Adjusted R-squared: 0.805
F-statistic: 27.83 on 4 and 22 DF, p-value: 2.514e-08
>
> lmall_GDP_Growth_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + NIA + EGS + CGD, data=data)
> summary(lmall_GDP_Growth_GDP_Per_Capita_Growth6)
Call:
lm(formula = UR ~ FFIR + NIA + EGS + CGD, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.016679 -0.008986 -0.002073 0.008389 0.019655
Coefficients:
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model
United States Unemployment Rate Predictor Model

More Related Content

What's hot

Individual College Fed Challenge Paper
Individual College Fed Challenge PaperIndividual College Fed Challenge Paper
Individual College Fed Challenge PaperFeras Zarea
 
2014 Economic Forecast: Year of the Rebound? McCombs School of Business
2014 Economic Forecast: Year of the Rebound? McCombs School of Business2014 Economic Forecast: Year of the Rebound? McCombs School of Business
2014 Economic Forecast: Year of the Rebound? McCombs School of BusinessUT Austin McCombs School of Business
 
2015 State of the Construction Industry
2015 State of the Construction Industry 2015 State of the Construction Industry
2015 State of the Construction Industry Lisa Dehner
 
ING-ASR - US household finances survey 2015
ING-ASR - US household finances survey 2015ING-ASR - US household finances survey 2015
ING-ASR - US household finances survey 2015Ezonomics1
 
Economic Forecast (August 2012)
Economic Forecast (August 2012)Economic Forecast (August 2012)
Economic Forecast (August 2012)Nar Res
 
David Lerner Associates: The US Economic Rebound
David Lerner Associates:  The US Economic ReboundDavid Lerner Associates:  The US Economic Rebound
David Lerner Associates: The US Economic ReboundDavid Lerner Associates
 
Economic Indicators for Week of September 27-October 1, 2010
Economic Indicators for Week of September 27-October 1, 2010Economic Indicators for Week of September 27-October 1, 2010
Economic Indicators for Week of September 27-October 1, 2010NAR Research
 
Commodity factors affecting commodity prices 14012011
Commodity factors affecting commodity prices 14012011Commodity factors affecting commodity prices 14012011
Commodity factors affecting commodity prices 14012011flame2011
 
2015 san diego and national economic update july 24 2015
2015 san diego and national economic update july 24 20152015 san diego and national economic update july 24 2015
2015 san diego and national economic update july 24 2015Evan Donaldson
 
20180420__DanskeResearcch_WeeklyFocus
20180420__DanskeResearcch_WeeklyFocus20180420__DanskeResearcch_WeeklyFocus
20180420__DanskeResearcch_WeeklyFocusKarlFrank99
 
OTP Bank Report on inflation
OTP Bank Report on inflationOTP Bank Report on inflation
OTP Bank Report on inflationOTP Bank Ltd.
 
Economic Indicators for week of July 26-30
Economic Indicators for week of July 26-30Economic Indicators for week of July 26-30
Economic Indicators for week of July 26-30NAR Research
 

What's hot (17)

114193613 case-study
114193613 case-study114193613 case-study
114193613 case-study
 
Class4
Class4Class4
Class4
 
Individual College Fed Challenge Paper
Individual College Fed Challenge PaperIndividual College Fed Challenge Paper
Individual College Fed Challenge Paper
 
SVB Q1 2017 Economic Report
SVB Q1 2017 Economic ReportSVB Q1 2017 Economic Report
SVB Q1 2017 Economic Report
 
SVB Q2 2017 Economic Report
SVB Q2 2017 Economic ReportSVB Q2 2017 Economic Report
SVB Q2 2017 Economic Report
 
2014 Economic Forecast: Year of the Rebound? McCombs School of Business
2014 Economic Forecast: Year of the Rebound? McCombs School of Business2014 Economic Forecast: Year of the Rebound? McCombs School of Business
2014 Economic Forecast: Year of the Rebound? McCombs School of Business
 
2015 State of the Construction Industry
2015 State of the Construction Industry 2015 State of the Construction Industry
2015 State of the Construction Industry
 
ING-ASR - US household finances survey 2015
ING-ASR - US household finances survey 2015ING-ASR - US household finances survey 2015
ING-ASR - US household finances survey 2015
 
Economic Forecast (August 2012)
Economic Forecast (August 2012)Economic Forecast (August 2012)
Economic Forecast (August 2012)
 
12082014
1208201412082014
12082014
 
David Lerner Associates: The US Economic Rebound
David Lerner Associates:  The US Economic ReboundDavid Lerner Associates:  The US Economic Rebound
David Lerner Associates: The US Economic Rebound
 
Economic Indicators for Week of September 27-October 1, 2010
Economic Indicators for Week of September 27-October 1, 2010Economic Indicators for Week of September 27-October 1, 2010
Economic Indicators for Week of September 27-October 1, 2010
 
Commodity factors affecting commodity prices 14012011
Commodity factors affecting commodity prices 14012011Commodity factors affecting commodity prices 14012011
Commodity factors affecting commodity prices 14012011
 
2015 san diego and national economic update july 24 2015
2015 san diego and national economic update july 24 20152015 san diego and national economic update july 24 2015
2015 san diego and national economic update july 24 2015
 
20180420__DanskeResearcch_WeeklyFocus
20180420__DanskeResearcch_WeeklyFocus20180420__DanskeResearcch_WeeklyFocus
20180420__DanskeResearcch_WeeklyFocus
 
OTP Bank Report on inflation
OTP Bank Report on inflationOTP Bank Report on inflation
OTP Bank Report on inflation
 
Economic Indicators for week of July 26-30
Economic Indicators for week of July 26-30Economic Indicators for week of July 26-30
Economic Indicators for week of July 26-30
 

Similar to United States Unemployment Rate Predictor Model

ECN 410 Final Project Paper, James Wiltbank, Nathan Waters
ECN 410 Final Project Paper, James Wiltbank, Nathan  WatersECN 410 Final Project Paper, James Wiltbank, Nathan  Waters
ECN 410 Final Project Paper, James Wiltbank, Nathan WatersNathan Waters
 
Economic growth and inequality.
Economic growth and inequality.Economic growth and inequality.
Economic growth and inequality.Kübra Bayram
 
Economic indicators
Economic indicatorsEconomic indicators
Economic indicatorsJigna Bhatt
 
Does High Public Debt Consistently Stifle Economic Growth? A Critique a Reinh...
Does High Public Debt Consistently Stifle Economic Growth? A Critique a Reinh...Does High Public Debt Consistently Stifle Economic Growth? A Critique a Reinh...
Does High Public Debt Consistently Stifle Economic Growth? A Critique a Reinh...Marco Garoffolo
 
Jason Furman slides on President Obama's economic record and the challenges a...
Jason Furman slides on President Obama's economic record and the challenges a...Jason Furman slides on President Obama's economic record and the challenges a...
Jason Furman slides on President Obama's economic record and the challenges a...ResolutionFoundation
 
What can we learn from consumer confidence (case of Ukraine)
What can we learn from consumer confidence (case of Ukraine)What can we learn from consumer confidence (case of Ukraine)
What can we learn from consumer confidence (case of Ukraine)Maksym Mashliakivsky
 
The Effect of Aid on Growth
The Effect of Aid on GrowthThe Effect of Aid on Growth
The Effect of Aid on GrowthDr Lendy Spires
 
15Introduction The economy of the United State.docx
    15Introduction The economy of the United State.docx    15Introduction The economy of the United State.docx
15Introduction The economy of the United State.docxhallettfaustina
 
BU 701Professor Linda MeltzerAssignment # 1Summe.docx
BU 701Professor  Linda MeltzerAssignment # 1Summe.docxBU 701Professor  Linda MeltzerAssignment # 1Summe.docx
BU 701Professor Linda MeltzerAssignment # 1Summe.docxhartrobert670
 
An Empirical Study to Investigate the Reasons for the Increase in the Househo...
An Empirical Study to Investigate the Reasons for the Increase in the Househo...An Empirical Study to Investigate the Reasons for the Increase in the Househo...
An Empirical Study to Investigate the Reasons for the Increase in the Househo...Ehsan Dehghanizadeh
 
The impact of inflation, policy rate and government consumption expenditure o...
The impact of inflation, policy rate and government consumption expenditure o...The impact of inflation, policy rate and government consumption expenditure o...
The impact of inflation, policy rate and government consumption expenditure o...Alexander Decker
 
How Much Should We Trust China's GDP.pdf
How Much Should We Trust China's GDP.pdfHow Much Should We Trust China's GDP.pdf
How Much Should We Trust China's GDP.pdfKapil Khandelwal (KK)
 
Economic conditions-and-monetary-policy-a-transitional-phase-introduction
Economic conditions-and-monetary-policy-a-transitional-phase-introductionEconomic conditions-and-monetary-policy-a-transitional-phase-introduction
Economic conditions-and-monetary-policy-a-transitional-phase-introductionJarchin Raj
 
Dissertation
DissertationDissertation
DissertationInterdax
 

Similar to United States Unemployment Rate Predictor Model (17)

ECN 410 Final Project Paper, James Wiltbank, Nathan Waters
ECN 410 Final Project Paper, James Wiltbank, Nathan  WatersECN 410 Final Project Paper, James Wiltbank, Nathan  Waters
ECN 410 Final Project Paper, James Wiltbank, Nathan Waters
 
Economic growth and inequality.
Economic growth and inequality.Economic growth and inequality.
Economic growth and inequality.
 
Economic indicators
Economic indicatorsEconomic indicators
Economic indicators
 
Does High Public Debt Consistently Stifle Economic Growth? A Critique a Reinh...
Does High Public Debt Consistently Stifle Economic Growth? A Critique a Reinh...Does High Public Debt Consistently Stifle Economic Growth? A Critique a Reinh...
Does High Public Debt Consistently Stifle Economic Growth? A Critique a Reinh...
 
Final Draft of Illegal Immigrant Paper
Final Draft of Illegal Immigrant PaperFinal Draft of Illegal Immigrant Paper
Final Draft of Illegal Immigrant Paper
 
Jason Furman slides on President Obama's economic record and the challenges a...
Jason Furman slides on President Obama's economic record and the challenges a...Jason Furman slides on President Obama's economic record and the challenges a...
Jason Furman slides on President Obama's economic record and the challenges a...
 
RESEARCH UNEMPLOYMENT FINAL
RESEARCH UNEMPLOYMENT FINALRESEARCH UNEMPLOYMENT FINAL
RESEARCH UNEMPLOYMENT FINAL
 
What can we learn from consumer confidence (case of Ukraine)
What can we learn from consumer confidence (case of Ukraine)What can we learn from consumer confidence (case of Ukraine)
What can we learn from consumer confidence (case of Ukraine)
 
The Effect of Aid on Growth
The Effect of Aid on GrowthThe Effect of Aid on Growth
The Effect of Aid on Growth
 
Neil M BCA Dissertation
Neil M BCA DissertationNeil M BCA Dissertation
Neil M BCA Dissertation
 
15Introduction The economy of the United State.docx
    15Introduction The economy of the United State.docx    15Introduction The economy of the United State.docx
15Introduction The economy of the United State.docx
 
BU 701Professor Linda MeltzerAssignment # 1Summe.docx
BU 701Professor  Linda MeltzerAssignment # 1Summe.docxBU 701Professor  Linda MeltzerAssignment # 1Summe.docx
BU 701Professor Linda MeltzerAssignment # 1Summe.docx
 
An Empirical Study to Investigate the Reasons for the Increase in the Househo...
An Empirical Study to Investigate the Reasons for the Increase in the Househo...An Empirical Study to Investigate the Reasons for the Increase in the Househo...
An Empirical Study to Investigate the Reasons for the Increase in the Househo...
 
The impact of inflation, policy rate and government consumption expenditure o...
The impact of inflation, policy rate and government consumption expenditure o...The impact of inflation, policy rate and government consumption expenditure o...
The impact of inflation, policy rate and government consumption expenditure o...
 
How Much Should We Trust China's GDP.pdf
How Much Should We Trust China's GDP.pdfHow Much Should We Trust China's GDP.pdf
How Much Should We Trust China's GDP.pdf
 
Economic conditions-and-monetary-policy-a-transitional-phase-introduction
Economic conditions-and-monetary-policy-a-transitional-phase-introductionEconomic conditions-and-monetary-policy-a-transitional-phase-introduction
Economic conditions-and-monetary-policy-a-transitional-phase-introduction
 
Dissertation
DissertationDissertation
Dissertation
 

More from Veshal Arul Prakash

Internationalization Strategy for Chick-fil-A Entering India
Internationalization Strategy for Chick-fil-A Entering IndiaInternationalization Strategy for Chick-fil-A Entering India
Internationalization Strategy for Chick-fil-A Entering IndiaVeshal Arul Prakash
 
Relaunch and Communications Strategy for Affinity Pet Care
Relaunch and Communications Strategy for Affinity Pet CareRelaunch and Communications Strategy for Affinity Pet Care
Relaunch and Communications Strategy for Affinity Pet CareVeshal Arul Prakash
 
Corporate Strategy for McDonald's Corporation
Corporate Strategy for McDonald's CorporationCorporate Strategy for McDonald's Corporation
Corporate Strategy for McDonald's CorporationVeshal Arul Prakash
 
Premium Plaques Business Operations Proposal
Premium Plaques Business Operations ProposalPremium Plaques Business Operations Proposal
Premium Plaques Business Operations ProposalVeshal Arul Prakash
 
Go-To-Market Strategy for Ranbaxy
Go-To-Market Strategy for RanbaxyGo-To-Market Strategy for Ranbaxy
Go-To-Market Strategy for RanbaxyVeshal Arul Prakash
 
Sense Corp McCombs BHP Case Competition 2017
Sense Corp McCombs BHP Case Competition 2017Sense Corp McCombs BHP Case Competition 2017
Sense Corp McCombs BHP Case Competition 2017Veshal Arul Prakash
 
McCombs Spring Case Competition 2017
McCombs Spring Case Competition 2017McCombs Spring Case Competition 2017
McCombs Spring Case Competition 2017Veshal Arul Prakash
 
Deloitte Consulting Case Competition 2017
Deloitte Consulting Case Competition 2017Deloitte Consulting Case Competition 2017
Deloitte Consulting Case Competition 2017Veshal Arul Prakash
 

More from Veshal Arul Prakash (9)

Internationalization Strategy for Chick-fil-A Entering India
Internationalization Strategy for Chick-fil-A Entering IndiaInternationalization Strategy for Chick-fil-A Entering India
Internationalization Strategy for Chick-fil-A Entering India
 
Relaunch and Communications Strategy for Affinity Pet Care
Relaunch and Communications Strategy for Affinity Pet CareRelaunch and Communications Strategy for Affinity Pet Care
Relaunch and Communications Strategy for Affinity Pet Care
 
Corporate Strategy for McDonald's Corporation
Corporate Strategy for McDonald's CorporationCorporate Strategy for McDonald's Corporation
Corporate Strategy for McDonald's Corporation
 
Premium Plaques Business Operations Proposal
Premium Plaques Business Operations ProposalPremium Plaques Business Operations Proposal
Premium Plaques Business Operations Proposal
 
Go-To-Market Strategy for Ranbaxy
Go-To-Market Strategy for RanbaxyGo-To-Market Strategy for Ranbaxy
Go-To-Market Strategy for Ranbaxy
 
Sense Corp McCombs BHP Case Competition 2017
Sense Corp McCombs BHP Case Competition 2017Sense Corp McCombs BHP Case Competition 2017
Sense Corp McCombs BHP Case Competition 2017
 
McCombs Spring Case Competition 2017
McCombs Spring Case Competition 2017McCombs Spring Case Competition 2017
McCombs Spring Case Competition 2017
 
Deloitte Consulting Case Competition 2017
Deloitte Consulting Case Competition 2017Deloitte Consulting Case Competition 2017
Deloitte Consulting Case Competition 2017
 
Texas Stock Pitch - Celgene
Texas Stock Pitch - CelgeneTexas Stock Pitch - Celgene
Texas Stock Pitch - Celgene
 

Recently uploaded

Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Pooja Nehwal
 
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...Suhani Kapoor
 
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024Bladex
 
How Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingHow Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingAggregage
 
20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdfAdnet Communications
 
VIP Call Girls Thane Sia 8617697112 Independent Escort Service Thane
VIP Call Girls Thane Sia 8617697112 Independent Escort Service ThaneVIP Call Girls Thane Sia 8617697112 Independent Escort Service Thane
VIP Call Girls Thane Sia 8617697112 Independent Escort Service ThaneCall girls in Ahmedabad High profile
 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptxFinTech Belgium
 
Instant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School SpiritInstant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School Spiritegoetzinger
 
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...ssifa0344
 
The Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfThe Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfGale Pooley
 
Quarter 4- Module 3 Principles of Marketing
Quarter 4- Module 3 Principles of MarketingQuarter 4- Module 3 Principles of Marketing
Quarter 4- Module 3 Principles of MarketingMaristelaRamos12
 
03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptx03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptxFinTech Belgium
 
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptxFinTech Belgium
 
Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]Commonwealth
 
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...shivangimorya083
 
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service AizawlVip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawlmakika9823
 
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...ssifa0344
 
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...makika9823
 
Dividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxDividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxanshikagoel52
 

Recently uploaded (20)

Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
 
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
 
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024
 
How Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingHow Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of Reporting
 
20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf
 
VIP Call Girls Thane Sia 8617697112 Independent Escort Service Thane
VIP Call Girls Thane Sia 8617697112 Independent Escort Service ThaneVIP Call Girls Thane Sia 8617697112 Independent Escort Service Thane
VIP Call Girls Thane Sia 8617697112 Independent Escort Service Thane
 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx
 
Instant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School SpiritInstant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School Spirit
 
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
 
The Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfThe Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdf
 
Quarter 4- Module 3 Principles of Marketing
Quarter 4- Module 3 Principles of MarketingQuarter 4- Module 3 Principles of Marketing
Quarter 4- Module 3 Principles of Marketing
 
03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptx03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptx
 
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
 
Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]
 
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
 
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service AizawlVip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
 
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
 
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
 
Dividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxDividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptx
 

United States Unemployment Rate Predictor Model

  • 1. 1 Predictor Model for the United States Unemployment Rate Veshal Arul Prakash | Sloane Castleman | Nathan Hwang STA375H May 7, 2018
  • 2. 2 SUMMARY One of many factors that determine the overall quality of life in the United States is the unemployment rate. The unemployment rate is an important metric to consider because unemployment can significantly transform the lifestyle of a household. Our goal for this project was to identify the best predictor model for unemployment rate. The United States government or an individual could use this simple predictor model to determine a forecasted unemployment rate one year into the future. With the ability to predict the unemployment rate one year in advance, the United States government could better prepare for and pass fiscal policies necessary to control the economy, and thus, unemployment too. Individuals could use it to plan their personal financials and lives. We collected data on the United States unemployment rate and other prospective explanatory variables from 1990 to 2016. Through our research and data analysis using individual regressions between each variable and the unemployment rate, we realized that the following individual explanatory variables are statistically significant according to the p-value: Federal Funds Interest Rate, Net Income from Abroad, GDP Growth, GDP Per Capita Growth, Exports of Goods and Services, General Government Final Consumption Expenditure, and General Government Debt. To find the best predictor model leveraging backwards regression, we ran approximately seventy different models by using various combinations of at least four of the seven explanatory variables. Thus, the best predictor model for the United States unemployment rate is 𝑌𝑈𝑅 = −0.2239 − 0.3006𝑋 𝐹𝐹𝐼𝑅 − 2.0133𝑋 𝑁𝐼𝐴 + 0.5168𝑋 𝐸𝐺𝑆 + 1.6161𝑋 𝐺𝐹𝐶𝐸. Lastly, we confirmed that our model satisfied the regression assumptions. While we acknowledge that our model has limitations, it can decently approximate the unemployment rate a year from the present. INTRODUCTION Our initial idea for this project was to seek a prediction for the overall quality of life in the United States based on macroeconomic metrics and indicators. In further honing our idea, we decided to use the unemployment rate as our measure that was representative of the overall quality of life for people in the United States. Having experienced the financial crisis of 2008, our group has seen the effects of unemployment through close friends and family. The high rates of unemployment at the time introduced new difficulties for many families in the United States. Our group experienced first-hand how such an event had a significant impact on not only our overall quality of life but also how we go about our day-to-day lives. Our group believed that exploring this important macroeconomic indicator could produce thought-provoking results and prove useful in predicting future economic events. As defined by “Focus Economics”, “unemployment rate” is the percent of unemployed workers in the total labor force. The unemployment rate “provides insights into the economy’s spare capacity and unused resources”, as it is “cyclical” and maintains an inverse relationship with
  • 3. 3 the growth of the economy. Although there is no absolute measure for overall quality of life, we felt that unemployment rate was the most comprehensive as a lower unemployment rate indicates security, prosperity, and happiness for society. The unemployment rate is a closely watched economic indicator that directly affects people’s quality of life – a high unemployment rate is a universal sign of financial distress and a struggling economy. With that said, we understand that the other end of the extreme with 0% unemployment rate is also not good for the economy, as the natural unemployment rate is between 4.5% and 5%. We believe the unemployment rate is an indicator that most strongly and directly impacts the people in the country’s financial security. Unemployment also has other qualitative adverse effects on an individual besides an absence of steady income. Consequently, a lack of income is closely associated with poor mental health, higher crime and suicide rates, and higher rates of drug abuse and alcoholism. We sought to determine a relationship, if any, between various macroeconomic indicators and the unemployment rate of the United States from 1990 to 2016, attempting to find a predictor model for the unemployment rate based on the metrics from the previous year. We felt that identifying statistically significant relationships between the economic metrics from the previous year and the unemployment rate of the current year could, in theory, be useful in preparing fiscal policy. Understanding what affects the unemployment rate in the short term (one year) can help predict the unemployment rate, allow the government to keep a strong pulse on the economic state of the country, and enable the government and individuals to better prepare for circumstances driven by the unemployment rate, especially when it is high. We chose to analyze eleven economic metrics of the United States to determine which ones might predict the unemployment rate most accurately. The selected explanatory variables are among the most widely used metrics to understand the state of the economy and government spending, which is the cornerstone of our logical reasoning for selecting them. Therefore, we hypothesized that these metrics would be the best measures of the future (short-term) economic state, including the unemployment rate. The eleven explanatory variables we looked at are the following: • Inflation measured by the Consumer Price Index → CPI • Federal Funds Rate → FFIR • Net Income from Abroad (% of GDP) → NIA • GDP Growth (Annual %) → GDP Growth • GDP Per Capita Growth (Annual %) → GDP Per Capita Growth • Trade (% of GDP) → Trade • Imports of Goods and Services (Annual % Growth) → IGS • Exports of Goods and Services (% of GDP) → EGS
  • 4. 4 • Household Final Consumption Expenditure, etc. (% of GDP) → HFCE • General Government Final Consumption Expenditure (% of GDP) → GFCE • Central Government Debt, total (% of GDP) → CGD Initially, based on prior knowledge and exploring the topic through news articles, we believed that the Consumer Price Index (CPI) and Federal Funds Interest Rate would be the best predictors of the unemployment rate. Our reasoning behind the CPI and interest rates is that, when inflation is growing, that is a sign of growth in economic activity and rapid economic development. High levels of economic activity and economic development typically creates more jobs, which then decreases the unemployment rate. The Federal Reserve uses interest rate hikes throughout the year to slow down economic activity and limit inflation, so we believe that if the interest rate increased in the past year, unemployment will also increase due to subdued economic activity. This hypothesis was rigorously tested, and our findings can be found in detail in the analysis and results section. In addition, the paper will cover which explanatory variables are the most statistically significant regarding impacting the unemployment rate, and how those factors would play a role in the predictor model. DATA COLLECTION Our data sets were extracted from the World Bank online database. The original spreadsheet displayed every country in the world along with numerous economic metrics such as GDP, net savings, imports & exports, etc. We filtered the dataset spreadsheet to remain with just the United States data for the above-mentioned eleven explanatory variables and the unemployment rate. We evaluated the data with a time frame ranging from the beginning of 1990 to the beginning of 2016 for several reasons.
  • 5. 5 Rationale Technical 1. 1990 was the first year with reliable data available for all the explanatory variables. On the other hand, 2016 was the final year with reliable data available for all the explanatory variables. 2. 1990 – 2016 provides 27 years of data, which we believe was sufficient to build a valid predictor model for unemployment rate. This accounted for potential financial or world crises that are associated with the macroeconomic ebbs and flows. The longer period allowed us to identify outliers in our data that may skew the relationships present in the dataset. Contextual 1. The early 1990’s marked the conclusion of the United States-Soviet Union Cold War. The reason why this is significant is because both countries invested large amounts of capital to compete against each other which impacted various sectors of the economy. 2. The early 1990’s marked the rise of the Internet Age, and ever since, the lifestyle of Americans has significantly transformed. The way people find information and communicate information drastically changed. The landscape of the economy and available professional opportunities replaced parts of what existed before. By examining the data and running histograms and boxplots on each of our explanatory variables, we found that 2009 was a significant year with outliers in some of the explanatory variables due to the financial crisis beginning in 2008. 2009 was the only year in which the CPI was negative. Percent GDP growth was -.0277 in 2009, and the next closest case has GDP growth at -.0029 in 2008. Percent GDP per capita growth was -.036 in 2009, and the next closest -.012 in 2008. Lastly, the percent growth of imported goods and services was -.137 in 2009 and the next closest was -.028 in 2001. We believe these outliers will not skew our data dramatically. First, these outliers only represent a year’s worth of data in a data set comprised of 27 data points. Second, only a few explanatory variables have outliers. Finally, these outliers in 2009 helps build a more complete and accurate story about their effect on the unemployment rate. In 2009, the unemployment rate in the United States was relatively high. Before running regressions and analyzing the data, we lagged several of the explanatory variables by one year: CPI, interest rate, net income from abroad, trade, exports of goods and services, household final consumption expenditure, general government final consumption expenditure, and central government debt. However, GDP growth, GDP per capita growth, and imports of goods and services were not lagged because these variables already accounted for the change in the metric from the past year. We chose to lag the data by one year because we wanted to get a predictor model of the unemployment rate in a given year based on the metrics from the previous year. The goal was to create a short-term, more immediate predictor model for unemployment rate. Also, considering that the average length of the United States business cycle
  • 6. 6 after World War II is 56 months, which is almost five years, a one-year lag seemed reasonable to assume that relationships would exist between the explanatory variables and the unemployment rate. ANALYSIS AND RESULTS Elimination of Statistically Insignificant Explanatory Variables After introducing a lag into the data set to help with creating a predictor function, our initial goal with a multivariable regression was to discover a model with as few explanatory variables as possible, where all the explanatory variables are significant. There are different methods – backward regression, forward regression, stepwise regression, and best subsets regression. With eleven initially selected prospective variables, a backward regression was the most practical option. The backward regression process starts with several variables and helps eliminate variables until all remaining variables are significant. The p-value was used to determine whether each explanatory variable was statistically significant in predicting the unemployment rate a year from now. We ran single-variable linear regressions for each of the eleven initial prospective explanatory variables. Of those eleven prospective explanatory variables, any that had a p-value greater than 0.05 was eliminated from further continuing in the process for discovering the predictor model due to statistical insignificance. Any of the prospective explanatory variables with a p-value less than 0.05 were confirmed as statistically significant explanatory variables. As displayed in the table below, only seven of the eleven prospective explanatory variables were statistically significant. Federal funds interest rate, net income from abroad, GDP growth, GDP per capita growth, exports of goods and services, general government final consumption expenditure, and central government debt are considered statistically significant because the p- value was less than 0.05. In contrast, the consumer price index to track inflation, trade, imports of goods and services, and household final consumption expenditure are considered statistically insignificant because the p-value is greater than 0.05.
  • 7. 7 Variable Y-Intercept Coefficients Std. Error t-value p-value Statistically Significant? Consumer Price Index 0.062568 -0.329428 0.24668 9 -1.335 0.194 No Federal Funds Interest Rate 0.065775 -0.374297 0.09868 0 -3.793 0.000841 Yes Net Income from Abroad (% of GDP) 0.03727 2.28428 0.53561 4.265 0.00025 Yes GDP Growth (Annual %) 0.065154 -0.444310 0.16053 8 -2.768 0.0105 Yes GDP Per Capita Growth (Annual %) 0.060641 -0.444886 0.16967 6 -2.622 0.0147 Yes Trade (% of GDP) 0.02543 0.11649 0.08016 1.453 0.159 No Imports of Goods and Services (Annual % Growth) 0.058746 -0.081839 0.04783 0 -1.711 0.0995 No Exports of Goods and Services (% of GDP) 0.01004 0.40441 0.18631 2.171 0.0397 Yes Household Final Consumption Expenditure (% of GDP) -0.1755 0.3450 0.1772 1.947 0.0628 No General Government Final Consumption Expenditure (% of GDP) -0.17491 1.50739 0.20038 7.523 7.08e-08 Yes Central Government Debt (% of GDP) 0.03299 0.03555 0.01092 3.256 0.00324 Yes Explanation of the Independent Variables Our group was surprised by some of the results we returned from running regressions on each variable individually against the unemployment rate. To justify and seek an explanation for our results, we have provided qualitative or potential regression factors that could have affected our results:
  • 8. 8 Consumer Price Index: The consumer price index is the weighted average of prices of a basket of consumer goods and services. Based on our regression of just the CPI lagged by a year against the unemployment rate, we found the previous year’s CPI to be statistically insignificant with a high p-value. This was our most surprising result, as we had believed that the CPI would be a strong predictor of unemployment rate. We believe that this could be statistically insignificant in our case because our data is less than thirty years and thus may not completely reflect the different cyclical fluctuations in the economy. Another reason our data disconfirmed CPI could be the amount that we chose to lag is because the Federal Reserve typically raises interest rates to control growing inflation. Lagging inflation by one year may not capture the effect of inflation on unemployment because this effect is less immediate than some of the other explanatory variables and could require more time for fiscal policy to play out in the actual economy. Federal Funds Interest Rate: The Federal Funds Interest Rate is the interest rate at which depository institutions trade federal funds. The Federal Reserve, by increasing or decreasing this rate, controls the national interest rates because, historically, private banks match this rate. In accordance with our initial hypothesis, the Federal funds rate lagged by a year has a significant explanatory relationship with the unemployment rate. However, we found that an increase in the interest rate in one year led to a decrease in the unemployment rate in the next. We found this to make sense because the Fed raises interest rates when the economy is booming and on the rise. The manifestation of increased interest rates probably takes more than a year and does not slow down the economy within the year. Instead, the interest rates being raised indicates an active economy and continued falling of the unemployment rate until investment spending responds to increased interest rates. Net Income from Abroad: The Net Income from Abroad is the difference between the total values of the primary incomes receivable from, and payable to, non-residents. We found that when the percent of net income from abroad in the GDP increased, the unemployment rate increased. In other words, as foreign buyers contribute more to US GDP, that signals more economic inactivity from US citizens. As citizen’s purchasing slows, that indicates economic slump which is then reflected in a hike in the unemployment rate. GDP Growth: The GDP Growth is the change in the market value of all the goods and services produced in a country in a select period. Our results state that as GDP growth increases in one year, the unemployment rate decreases in the next. This outcome logically follows economic theory: as the economy grows more, unemployment drops. GDP Per Capita Growth: The GDP Per Capita Growth represents the GDP changes divided by the population. These results are nearly the exact same as GDP growth with small fluctuations based on change in population. Trade: Trade is the international exchange of goods, services, and capital. We found no statistically significant predictor relationship between trade and unemployment rate. We believe that trade is necessary regardless of the state of economy and a steadier metric than the others because it includes both imports and exports. Thus, changes in trade are not necessarily predictors
  • 9. 9 of changes in unemployment rate because changes in trade are more arbitrary rather than indicative of economic fluctuation. Change in Imports of Goods and Services: The Imports of Goods and Services represents the goods and services that are sourced into the United States from another country. This also did not have a statistically significant relationship with the unemployment rate. This could be because this metric was represented by the annual percent growth of imports rather than the percent of GDP. Exports of Goods and Services: The Exports of Goods and Services represent the amount of goods produced in one country and shipped to another country for possible future sales. Unlike the imports, the exports of goods and services reflected is a significant predictor of the unemployment rate. As more goods are exported, companies require an increase in labor, so the unemployment rate decreases. An increase in exports of goods and services often goes hand in hand with a weaker dollar, which could be an underlying variable that strengthens the relationship between exports and unemployment. Household Final Consumption Expenditure: The Household Final Consumption Expenditure is the market value of all goods and services purchased by households. We thought that this variable would be a more specific metric of household spending and use of disposable income. We found, however, that this did not have a statistically significant relationship with the unemployment rate and thus increased household consumption does not predict unemployment rate. In this case, decreased unemployment could possibly be a predictor of a future increase in household consumption. General Government Final Consumption Expenditure: The General Government Final Consumption Expenditure represents the total transaction amount of government expenditure on goods and services that are used for direct satisfaction of individual needs. Our results show that an increase in government consumption expenditure strongly predicts an increase in unemployment. So, as the government injects more money into the economy on consumption expenditures, which is an instrument the government uses in fiscal policy, employment decreases. We believe this is because government spending can cause crowding out, which discourages private investment and then winds up adversely affecting employment. General Government Debt: The General Government Debt represents the amount the central government borrows to finance all its planned expenditure. We found that as government debt as a percent of GDP increases, unemployment also increases. This aligns with the government final consumption expenditure, as increased government spending, in consumption and investment, could increase debt. Discovery of Strongest Predictor Model After identifying the seven statistically significant explanatory variables for unemployment rate, the next step was to discover the best predictor model for the unemployment rate. Initially, all the seven statistically significant explanatory variables were combined into one function. This, however, yielded in only two of the seven – Federal Funds Rate and General Government Final
  • 10. 10 Consumption Expenditure – to be statistically significant according to the p-value. Having said that, the p-value for the overall model suggested that the model is statistically significant. Furthermore, the R-squared value shows that a large percentage of the unemployment rate can be explained by combining these factors. The results for this model can be seen below: Although this model is overall statistically significant, there was still an interest in finding a stronger model that is more representative of predicting the unemployment rate, especially using fewer variables. At first, each of the seven variables were removed one-at-a-time, and the results were observed. Then, two of the seven variables were removed in all possible combinations to observe the results. Next, three of the seven variables were removed in every possible combination to view the results. Thus, approximately 70 more models with unique combinations of explanatory variables were tested. No more than three explanatory variables were removed at a time to test the models because we believed that at least half of the seven individual statistically significant explanatory variables should be represented in the model. Another filtration process followed with searching for the models with the maximum number of statistically significant explanatory variables. This narrowed down the list of possible models from approximately 70 to under 10, as a handful of the models had the same number of statistically significant explanatory variables. The overall p-values of the remaining models were then compared against one another to identify the model with the lowest overall p-value, which should therefore be the best predictor model for unemployment rate. The results for the best model can be viewed below:
  • 11. 11 Multivariable Predictor Model for Unemployment Rate: As seen above, the overall p-value for this predictor model is 2.155e-09, which confirms that the model is extremely statistically significant, further proving that the model should be able to predict the unemployment rate. Even though the “net income abroad” explanatory variable marginally missed out on statistical significance, it is important to note that none of the 70 or so tested models had all the explanatory variables to be statistically significant. Across all the models, there was a maximum of three explanatory variables per model that were statistically significant. As mentioned earlier, we decided to not compromise on our belief that at least half of the seven individual statistically significant explanatory variables should be represented in the data, so we chose to continue with the best model available to predict the unemployment rate. Despite the limitation present in our forecasting model, this model should be a strong predictor of unemployment rate due to the high overall statistical significance displayed in the extremely low p-value and high R squared. Testing the Regression Assumptions To verify the validity of our regression, we tested our results to check whether they satisfied the linear regression assumptions. We first tested linearity, which confirms that the relationship between the dependent and independent variables is linear, and that the data points are randomly distributed around the regression line. We plotted the residuals of the regression against the unemployment rate and found consistent linearity around the regression line as shown by the graph below. To test that the error terms are normally distributed, we created a histogram of the residuals. While the residuals did not have a perfectly normal curve, the residuals have a somewhat normal distribution centered at around 0 with an outlier at -.02 as seen in the graph below to the right. We 𝑌𝑈𝑅 = −0.2239 − 0.3006𝑋 𝐹𝐹𝐼𝑅 − 2.0133𝑋 𝑁𝐼𝐴 + 0.5168𝑋 𝐸𝐺𝑆 + 1.6161𝑋 𝐺𝐹𝐶𝐸
  • 12. 12 also created a QQ plot for the residuals vs. the normal distribution and compared these to a line corresponding to percentiles of normal distribution. Though the data around the most extreme ends of the plot is a little off, it stayed on the line for the most part. Finally, we plotted the residuals against time to test if the residuals are independent of each other. We found that the residuals were slightly correlated, where negative values briefly followed negative values from 2000 to 2005. We then calculated the correlations between all the variables and found that the interest rate was the variable that correlated with the rest. This is not surprising because the interest rate is a main driver in executing fiscal policy and a large factor in the economy. Ultimately, we decided to keep it in our regression despite some multicollinearity. In conclusion, none of our results when testing the regression assumptions are perfect. However, the implication of working with real world data is typically imperfect results, which is what we expected when running our analysis. We believe our data meets the standards of the regression assumptions necessary to confirm the validity of our regression models.
  • 13. 13 CONCLUSION For this report, we sought to find which macroeconomic factors would best predict the unemployment rate of the next year. Our initial hypothesis was that the Federal Funds interest rate and inflation as measured by the Consumer Price Index would hold the strongest predictive relationship. To do this, we used data from 1990 to 2016 and conducted backward regression by running individual regressions to eliminate some of our eleven initial explanatory variables. We narrowed these variables down to seven and then tested approximately 70 different combinations of the seven variables to identify the model with the greatest statistical significance based on the lowest p-value. We used backwards regression to avoid including an insignificant explanatory variable or omitting a significant explanatory variable. Through this, we found that the Federal Funds interest rate, net income from abroad, exports of goods and services, and government consumption expenditures together are the most significant predictors. We then tested our model against the regression assumptions to confirm its validity. Our regression satisfied all the assumptions well except for the independence of the explanatory variables. We found that they were correlated across time, but, upon further inspection, the Federal fund interest rate was the underlying variable that was correlated with the rest. We decided not to exclude the interest rate after this because it is a significant variable in predicting the unemployment rate and an established driver of the economy. Our results are important because the ability to predict the unemployment rate in the short term can affect many individuals lives. The unemployment rate is a widely followed metric of the economy and directly affects the individuals in the country. Unemployment can be harmful for families and the overall economic health of the country. The ability for both individuals and the government to predict and appropriately prepare for heightened unemployment can be helpful to maintain the financial security and stability for many individuals. Also, the government can shape fiscal policies and other legislative and executive matters to mitigate against harmful unemployment rates.
  • 14. 14 Works Cited Amadeo, K. (2018, March 26). Why Zero Unemployment Isn't as Good as It Sounds. Retrieved May 7, 2018, from https://www.thebalance.com/natural-rate-of-unemployment- definition-and-trends-3305950 Bachman, D. (2014, December 12). Business cycle length and the probability of a recession. Retrieved May 7, 2018, from https://www2.deloitte.com/insights/us/en/economy/behind- the-numbers/business-cycle-length.html Belle, D., & Bullock, H. (n.d.). The Psychological Consequences of Unemployment. Retrieved May 7, 2018, from https://www.spssi.org/index.cfm?fuseaction=page.viewpage&pageid=1457 Effective Federal Funds Rate. (2018, May 01). Retrieved from https://fred.stlouisfed.org/series/FEDFUNDS FocusEconomics. (n.d.). What is the unemployment rate? Retrieved from https://www.focus-economics.com/economicindicator/unemployment- rate Fouladi, M. (2010). The Impact of Government Expenditure on GDP, Employment and Private Investment a CGE Model Approach. Iranian Economic Review,15(27). Retrieved May 7, 2018, from ftp://ftp.repec.org/opt/ReDIF/RePEc/eut/journl/20103-4.pdf. Simpson, C. S. (2017, May 05). The Cost of Unemployment to the Economy. Retrieved from https://www.investopedia.com/financial-edge/0811/the-cost-of-unemployment-to-the- economy.aspx World Bank Group - International Development, Poverty, & Sustainability. (n.d.). Retrieved from http://www.worldbank.org/
  • 15. 15 APPENDIX A R Code data <- read_xlsx("C:/Users/vesha/OneDrive/Spring 2018 Courses/STA 375/Project 2/Project.xlsx") library(Hmisc) data <- Project[-28,] library(dplyr) lag(data$CPI, n=1L) lag(data$FFIR, n=1L) lag(data$NIA, n=1L) lag(data$GDP_Growth, n=0L) lag(data$GDP_Per_Capita_Growth, n=0L) lag(data$Trade, n=1L) lag(data$EGS, n=1L) lag(data$HFCE, n=1L) lag(data$GFCE, n=1L) lag(data$CGD, n=1L) hist(data$UR) boxplot(data$UR) boxplot(data$CPI) boxplot(data$FFIR) boxplot(data$NIA) boxplot(data$`GDP Growth`) boxplot(data$`GDP Per Capita Growth`) boxplot(data$Trade) boxplot(data$IGS) boxplot(data$EGS) boxplot(data$HFCE) boxplot(data$GFCE) boxplot(data$CGD) lm1 = lm(UR ~ CPI, data=data) summary(lm1) plot(Project$CPI,Project$UR, ylab="Unemployment Rate", xlab="CPI", main="Plot") abline(lm1) lm2 = lm(UR ~ FFIR, data=data) summary(lm2) plot(Project$FFIR,Project$UR, ylab="Unemployment Rate", xlab="FFIR", main="Plot") abline(lm2)
  • 16. 16 lm3 = lm(UR ~ NIA, data=data) summary(lm3) plot(Project$NIA,Project$UR, ylab="Unemployment Rate", xlab="NIA", main="Plot") abline(lm3) lm4 = lm(UR ~ GDP_Growth, data=data) summary(lm4) plot(Project$GDP_Growth,Project$UR, ylab="Unemployment Rate", xlab="GDP Growth", main="Plot") abline(lm4) lm5 = lm(UR ~ GDP_Per_Capita_Growth, data=data) summary(lm5) plot(Project$GDP_Per_Capita_Growth,Project$UR, ylab="Unemployment Rate", xlab="GDP Per Capita Growth", main="Plot") abline(lm5) lm6 = lm(UR ~ Trade, data=data) summary(lm6) plot(Project$Trade,Project$UR, ylab="Unemployment Rate", xlab="Trade", main="Plot") abline(lm6) lm7 = lm(UR ~ IGS, data=data) summary(lm7) plot(Project$IGS,Project$UR, ylab="Unemployment Rate", xlab="IGS", main="Plot") abline(lm7) lm8 = lm(UR ~ EGS, data=data) summary(lm8) plot(Project$EGS,Project$UR, ylab="Unemployment Rate", xlab="EGS", main="Plot") abline(lm8) lm9 = lm(UR ~ HFCE, data=data) summary(lm9) plot(Project$HFCE,Project$UR, ylab="Unemployment Rate", xlab="HFCE", main="Plot") abline(lm9) lm10 = lm(UR ~ GFCE, data=data) summary(lm10) plot(Project$GFCE,Project$UR, ylab="Unemployment Rate", xlab="GFCE", main="Plot") abline(lm10) lm11 = lm(UR ~ CGD, data=data) summary(lm11) plot(Project$CGD,Project$UR, ylab="Unemployment Rate", xlab="CGD", main="Plot")
  • 17. 17 abline(lm11) lmall = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) summary(lmall) lmall_FFIR = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) summary(lmall_FFIR) lmall_NIA = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) summary(lmall_NIA) lmall_GDP_Growth = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) summary(lmall_GDP_Growth) lmall_GDP_Per_Capita_Growth = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE + CGD, data=data) summary(lmall_GDP_Per_Capita_Growth) lmall_EGS = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data=data) summary(lmall_EGS) lmall_GFCE = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data) summary(lmall_GFCE) lmall_CGD = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data) summary(lmall_CGD) #Take out FFIR and another variable lmall_FFIR2 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) summary(lmall_FFIR2) lmall_FFIR3 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) summary(lmall_FFIR3) lmall_FFIR4 = lm(UR ~ NIA + GDP_Growth + EGS + GFCE + CGD, data=data) summary(lmall_FFIR4)
  • 18. 18 lmall_FFIR5 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data=data) summary(lmall_FFIR5) lmall_FFIR6 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data) summary(lmall_FFIR6) lmall_FFIR7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data) summary(lmall_FFIR7) #Take out NIA and another variable lmall_NIA3 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) summary(lmall_NIA3) lmall_NIA4 = lm(UR ~ FFIR + GDP_Growth + EGS + GFCE + CGD, data=data) summary(lmall_NIA4) lmall_NIA5 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data=data) summary(lmall_NIA5) lmall_NIA6 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data) summary(lmall_NIA6) lmall_NIA7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data) summary(lmall_NIA7) #Take out GDP_Growth and another variable lmall_GDP_Growth4 = lm(UR ~ FFIR + NIA + EGS + GFCE + CGD, data=data) summary(lmall_GDP_Growth4) lmall_GDP_Growth5 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + GFCE + CGD, data=data) summary(lmall_GDP_Growth5) lmall_GDP_Growth6 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS + CGD, data=data) summary(lmall_GDP_Growth6) lmall_GDP_Growth7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data) summary(lmall_GDP_Growth7) #Take out GDP_Per_Capita_Growth and another variable lmall_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + NIA + GDP_Growth + GFCE + CGD, data=data) summary(lmall_GDP_Per_Capita_Growth5)
  • 19. 19 lmall_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + CGD, data=data) summary(lmall_GDP_Per_Capita_Growth6) lmall_GDP_Per_Capita_Growth7 = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE, data=data) summary(lmall_GDP_Per_Capita_Growth7) #Take out EGS and another variable lmall_EGS6 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data) summary(lmall_EGS6) lmall_EGS7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data) summary(lmall_EGS7) #Take out GFCE and another variable lmall_GFCE7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data) summary(lmall_GFCE7) ##Take out FFIR, NIA, and another variable lmall_FFIR_NIA3 = lm(UR ~ GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) summary(lmall_FFIR_NIA3) lmall_FFIR_NIA4 = lm(UR ~ GDP_Growth + EGS + GFCE + CGD, data=data) summary(lmall_FFIR_NIA4) lmall_FFIR_NIA5 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data=data) summary(lmall_FFIR_NIA5) lmall_FFIR_NIA6 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data) summary(lmall_FFIR_NIA6) lmall_FFIR_NIA7 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data) summary(lmall_FFIR_NIA7) ##Take out FFIR, GDP_Growth, and another variable lmall_FFIR_GDP_Growth4 = lm(UR ~ NIA + EGS + GFCE + CGD, data=data) summary(lmall_FFIR_GDP_Growth4) lmall_FFIR_GDP_Growth5 = lm(UR ~ NIA + GDP_Per_Capita_Growth + GFCE + CGD, data=data) summary(lmall_FFIR_GDP_Growth5) lmall_FFIR_GDP_Growth6 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + CGD, data=data) summary(lmall_FFIR_GDP_Growth6)
  • 20. 20 lmall_FFIR_GDP_Growth7 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE, data=data) summary(lmall_FFIR_GDP_Growth7) ##Take out FFIR, GDP_Per_Capita_Growth, and another variable lmall_FFIR_GDP_Per_Capita_Growth5 = lm(UR ~ NIA + GDP_Growth + GFCE + CGD, data=data) summary(lmall_FFIR_GDP_Per_Capita_Growth5) lmall_FFIR_GDP_Per_Capita_Growth6 = lm(UR ~ NIA + GDP_Growth + EGS + CGD, data=data) summary(lmall_FFIR_GDP_Per_Capita_Growth6) lmall_FFIR_GDP_Per_Capita_Growth7 = lm(UR ~ NIA + GDP_Growth + EGS + GFCE, data=data) summary(lmall_FFIR_GDP_Per_Capita_Growth7) ##Take out FFIR, EGS, and another variable lmall_FFIR_EGS6 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data) summary(lmall_FFIR_EGS6) lmall_FFIR_EGS7 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data) summary(lmall_FFIR_EGS7) ##Take out FFIR, GFCE, and another variable lmall_FFIR_GFCE_7 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data) summary(lmall_FFIR_GFCE_7) ##Take out NIA, GDP_Growth, and another variable lmall_NIA_GDP_Growth4 = lm(UR ~ FFIR + EGS + GFCE + CGD, data=data) summary(lmall_NIA_GDP_Growth4) lmall_NIA_GDP_Growth5 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + GFCE + CGD, data=data) summary(lmall_NIA_GDP_Growth5) lmall_NIA_GDP_Growth6 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + CGD, data=data) summary(lmall_NIA_GDP_Growth6) lmall_NIA_GDP_Growth7 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE, data=data) summary(lmall_NIA_GDP_Growth7) ##Take out NIA, GDP_Per_Capita_Growth, and another variable lmall_NIA_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + GDP_Growth + GFCE + CGD, data=data) summary(lmall_NIA_GDP_Per_Capita_Growth5) lmall_NIA_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + GDP_Growth + EGS + CGD, data=data) summary(lmall_NIA_GDP_Per_Capita_Growth6)
  • 21. 21 lmall_NIA_GDP_Per_Capita_Growth7 = lm(UR ~ FFIR + GDP_Growth + EGS + GFCE, data=data) summary(lmall_NIA_GDP_Growth7) ##Take out NIA, EGS, and another variable lmall_NIA_EGS6 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data) summary(lmall_NIA_EGS6) lmall_NIA_EGS7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data) summary(lmall_NIA_EGS7) ##Take out NIA, GFCE, and another variable lmall_NIA_GFCE_7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data) summary(lmall_NIA_GFCE_7) ##Take out GDP_Growth, GDP_Per_Capita_Growth, and another variable lmall_GDP_Growth_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + NIA + GFCE + CGD, data=data) summary(lmall_GDP_Growth_GDP_Per_Capita_Growth5) lmall_GDP_Growth_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + NIA + EGS + CGD, data=data) summary(lmall_GDP_Growth_GDP_Per_Capita_Growth6) lmall_GDP_Growth_GDP_Per_Capita_Growth7 = lm(UR ~ FFIR + NIA + EGS + GFCE, data=data) ### Most Significant Model summary(lmall_GDP_Growth_GDP_Per_Capita_Growth7) ##Take out GDP_Growth, EGS, and another variable lmall_GDP_Growth_EGS6 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + CGD, data=data) summary(lmall_GDP_Growth_EGS6) lmall_GDP_Growth_EGS7 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + GFCE, data=data) summary(lmall_GDP_Growth_EGS7) ##Take out GDP_Growth, GFCE, and another variable lmall_GDP_Growth_GFCE7 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS, data=data) summary(lmall_GDP_Growth_GFCE7) ##Take out GDP_Per_Capita_Growth, EGS, and another variable lmall_GDP_Per_Capita_Growth_EGS6 = lm(UR ~ FFIR + NIA + GDP_Growth + CGD, data=data) summary(lmall_GDP_Per_Capita_Growth_EGS6) lmall_GDP_Per_Capita_Growth_EGS7 = lm(UR ~ FFIR + NIA + GDP_Growth + GFCE, data=data) summary(lmall_GDP_Per_Capita_Growth_EGS7) ##Take out GDP_Per_Capita_Growth, GFCE, and another variable
  • 22. 22 lmall_GDP_Per_Capita_Growth_GFCE7 = lm(UR ~ FFIR + NIA + GDP_Growth + EGS, data=data) summary(lmall_GDP_Per_Capita_Growth_GFCE7) ##Take out EGS, GFCE, and another variable lmall_EGS_GFCE7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth, data=data) summary(lmall_EGS_GFCE7) #FINAL BEST REGRESSION!!! FinalModel = lm(UR ~ FFIR + NIA + EGS + GFCE, data=data) ### Most Significant Model summary(FinalModel) #testing the linear regression assumptions residdata <- resid(FinalModel) plot(data$UR, residdata, main="",xlab="Unemployment Rate", ylab="Residuals") abline(0,0) hist(residdata, breaks=50, xlab="Residuals") qqnorm(residdata) qqline(residdata) plot(data$Year, residdata, xlab="Year", ylab="Residuals") plot(data$FFIR, data$UR) plot(data$NIA, data$UR) plot(data$EGS, data$UR) plot(data$GFCE, data$UR) cor(data$FFIR, data$NIA) cor(data$FFIR, data$EGS) cor(data$GFCE, data$EGS)
  • 23. 23 APPENDIX B Results from R-Code > data <- read_xlsx("C:/Users/vesha/OneDrive/Spring 2018 Courses/STA 375/Proj ect 2/Project.xlsx") > library(Hmisc) > data <- Project[-28,] > library(dplyr) > > lag(data$CPI, n=1L) [1] NA 0.0540 0.0423 0.0303 0.0295 0.0261 0.0281 0.0293 0.0234 0.0155 0.0219 0.0338 0.0283 0.0159 [15] 0.0227 0.0268 0.0339 0.0323 0.0285 0.0384 -0.0036 0.0164 0.0316 0.0207 0.0146 0.0162 0.0012 > lag(data$FFIR, n=1L) [1] NA 0.0810 0.0569 0.0352 0.0302 0.0420 0.0584 0.0530 0.0546 0.0535 0. 0497 0.0624 0.0389 0.0167 0.0113 0.0135 [17] 0.0321 0.0496 0.0502 0.0193 0.0016 0.0018 0.0010 0.0014 0.0011 0.0009 0. 0013 > lag(data$NIA, n=1L) [1] NA 0.0058 0.0051 0.0048 0.0047 0.0033 0.0038 0.0039 0.0028 0.0020 0. 0028 0.0036 0.0049 0.0044 0.0058 0.0073 [17] 0.0071 0.0049 0.0087 0.0117 0.0105 0.0138 0.0159 0.0147 0.0146 0.0135 0. 0113 > lag(data$GDP_Growth, n=0L) [1] 0.0191937030 -0.0007408453 0.0355539615 0.0274585672 0.0403764342 0 .0271897579 0.0379588123 0.0448702649 [9] 0.0444991096 0.0468519961 0.0409217645 0.0097598183 0.0178612769 0 .0280677596 0.0378574285 0.0334521606 [17] 0.0266662583 0.0177857024 -0.0029162146 -0.0277552957 0.0253192062 0 .0160145467 0.0222403085 0.0167733153 [25] 0.0256919359 0.0286158702 0.0148527919 > lag(data$GDP_Per_Capita_Growth, n=0L) [1] 0.0077451620 -0.0140047356 0.0212911448 0.0139986184 0.0276962460 0 .0150306531 0.0259530525 0.0323658668 [9] 0.0323939248 0.0348993353 0.0294029178 -0.0001848978 0.0084612595 0 .0192695688 0.0282965349 0.0239704602 [17] 0.0168141646 0.0081518822 -0.0123028217 -0.0362412411 0.0167789814 0 .0084671683 0.0146385095 0.0096781066 [25] 0.0180980214 0.0211370521 0.0078461771 > lag(data$Trade, n=1L) [1] NA 0.1976061 0.1973551 0.1989274 0.1998590 0.2099351 0.2238218 0. 2261124 0.2334412 0.2275974 0.2319303 [12] 0.2498318 0.2280314 0.2214966 0.2245059 0.2429492 0.2550066 0.2687362 0. 2795893 0.2994141 0.2476583 0.2818245 [23] 0.3088516 0.3071463 0.3022626 0.3016366 0.2789004 > lag(data$EGS, n=1L) [1] NA 0.09229297 0.09636020 0.09680747 0.09519216 0.09864047 0.1060 5515 0.10710722 0.11079797 0.10484799 [11] 0.10268281 0.10664643 0.09666071 0.09132386 0.09037519 0.09625368 0.0999 6398 0.10654792 0.11497907 0.12514398 [21] 0.11011656 0.12378301 0.13573792 0.13606609 0.13639312 0.13620044 0.1249 9044 > lag(data$HFCE, n=1L) [1] NA 0.6397819 0.6414195 0.6446652 0.6499764 0.6486765 0.6503306 0. 6503627 0.6459569 0.6494581 0.6528588 [12] 0.6604312 0.6687275 0.6726521 0.6746372 0.6729177 0.6716280 0.6714830 0. 6734877 0.6803402 0.6829286 0.6817649 [23] 0.6888355 0.6840268 0.6806556 0.6787599 0.6805613 > lag(data$GFCE, n=1L)
  • 24. 24 [1] NA 0.1585383 0.1626278 0.1604534 0.1561593 0.1518135 0.1493310 0. 1452431 0.1422576 0.1399592 0.1405263 [12] 0.1404185 0.1454676 0.1504315 0.1525187 0.1522569 0.1512211 0.1508273 0. 1526300 0.1609235 0.1693672 0.1685476 [23] 0.1630927 0.1574813 0.1511981 0.1470478 0.1440782 > lag(data$CGD, n=1L) [1] NA 0.4082137 0.4394803 0.4591654 0.4810475 0.4721406 0.4705978 0. 4658551 0.4395880 0.4100991 0.3761227 [12] 0.3315822 0.1510873 0.5362950 0.5598549 0.5639581 0.5630342 0.5530589 0. 5564672 0.6403726 0.7633746 0.8562236 [23] 0.9019787 0.9440677 0.9661282 0.9689284 0.9737481 > > hist(data$UR) > boxplot(data$UR) > boxplot(data$CPI) > boxplot(data$FFIR) > boxplot(data$NIA) > boxplot(data$`GDP Growth`) > boxplot(data$`GDP Per Capita Growth`) > boxplot(data$Trade) > boxplot(data$IGS) > boxplot(data$EGS) > boxplot(data$HFCE) > boxplot(data$GFCE) > boxplot(data$CGD) > > lm1 = lm(UR ~ CPI, data=data) > summary(lm1) Call: lm(formula = UR ~ CPI, data = data) Residuals: Min 1Q Median 3Q Max -0.019354 -0.011853 -0.004440 0.009595 0.032634 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.062568 0.006772 9.240 1.54e-09 *** CPI -0.329428 0.246689 -1.335 0.194 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01497 on 25 degrees of freedom Multiple R-squared: 0.06658, Adjusted R-squared: 0.02925 F-statistic: 1.783 on 1 and 25 DF, p-value: 0.1938 > plot(Project$CPI,Project$UR, ylab="Unemployment Rate", xlab="CPI", main="Pl ot") > abline(lm1) > > lm2 = lm(UR ~ FFIR, data=data) > summary(lm2) Call: lm(formula = UR ~ FFIR, data = data) Residuals: Min 1Q Median 3Q Max -0.019678 -0.008428 -0.006185 0.008439 0.024699 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.065775 0.003829 17.177 2.36e-15 ***
  • 25. 25 FFIR -0.374297 0.098680 -3.793 0.000841 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01235 on 25 degrees of freedom Multiple R-squared: 0.3653, Adjusted R-squared: 0.3399 F-statistic: 14.39 on 1 and 25 DF, p-value: 0.0008414 > plot(Project$FFIR,Project$UR, ylab="Unemployment Rate", xlab="FFIR", main=" Plot") > abline(lm2) > > lm3 = lm(UR ~ NIA, data=data) > summary(lm3) Call: lm(formula = UR ~ NIA, data = data) Residuals: Min 1Q Median 3Q Max -0.016883 -0.008127 -0.000966 0.006886 0.024945 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.03727 0.00461 8.084 1.94e-08 *** NIA 2.28428 0.53561 4.265 0.00025 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01179 on 25 degrees of freedom Multiple R-squared: 0.4211, Adjusted R-squared: 0.398 F-statistic: 18.19 on 1 and 25 DF, p-value: 0.0002504 > plot(Project$NIA,Project$UR, ylab="Unemployment Rate", xlab="NIA", main="Pl ot") > abline(lm3) > > lm4 = lm(UR ~ GDP_Growth, data=data) > summary(lm4) Call: lm(formula = UR ~ GDP_Growth, data = data) Residuals: Min 1Q Median 3Q Max -0.019118 -0.007682 -0.004040 0.007750 0.035895 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.065154 0.004685 13.907 2.86e-13 *** GDP_Growth -0.444310 0.160538 -2.768 0.0105 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01356 on 25 degrees of freedom Multiple R-squared: 0.2345, Adjusted R-squared: 0.2039 F-statistic: 7.66 on 1 and 25 DF, p-value: 0.01047 > plot(Project$GDP_Growth,Project$UR, ylab="Unemployment Rate", xlab="GDP Gro wth", main="Plot") > abline(lm4) > > lm5 = lm(UR ~ GDP_Per_Capita_Growth, data=data) > summary(lm5)
  • 26. 26 Call: lm(formula = UR ~ GDP_Per_Capita_Growth, data = data) Residuals: Min 1Q Median 3Q Max -0.019023 -0.008355 -0.003542 0.006684 0.036624 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.060641 0.003559 17.038 2.86e-15 *** GDP_Per_Capita_Growth -0.444886 0.169676 -2.622 0.0147 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01372 on 25 degrees of freedom Multiple R-squared: 0.2157, Adjusted R-squared: 0.1843 F-statistic: 6.875 on 1 and 25 DF, p-value: 0.01467 > plot(Project$GDP_Per_Capita_Growth,Project$UR, ylab="Unemployment Rate", xl ab="GDP Per Capita Growth", main="Plot") > abline(lm5) > > lm6 = lm(UR ~ Trade, data=data) > summary(lm6) Call: lm(formula = UR ~ Trade, data = data) Residuals: Min 1Q Median 3Q Max -0.020237 -0.010269 -0.003872 0.009965 0.031916 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.02543 0.02013 1.264 0.218 Trade 0.11649 0.08016 1.453 0.159 Residual standard error: 0.01488 on 25 degrees of freedom Multiple R-squared: 0.0779, Adjusted R-squared: 0.04102 F-statistic: 2.112 on 1 and 25 DF, p-value: 0.1586 > plot(Project$Trade,Project$UR, ylab="Unemployment Rate", xlab="Trade", main ="Plot") > abline(lm6) > > lm7 = lm(UR ~ IGS, data=data) > summary(lm7) Call: lm(formula = UR ~ IGS, data = data) Residuals: Min 1Q Median 3Q Max -0.019367 -0.009660 -0.003846 0.007430 0.041461 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.058746 0.003802 15.451 2.68e-14 *** IGS -0.081839 0.047830 -1.711 0.0995 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01466 on 25 degrees of freedom
  • 27. 27 Multiple R-squared: 0.1048, Adjusted R-squared: 0.06903 F-statistic: 2.928 on 1 and 25 DF, p-value: 0.09945 > plot(Project$IGS,Project$UR, ylab="Unemployment Rate", xlab="IGS", main="Pl ot") > abline(lm7) > > lm8 = lm(UR ~ EGS, data=data) > summary(lm8) Call: lm(formula = UR ~ EGS, data = data) Residuals: Min 1Q Median 3Q Max -0.018866 -0.012164 -0.004327 0.008326 0.031631 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.01004 0.02061 0.487 0.6306 EGS 0.40441 0.18631 2.171 0.0397 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01421 on 25 degrees of freedom Multiple R-squared: 0.1586, Adjusted R-squared: 0.1249 F-statistic: 4.712 on 1 and 25 DF, p-value: 0.03966 > plot(Project$EGS,Project$UR, ylab="Unemployment Rate", xlab="EGS", main="Pl ot") > abline(lm8) > > lm9 = lm(UR ~ HFCE, data=data) > summary(lm9) Call: lm(formula = UR ~ HFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.018116 -0.011171 -0.003518 0.010798 0.030023 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.1755 0.1181 -1.486 0.1498 HFCE 0.3450 0.1772 1.947 0.0628 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01444 on 25 degrees of freedom Multiple R-squared: 0.1317, Adjusted R-squared: 0.09697 F-statistic: 3.792 on 1 and 25 DF, p-value: 0.06281 > plot(Project$HFCE,Project$UR, ylab="Unemployment Rate", xlab="HFCE", main=" Plot") > abline(lm9) > lm10 = lm(UR ~ GFCE, data=data) > summary(lm10) Call: lm(formula = UR ~ GFCE, data = data) Residuals: Min 1Q Median 3Q Max
  • 28. 28 -0.0157611 -0.0039801 0.0000711 0.0050946 0.0146987 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.17491 0.03052 -5.730 5.71e-06 *** GFCE 1.50739 0.20038 7.523 7.08e-08 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.008578 on 25 degrees of freedom Multiple R-squared: 0.6936, Adjusted R-squared: 0.6813 F-statistic: 56.59 on 1 and 25 DF, p-value: 7.076e-08 > plot(Project$GFCE,Project$UR, ylab="Unemployment Rate", xlab="GFCE", main=" Plot") > abline(lm10) > > lm11 = lm(UR ~ CGD, data=data) > summary(lm11) Call: lm(formula = UR ~ CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.023749 -0.009569 -0.001123 0.006084 0.026369 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.03299 0.00703 4.694 8.24e-05 *** CGD 0.03555 0.01092 3.256 0.00324 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01299 on 25 degrees of freedom Multiple R-squared: 0.2977, Adjusted R-squared: 0.2696 F-statistic: 10.6 on 1 and 25 DF, p-value: 0.003242 > plot(Project$CGD,Project$UR, ylab="Unemployment Rate", xlab="CGD", main="Pl ot") > abline(lm11) > > lmall = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFC E + CGD, data=data) > summary(lmall) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0173060 -0.0012923 0.0001622 0.0034333 0.0062708 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.216801 0.053892 -4.023 0.000727 *** FFIR -0.296128 0.098943 -2.993 0.007478 ** NIA -0.968539 1.471743 -0.658 0.518376 GDP_Growth 1.430112 1.548151 0.924 0.367198 GDP_Per_Capita_Growth -1.343881 1.592779 -0.844 0.409316 EGS 0.356238 0.244587 1.456 0.161586 GFCE 1.508723 0.346141 4.359 0.000338 *** CGD 0.005186 0.013293 0.390 0.700766
  • 29. 29 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006044 on 19 degrees of freedom Multiple R-squared: 0.8844, Adjusted R-squared: 0.8418 F-statistic: 20.76 on 7 and 19 DF, p-value: 1.211e-07 > > lmall_FFIR = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) > summary(lmall_FFIR) Call: lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.014866 -0.002998 0.001088 0.003799 0.010622 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.20796 0.06362 -3.269 0.00384 ** NIA -0.09977 1.70589 -0.058 0.95394 GDP_Growth 0.69627 1.80731 0.385 0.70412 GDP_Per_Capita_Growth -0.59348 1.85970 -0.319 0.75294 EGS 0.13521 0.27568 0.490 0.62915 GFCE 1.48553 0.40915 3.631 0.00166 ** CGD 0.02287 0.01408 1.624 0.12000 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.007146 on 20 degrees of freedom Multiple R-squared: 0.8299, Adjusted R-squared: 0.7788 F-statistic: 16.26 on 6 and 20 DF, p-value: 9.582e-07 > > lmall_NIA = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) > summary(lmall_NIA) Call: lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0173172 -0.0019026 0.0005505 0.0034549 0.0073301 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.189055 0.033088 -5.714 1.36e-05 *** FFIR -0.283286 0.095614 -2.963 0.00769 ** GDP_Growth 2.153897 1.074010 2.005 0.05863 . GDP_Per_Capita_Growth -2.079922 1.117837 -1.861 0.07756 . EGS 0.224550 0.138634 1.620 0.12095 GFCE 1.327721 0.207155 6.409 2.98e-06 *** CGD 0.004169 0.013014 0.320 0.75204 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.005958 on 20 degrees of freedom Multiple R-squared: 0.8817, Adjusted R-squared: 0.8463 F-statistic: 24.85 on 6 and 20 DF, p-value: 2.812e-08
  • 30. 30 > > lmall_GDP_Growth = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) > summary(lmall_GDP_Growth) Call: lm(formula = UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0170926 -0.0009726 0.0010440 0.0027262 0.0068811 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.244436 0.044661 -5.473 2.34e-05 *** FFIR -0.281652 0.097335 -2.894 0.00898 ** NIA -1.934368 1.031983 -1.874 0.07556 . GDP_Per_Capita_Growth 0.124594 0.098940 1.259 0.22242 EGS 0.475986 0.206647 2.303 0.03212 * GFCE 1.746758 0.230264 7.586 2.62e-07 *** CGD 0.003698 0.013146 0.281 0.78138 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006022 on 20 degrees of freedom Multiple R-squared: 0.8792, Adjusted R-squared: 0.8429 F-statistic: 24.26 on 6 and 20 DF, p-value: 3.464e-08 > > lmall_GDP_Per_Capita_Growth = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE + CGD, data=data) > summary(lmall_GDP_Per_Capita_Growth) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0170397 -0.0009566 0.0010515 0.0027066 0.0068433 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.242762 0.043924 -5.527 2.07e-05 *** FFIR -0.282987 0.097003 -2.917 0.00852 ** NIA -1.840503 1.040275 -1.769 0.09210 . GDP_Growth 0.126426 0.095824 1.319 0.20196 EGS 0.464665 0.206602 2.249 0.03593 * GFCE 1.730748 0.223247 7.753 1.89e-07 *** CGD 0.003745 0.013087 0.286 0.77772 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006001 on 20 degrees of freedom Multiple R-squared: 0.88, Adjusted R-squared: 0.8441 F-statistic: 24.46 on 6 and 20 DF, p-value: 3.231e-08 > > lmall_EGS = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data=data) > summary(lmall_EGS)
  • 31. 31 Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0155434 -0.0030581 0.0001123 0.0042705 0.0079657 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.15489 0.03404 -4.550 0.000195 *** FFIR -0.25262 0.09693 -2.606 0.016903 * NIA 0.78521 0.86968 0.903 0.377341 GDP_Growth 2.62520 1.34913 1.946 0.065862 . GDP_Per_Capita_Growth -2.56276 1.39269 -1.840 0.080634 . GFCE 1.16490 0.26016 4.478 0.000230 *** CGD 0.01044 0.01315 0.794 0.436267 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006211 on 20 degrees of freedom Multiple R-squared: 0.8715, Adjusted R-squared: 0.8329 F-statistic: 22.6 on 6 and 20 DF, p-value: 6.333e-08 > > lmall_GFCE = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data) > summary(lmall_GFCE) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.016960 -0.005444 0.001594 0.004306 0.015305 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.004507 0.024899 0.181 0.858183 FFIR -0.286472 0.136346 -2.101 0.048514 * NIA 4.128706 1.231646 3.352 0.003172 ** GDP_Growth 6.453556 1.424793 4.529 0.000204 *** GDP_Per_Capita_Growth -6.621714 1.426287 -4.643 0.000157 *** EGS -0.370809 0.246568 -1.504 0.148240 CGD 0.008331 0.018295 0.455 0.653736 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.008331 on 20 degrees of freedom Multiple R-squared: 0.7688, Adjusted R-squared: 0.6994 F-statistic: 11.08 on 6 and 20 DF, p-value: 1.8e-05 > > lmall_CGD = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data) > summary(lmall_CGD) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data = data) Residuals: Min 1Q Median 3Q Max
  • 32. 32 -0.0179255 -0.0012048 0.0006153 0.0032649 0.0063004 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.21696 0.05274 -4.114 0.000539 *** FFIR -0.31328 0.08674 -3.612 0.001740 ** NIA -0.90176 1.43044 -0.630 0.535565 GDP_Growth 1.35690 1.50381 0.902 0.377632 GDP_Per_Capita_Growth -1.26401 1.54573 -0.818 0.423139 EGS 0.38215 0.23035 1.659 0.112714 GFCE 1.51605 0.33823 4.482 0.000228 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.005915 on 20 degrees of freedom Multiple R-squared: 0.8835, Adjusted R-squared: 0.8485 F-statistic: 25.27 on 6 and 20 DF, p-value: 2.439e-08 > > #Take out FFIR and another variable > lmall_FFIR2 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD , data=data) > summary(lmall_FFIR2) Call: lm(formula = UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.014878 -0.003039 0.001083 0.003780 0.010495 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.20503 0.03822 -5.365 2.55e-05 *** GDP_Growth 0.77725 1.13353 0.686 0.500 GDP_Per_Capita_Growth -0.67586 1.18517 -0.570 0.575 EGS 0.12212 0.15716 0.777 0.446 GFCE 1.46624 0.23625 6.206 3.71e-06 *** CGD 0.02268 0.01337 1.697 0.105 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006975 on 21 degrees of freedom Multiple R-squared: 0.8298, Adjusted R-squared: 0.7893 F-statistic: 20.48 on 5 and 21 DF, p-value: 1.973e-07 > > lmall_FFIR3 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data= data) > summary(lmall_FFIR3) Call: lm(formula = UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.014819 -0.002619 0.001145 0.003817 0.010534 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.22197 0.05112 -4.342 0.000287 *** NIA -0.60330 1.07379 -0.562 0.580170
  • 33. 33 GDP_Per_Capita_Growth 0.12154 0.11500 1.057 0.302569 EGS 0.20041 0.21317 0.940 0.357844 GFCE 1.60497 0.26152 6.137 4.34e-06 *** CGD 0.02169 0.01346 1.611 0.122067 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.007 on 21 degrees of freedom Multiple R-squared: 0.8286, Adjusted R-squared: 0.7878 F-statistic: 20.31 on 5 and 21 DF, p-value: 2.124e-07 > > lmall_FFIR4 = lm(UR ~ NIA + GDP_Growth + EGS + GFCE + CGD, data=data) > summary(lmall_FFIR4) Call: lm(formula = UR ~ NIA + GDP_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.014794 -0.002661 0.001120 0.003880 0.010587 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.21989 0.05036 -4.367 0.00027 *** NIA -0.51209 1.08982 -0.470 0.64328 GDP_Growth 0.12066 0.11163 1.081 0.29202 EGS 0.18875 0.21402 0.882 0.38781 GFCE 1.58653 0.25367 6.254 3.34e-06 *** CGD 0.02186 0.01342 1.628 0.11835 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006992 on 21 degrees of freedom Multiple R-squared: 0.829, Adjusted R-squared: 0.7883 F-statistic: 20.36 on 5 and 21 DF, p-value: 2.075e-07 > > lmall_FFIR5 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD , data=data) > summary(lmall_FFIR5) Call: lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.014279 -0.003748 0.001288 0.004087 0.010150 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.18265 0.03652 -5.001 5.98e-05 *** NIA 0.57932 0.97825 0.592 0.560039 GDP_Growth 1.24039 1.40068 0.886 0.385880 GDP_Per_Capita_Growth -1.14856 1.44873 -0.793 0.436757 GFCE 1.34336 0.28349 4.739 0.000111 *** CGD 0.02398 0.01364 1.758 0.093379 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.007016 on 21 degrees of freedom Multiple R-squared: 0.8278, Adjusted R-squared: 0.7868 F-statistic: 20.19 on 5 and 21 DF, p-value: 2.226e-07
  • 34. 34 > > lmall_FFIR6 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data) > summary(lmall_FFIR6) Call: lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0146034 -0.0062463 0.0007995 0.0053779 0.0158686 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.009772 0.026711 0.366 0.718131 NIA 4.893717 1.268650 3.857 0.000913 *** GDP_Growth 5.668534 1.482502 3.824 0.000990 *** GDP_Per_Capita_Growth -5.816883 1.481374 -3.927 0.000774 *** EGS -0.573919 0.244574 -2.347 0.028834 * CGD 0.025397 0.017676 1.437 0.165503 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.008983 on 21 degrees of freedom Multiple R-squared: 0.7177, Adjusted R-squared: 0.6505 F-statistic: 10.68 on 5 and 21 DF, p-value: 3.304e-05 > > lmall_FFIR7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data) > summary(lmall_FFIR7) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.0179255 -0.0012048 0.0006153 0.0032649 0.0063004 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.21696 0.05274 -4.114 0.000539 *** FFIR -0.31328 0.08674 -3.612 0.001740 ** NIA -0.90176 1.43044 -0.630 0.535565 GDP_Growth 1.35690 1.50381 0.902 0.377632 GDP_Per_Capita_Growth -1.26401 1.54573 -0.818 0.423139 EGS 0.38215 0.23035 1.659 0.112714 GFCE 1.51605 0.33823 4.482 0.000228 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.005915 on 20 degrees of freedom Multiple R-squared: 0.8835, Adjusted R-squared: 0.8485 F-statistic: 25.27 on 6 and 20 DF, p-value: 2.439e-08 > > #Take out NIA and another variable > lmall_NIA3 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data= data) > summary(lmall_NIA3)
  • 35. 35 Call: lm(formula = UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.016702 -0.001513 0.001936 0.003753 0.008306 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.188954 0.035388 -5.339 2.70e-05 *** FFIR -0.200329 0.092197 -2.173 0.0414 * GDP_Per_Capita_Growth 0.153467 0.103417 1.484 0.1527 EGS 0.189364 0.147082 1.287 0.2119 GFCE 1.502681 0.200953 7.478 2.39e-07 *** CGD -0.003441 0.013314 -0.258 0.7986 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006372 on 21 degrees of freedom Multiple R-squared: 0.858, Adjusted R-squared: 0.8241 F-statistic: 25.37 on 5 and 21 DF, p-value: 3.096e-08 > > lmall_NIA4 = lm(UR ~ FFIR + GDP_Growth + EGS + GFCE + CGD, data=data) > summary(lmall_NIA4) Call: lm(formula = UR ~ FFIR + GDP_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.016535 -0.001314 0.001593 0.003513 0.008684 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.192053 0.034932 -5.498 1.87e-05 *** FFIR -0.207863 0.091533 -2.271 0.0338 * GDP_Growth 0.163013 0.098197 1.660 0.1118 EGS 0.193620 0.145479 1.331 0.1975 GFCE 1.508073 0.193514 7.793 1.25e-07 *** CGD -0.003029 0.013134 -0.231 0.8198 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006298 on 21 degrees of freedom Multiple R-squared: 0.8613, Adjusted R-squared: 0.8282 F-statistic: 26.08 on 5 and 21 DF, p-value: 2.43e-08 > > lmall_NIA5 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD , data=data) > summary(lmall_NIA5) Call: lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0139184 -0.0035991 -0.0001288 0.0045611 0.0077425 Coefficients: Estimate Std. Error t value Pr(>|t|)
  • 36. 36 (Intercept) -0.16681 0.03124 -5.339 2.70e-05 *** FFIR -0.24467 0.09611 -2.546 0.0188 * GDP_Growth 1.93374 1.10579 1.749 0.0949 . GDP_Per_Capita_Growth -1.86283 1.15187 -1.617 0.1208 GFCE 1.29707 0.21411 6.058 5.19e-06 *** CGD 0.01770 0.01035 1.710 0.1020 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006184 on 21 degrees of freedom Multiple R-squared: 0.8662, Adjusted R-squared: 0.8344 F-statistic: 27.2 on 5 and 21 DF, p-value: 1.671e-08 > > lmall_NIA6 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data) > summary(lmall_NIA6) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.016960 -0.005444 0.001594 0.004306 0.015305 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.004507 0.024899 0.181 0.858183 FFIR -0.286472 0.136346 -2.101 0.048514 * NIA 4.128706 1.231646 3.352 0.003172 ** GDP_Growth 6.453556 1.424793 4.529 0.000204 *** GDP_Per_Capita_Growth -6.621714 1.426287 -4.643 0.000157 *** EGS -0.370809 0.246568 -1.504 0.148240 CGD 0.008331 0.018295 0.455 0.653736 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.008331 on 20 degrees of freedom Multiple R-squared: 0.7688, Adjusted R-squared: 0.6994 F-statistic: 11.08 on 6 and 20 DF, p-value: 1.8e-05 > > lmall_NIA7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE , data=data) > summary(lmall_NIA7) Call: lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.017821 -0.001797 0.000468 0.003549 0.007427 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.19075 0.03196 -5.969 6.35e-06 *** FFIR -0.29799 0.08207 -3.631 0.00156 ** GDP_Growth 2.05358 1.00515 2.043 0.05380 . GDP_Per_Capita_Growth -1.97349 1.04426 -1.890 0.07266 . EGS 0.25307 0.10398 2.434 0.02396 * GFCE 1.34386 0.19659 6.836 9.30e-07 *** ---
  • 37. 37 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.005829 on 21 degrees of freedom Multiple R-squared: 0.8811, Adjusted R-squared: 0.8528 F-statistic: 31.14 on 5 and 21 DF, p-value: 4.946e-09 > > #Take out GDP_Growth and another variable > lmall_GDP_Growth4 = lm(UR ~ FFIR + NIA + EGS + GFCE + CGD, data=data) > summary(lmall_GDP_Growth4) Call: lm(formula = UR ~ FFIR + NIA + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0188040 -0.0014285 0.0009466 0.0032988 0.0064950 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.226089 0.042803 -5.282 3.09e-05 *** FFIR -0.280345 0.098678 -2.841 0.00978 ** NIA -2.136694 1.033521 -2.067 0.05124 . EGS 0.493518 0.209033 2.361 0.02797 * GFCE 1.626726 0.212513 7.655 1.66e-07 *** CGD 0.005722 0.013228 0.433 0.66975 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006105 on 21 degrees of freedom Multiple R-squared: 0.8696, Adjusted R-squared: 0.8386 F-statistic: 28.01 on 5 and 21 DF, p-value: 1.284e-08 > lmall_GDP_Growth5 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + GFCE + CGD, data=data) > summary(lmall_GDP_Growth5) Call: lm(formula = UR ~ FFIR + NIA + GDP_Per_Capita_Growth + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.013486 -0.003680 0.001423 0.004738 0.007236 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.17231 0.03496 -4.929 7.09e-05 *** FFIR -0.17833 0.09482 -1.881 0.074 . NIA -0.17542 0.76200 -0.230 0.820 GDP_Per_Capita_Growth 0.13995 0.10836 1.291 0.211 GFCE 1.47751 0.21778 6.784 1.04e-06 *** CGD 0.01116 0.01399 0.798 0.434 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006611 on 21 degrees of freedom Multiple R-squared: 0.8471, Adjusted R-squared: 0.8107 F-statistic: 23.28 on 5 and 21 DF, p-value: 6.582e-08 > > lmall_GDP_Growth6 = lm(UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS + CGD, data=data) > summary(lmall_GDP_Growth6) Call: lm(formula = UR ~ FFIR + NIA + GDP_Per_Capita_Growth + EGS +
  • 38. 38 CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.018351 -0.007444 -0.001330 0.007092 0.021584 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.07821 0.02618 2.988 0.00701 ** FFIR -0.12452 0.18276 -0.681 0.50309 NIA 2.49268 1.63554 1.524 0.14241 GDP_Per_Capita_Growth -0.18609 0.17307 -1.075 0.29447 EGS -0.31979 0.34213 -0.935 0.36056 CGD -0.00171 0.02523 -0.068 0.94659 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01157 on 21 degrees of freedom Multiple R-squared: 0.5316, Adjusted R-squared: 0.4201 F-statistic: 4.766 on 5 and 21 DF, p-value: 0.004571 > > lmall_GDP_Growth7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFC > summary(lmall_GDP_Growth7) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.0179255 -0.0012048 0.0006153 0.0032649 0.0063004 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.21696 0.05274 -4.114 0.000539 *** FFIR -0.31328 0.08674 -3.612 0.001740 ** NIA -0.90176 1.43044 -0.630 0.535565 GDP_Growth 1.35690 1.50381 0.902 0.377632 GDP_Per_Capita_Growth -1.26401 1.54573 -0.818 0.423139 EGS 0.38215 0.23035 1.659 0.112714 GFCE 1.51605 0.33823 4.482 0.000228 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.005915 on 20 degrees of freedom Multiple R-squared: 0.8835, Adjusted R-squared: 0.8485 F-statistic: 25.27 on 6 and 20 DF, p-value: 2.439e-08 > > #Take out GDP_Per_Capita_Growth and another variable > lmall_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + NIA + GDP_Growth + GFCE + CGD, data=data) > summary(lmall_GDP_Per_Capita_Growth5) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.013429 -0.003538 0.001474 0.004634 0.007427 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.17364 0.03428 -5.065 5.14e-05 ***
  • 39. 39 FFIR -0.18311 0.09421 -1.944 0.0654 . NIA -0.10562 0.76243 -0.139 0.8911 GDP_Growth 0.14924 0.10409 1.434 0.1664 GFCE 1.47409 0.20960 7.033 6.09e-07 *** CGD 0.01086 0.01387 0.783 0.4423 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006555 on 21 degrees of freedom Multiple R-squared: 0.8497, Adjusted R-squared: 0.8139 F-statistic: 23.75 on 5 and 21 DF, p-value: 5.531e-08 > > lmall_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + CGD, data=data) > summary(lmall_GDP_Per_Capita_Growth6) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + EGS + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.018060 -0.008100 -0.001749 0.007616 0.020946 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.081637 0.026088 3.129 0.00507 ** FFIR -0.116467 0.184749 -0.630 0.53523 NIA 2.706156 1.678065 1.613 0.12175 GDP_Growth -0.135933 0.175090 -0.776 0.44619 EGS -0.354064 0.346806 -1.021 0.31891 CGD -0.003094 0.025502 -0.121 0.90458 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01172 on 21 degrees of freedom Multiple R-squared: 0.5196, Adjusted R-squared: 0.4052 F-statistic: 4.542 on 5 and 21 DF, p-value: 0.005791 > > lmall_GDP_Per_Capita_Growth7 = lm(UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE, data=data) > summary(lmall_GDP_Per_Capita_Growth7) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + EGS + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.0175061 -0.0008857 0.0010477 0.0026146 0.0068400 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.24175 0.04281 -5.647 1.33e-05 *** FFIR -0.29616 0.08350 -3.547 0.00191 ** NIA -1.75343 0.97278 -1.802 0.08584 . GDP_Growth 0.12957 0.09309 1.392 0.17854 EGS 0.47896 0.19604 2.443 0.02348 * GFCE 1.72644 0.21782 7.926 9.55e-08 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.005868 on 21 degrees of freedom Multiple R-squared: 0.8796, Adjusted R-squared: 0.8509 F-statistic: 30.67 on 5 and 21 DF, p-value: 5.668e-09
  • 40. 40 > > #Take out EGS and another variable > lmall_EGS6 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data) > summary(lmall_EGS6) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0202371 -0.0039093 0.0001407 0.0042674 0.0173053 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.0178276 0.0205767 -0.866 0.396063 FFIR -0.3668627 0.1291426 -2.841 0.009791 ** NIA 2.9764112 0.9928418 2.998 0.006855 ** GDP_Growth 6.3556734 1.4654380 4.337 0.000290 *** GDP_Per_Capita_Growth -6.5903367 1.4683501 -4.488 0.000202 *** CGD -0.0005061 0.0178388 -0.028 0.977636 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.008578 on 21 degrees of freedom Multiple R-squared: 0.7426, Adjusted R-squared: 0.6813 F-statistic: 12.12 on 5 and 21 DF, p-value: 1.311e-05 > > lmall_EGS7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data) > summary(lmall_EGS7) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.0166115 -0.0025485 0.0006497 0.0044017 0.0087594 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.14545 0.03162 -4.600 0.000155 *** FFIR -0.28303 0.08826 -3.207 0.004238 ** NIA 1.20781 0.68195 1.771 0.091057 . GDP_Growth 2.65507 1.33671 1.986 0.060209 . GDP_Per_Capita_Growth -2.58190 1.38020 -1.871 0.075392 . GFCE 1.12646 0.25336 4.446 0.000224 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006157 on 21 degrees of freedom Multiple R-squared: 0.8674, Adjusted R-squared: 0.8358 F-statistic: 27.48 on 5 and 21 DF, p-value: 1.525e-08 > > #Take out GFCE and another variable > lmall_GFCE7 = lm(UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data) > summary(lmall_GFCE7) Call: lm(formula = UR ~ FFIR + NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS, data = data)
  • 41. 41 Residuals: Min 1Q Median 3Q Max -0.017956 -0.005359 0.001605 0.004389 0.015045 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.005976 0.024219 0.247 0.807495 FFIR -0.314037 0.119844 -2.620 0.015985 * NIA 4.276207 1.165652 3.669 0.001431 ** GDP_Growth 6.374933 1.387347 4.595 0.000157 *** GDP_Per_Capita_Growth -6.534342 1.386395 -4.713 0.000118 *** EGS -0.334744 0.229054 -1.461 0.158703 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.008173 on 21 degrees of freedom Multiple R-squared: 0.7664, Adjusted R-squared: 0.7108 F-statistic: 13.78 on 5 and 21 DF, p-value: 4.948e-06 > > ##Take out FFIR, NIA, and another variable > lmall_FFIR_NIA3 = lm(UR ~ GDP_Per_Capita_Growth + EGS + GFCE + CGD, data=data) > summary(lmall_FFIR_NIA3) Call: lm(formula = UR ~ GDP_Per_Capita_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.014922 -0.002573 0.001173 0.004077 0.009403 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.20290 0.03763 -5.392 2.05e-05 *** GDP_Per_Capita_Growth 0.13312 0.11136 1.195 0.245 EGS 0.11982 0.15522 0.772 0.448 GFCE 1.52590 0.21698 7.033 4.68e-07 *** CGD 0.01689 0.01024 1.649 0.113 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.00689 on 22 degrees of freedom Multiple R-squared: 0.826, Adjusted R-squared: 0.7944 F-statistic: 26.12 on 4 and 22 DF, p-value: 4.455e-08 > > lmall_FFIR_NIA4 = lm(UR ~ GDP_Growth + EGS + GFCE + CGD, data=data) > summary(lmall_FFIR_NIA4) Call: lm(formula = UR ~ GDP_Growth + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.014825 -0.002591 0.001365 0.004109 0.009552 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.20453 0.03762 -5.437 1.84e-05 *** GDP_Growth 0.13377 0.10615 1.260 0.2208 EGS 0.12067 0.15471 0.780 0.4437 GFCE 1.52307 0.21088 7.222 3.09e-07 *** CGD 0.01787 0.01022 1.749 0.0942 . ---
  • 42. 42 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006867 on 22 degrees of freedom Multiple R-squared: 0.8272, Adjusted R-squared: 0.7958 F-statistic: 26.33 on 4 and 22 DF, p-value: 4.14e-08 > > lmall_FFIR_NIA5 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data=data) > summary(lmall_FFIR_NIA5) Call: lm(formula = UR ~ GDP_Growth + GDP_Per_Capita_Growth + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.013100 -0.004285 0.001455 0.004005 0.011534 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.19086 0.03328 -5.734 9.09e-06 *** GDP_Growth 0.75842 1.12301 0.675 0.5065 GDP_Per_Capita_Growth -0.66097 1.17429 -0.563 0.5792 GFCE 1.43751 0.23123 6.217 2.95e-06 *** CGD 0.02906 0.01044 2.783 0.0109 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006912 on 22 degrees of freedom Multiple R-squared: 0.825, Adjusted R-squared: 0.7931 F-statistic: 25.92 on 4 and 22 DF, p-value: 4.764e-08 > > lmall_FFIR_NIA6 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data=data) > summary(lmall_FFIR_NIA6) Call: lm(formula = UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.023689 -0.005461 -0.001174 0.006009 0.028019 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.004955 0.033761 -0.147 0.88465 GDP_Growth 3.368442 1.733362 1.943 0.06488 . GDP_Per_Capita_Growth -3.778970 1.767413 -2.138 0.04386 * EGS -0.030505 0.255319 -0.119 0.90598 CGD 0.056799 0.020037 2.835 0.00964 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01147 on 22 degrees of freedom Multiple R-squared: 0.5177, Adjusted R-squared: 0.4301 F-statistic: 5.905 on 4 and 22 DF, p-value: 0.002197 > > lmall_FFIR_NIA7 = lm(UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS + GFCE, data=data) > summary(lmall_FFIR_NIA7) Call: lm(formula = UR ~ GDP_Growth + GDP_Per_Capita_Growth + EGS +
  • 43. 43 GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.017546 -0.001332 0.002255 0.003533 0.010590 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.22284 0.03828 -5.821 7.41e-06 *** GDP_Growth -0.43661 0.91596 -0.477 0.6383 GDP_Per_Capita_Growth 0.59131 0.95869 0.617 0.5437 EGS 0.28610 0.12911 2.216 0.0374 * GFCE 1.63112 0.22434 7.271 2.78e-07 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.007266 on 22 degrees of freedom Multiple R-squared: 0.8065, Adjusted R-squared: 0.7713 F-statistic: 22.93 on 4 and 22 DF, p-value: 1.404e-07 > > ##Take out FFIR, GDP_Growth, and another variable > lmall_FFIR_GDP_Growth4 = lm(UR ~ NIA + EGS + GFCE + CGD, data=data) > summary(lmall_FFIR_GDP_Growth4) Call: lm(formula = UR ~ NIA + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.016498 -0.003501 0.002151 0.004372 0.008593 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.20418 0.04840 -4.219 0.000354 *** NIA -0.80672 1.05920 -0.762 0.454370 EGS 0.21876 0.21303 1.027 0.315622 GFCE 1.48850 0.23780 6.259 2.67e-06 *** CGD 0.02358 0.01338 1.763 0.091815 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.007018 on 22 degrees of freedom Multiple R-squared: 0.8195, Adjusted R-squared: 0.7867 F-statistic: 24.97 on 4 and 22 DF, p-value: 6.638e-08 > > lmall_FFIR_GDP_Growth5 = lm(UR ~ NIA + GDP_Per_Capita_Growth + GFCE + CGD, data=data) > summary(lmall_FFIR_GDP_Growth5) Call: lm(formula = UR ~ NIA + GDP_Per_Capita_Growth + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.013336 -0.003696 0.001508 0.004518 0.009250 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.18782 0.03587 -5.236 2.98e-05 *** NIA 0.07595 0.79225 0.096 0.924 GDP_Per_Capita_Growth 0.13035 0.11431 1.140 0.266 GFCE 1.48884 0.22990 6.476 1.63e-06 *** CGD 0.02215 0.01342 1.651 0.113
  • 44. 44 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006981 on 22 degrees of freedom Multiple R-squared: 0.8214, Adjusted R-squared: 0.7889 F-statistic: 25.29 on 4 and 22 DF, p-value: 5.92e-08 > > lmall_FFIR_GDP_Growth6 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + CGD, data=data) > summary(lmall_FFIR_GDP_Growth6) Call: lm(formula = UR ~ NIA + GDP_Per_Capita_Growth + EGS + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.018844 -0.007101 -0.001579 0.007309 0.021490 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.076485 0.025735 2.972 0.00704 ** NIA 2.942660 1.477947 1.991 0.05904 . GDP_Per_Capita_Growth -0.175826 0.170302 -1.032 0.31308 EGS -0.417495 0.306820 -1.361 0.18738 CGD 0.006826 0.021626 0.316 0.75525 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01143 on 22 degrees of freedom Multiple R-squared: 0.5212, Adjusted R-squared: 0.4342 F-statistic: 5.988 on 4 and 22 DF, p-value: 0.00204 > > lmall_FFIR_GDP_Growth7 = lm(UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE, data=data) > summary(lmall_FFIR_GDP_Growth7) Call: lm(formula = UR ~ NIA + GDP_Per_Capita_Growth + EGS + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.017476 -0.001457 0.002505 0.003611 0.011204 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.2073 0.0521 -3.979 0.000634 *** NIA 0.4948 0.8594 0.576 0.570645 GDP_Per_Capita_Growth 0.1462 0.1180 1.239 0.228577 EGS 0.2129 0.2206 0.965 0.345134 GFCE 1.5292 0.2664 5.740 8.98e-06 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.007249 on 22 degrees of freedom Multiple R-squared: 0.8074, Adjusted R-squared: 0.7724 F-statistic: 23.06 on 4 and 22 DF, p-value: 1.335e-07 > > ##Take out FFIR, GDP_Per_Capita_Growth, and another variable > lmall_FFIR_GDP_Per_Capita_Growth5 = lm(UR ~ NIA + GDP_Growth + GFCE + CGD, data=data) > summary(lmall_FFIR_GDP_Per_Capita_Growth5) Call: lm(formula = UR ~ NIA + GDP_Growth + GFCE + CGD, data = data)
  • 45. 45 Residuals: Min 1Q Median 3Q Max -0.013346 -0.003624 0.001426 0.004394 0.009470 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.18852 0.03546 -5.316 2.46e-05 *** NIA 0.13854 0.79808 0.174 0.864 GDP_Growth 0.13343 0.11013 1.212 0.239 GFCE 1.48079 0.22241 6.658 1.08e-06 *** CGD 0.02223 0.01335 1.665 0.110 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006956 on 22 degrees of freedom Multiple R-squared: 0.8227, Adjusted R-squared: 0.7904 F-statistic: 25.52 on 4 and 22 DF, p-value: 5.478e-08 > > lmall_FFIR_GDP_Per_Capita_Growth6 = lm(UR ~ NIA + GDP_Growth + EGS + CGD, data=data) > summary(lmall_FFIR_GDP_Per_Capita_Growth6) Call: lm(formula = UR ~ NIA + GDP_Growth + EGS + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.018539 -0.007698 -0.001482 0.007161 0.020892 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.079837 0.025574 3.122 0.00497 ** NIA 3.117112 1.524943 2.044 0.05310 . GDP_Growth -0.128970 0.172332 -0.748 0.46216 EGS -0.443950 0.311780 -1.424 0.16850 CGD 0.004992 0.021737 0.230 0.82049 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01156 on 22 degrees of freedom Multiple R-squared: 0.5105, Adjusted R-squared: 0.4215 F-statistic: 5.736 on 4 and 22 DF, p-value: 0.002558 > > lmall_FFIR_GDP_Per_Capita_Growth7 = lm(UR ~ NIA + GDP_Growth + EGS + GFCE, data=data) > summary(lmall_FFIR_GDP_Per_Capita_Growth7) Call: lm(formula = UR ~ NIA + GDP_Growth + EGS + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.017520 -0.001558 0.002530 0.003572 0.011351 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.20425 0.05126 -3.985 0.000626 *** NIA 0.60949 0.87570 0.696 0.493713 GDP_Growth 0.14228 0.11492 1.238 0.228727 EGS 0.19973 0.22180 0.900 0.377624 GFCE 1.50355 0.25765 5.836 7.16e-06 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  • 46. 46 Residual standard error: 0.007249 on 22 degrees of freedom Multiple R-squared: 0.8074, Adjusted R-squared: 0.7724 F-statistic: 23.06 on 4 and 22 DF, p-value: 1.336e-07 > > ##Take out FFIR, EGS, and another variable > lmall_FFIR_EGS6 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data) > summary(lmall_FFIR_EGS6) Call: lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0193865 -0.0047941 -0.0009346 0.0049120 0.0198149 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.02837 0.02326 -1.220 0.23556 NIA 3.17895 1.13833 2.793 0.01061 * GDP_Growth 5.08663 1.60435 3.171 0.00443 ** GDP_Per_Capita_Growth -5.34644 1.61108 -3.319 0.00312 ** CGD 0.01799 0.01909 0.943 0.35616 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.00986 on 22 degrees of freedom Multiple R-squared: 0.6437, Adjusted R-squared: 0.5789 F-statistic: 9.937 on 4 and 22 DF, p-value: 9.487e-05 > > lmall_FFIR_EGS7 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data) > summary(lmall_FFIR_EGS7) Call: lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.016770 -0.001686 0.002221 0.004263 0.012479 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.16607 0.03692 -4.498 0.000179 *** NIA 1.66143 0.79550 2.089 0.048537 * GDP_Growth 0.86807 1.44882 0.599 0.555190 GDP_Per_Capita_Growth -0.73742 1.49607 -0.493 0.626962 GFCE 1.29724 0.29537 4.392 0.000232 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.007341 on 22 degrees of freedom Multiple R-squared: 0.8025, Adjusted R-squared: 0.7666 F-statistic: 22.35 on 4 and 22 DF, p-value: 1.753e-07 > > ##Take out FFIR, GFCE, and another variable > lmall_FFIR_GFCE_7 = lm(UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data) > summary(lmall_FFIR_GFCE_7)
  • 47. 47 Call: lm(formula = UR ~ NIA + GDP_Growth + GDP_Per_Capita_Growth + EGS, data = data) Residuals: Min 1Q Median 3Q Max -0.017521 -0.005249 0.001422 0.005780 0.017972 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.01727 0.02682 0.644 0.52622 NIA 5.73321 1.15302 4.972 5.63e-05 *** GDP_Growth 5.08323 1.45951 3.483 0.00211 ** GDP_Per_Capita_Growth -5.19113 1.44976 -3.581 0.00167 ** EGS -0.51119 0.24640 -2.075 0.04992 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.009198 on 22 degrees of freedom Multiple R-squared: 0.69, Adjusted R-squared: 0.6336 F-statistic: 12.24 on 4 and 22 DF, p-value: 2.184e-05 > > ##Take out NIA, GDP_Growth, and another variable > lmall_NIA_GDP_Growth4 = lm(UR ~ FFIR + EGS + GFCE + CGD, data=data) > summary(lmall_NIA_GDP_Growth4) Call: lm(formula = UR ~ FFIR + EGS + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.018811 -0.002139 0.001322 0.004829 0.006376 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.158469 0.029592 -5.355 2.24e-05 *** FFIR -0.187941 0.094294 -1.993 0.0588 . EGS 0.173652 0.150655 1.153 0.2614 GFCE 1.318934 0.162540 8.115 4.66e-08 *** CGD -0.001829 0.013627 -0.134 0.8945 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006544 on 22 degrees of freedom Multiple R-squared: 0.8431, Adjusted R-squared: 0.8145 F-statistic: 29.55 on 4 and 22 DF, p-value: 1.46e-08 > > lmall_NIA_GDP_Growth5 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + GFCE + CGD, data=data) > summary(lmall_NIA_GDP_Growth5) Call: lm(formula = UR ~ FFIR + GDP_Per_Capita_Growth + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.013843 -0.003433 0.001646 0.004359 0.007390 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.169894 0.032620 -5.208 3.19e-05 *** FFIR -0.174497 0.091323 -1.911 0.0692 .
  • 48. 48 GDP_Per_Capita_Growth 0.143882 0.104678 1.375 0.1831 GFCE 1.461087 0.201282 7.259 2.85e-07 *** CGD 0.008826 0.009437 0.935 0.3598 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006467 on 22 degrees of freedom Multiple R-squared: 0.8468, Adjusted R-squared: 0.8189 F-statistic: 30.39 on 4 and 22 DF, p-value: 1.129e-08 > > lmall_NIA_GDP_Growth6 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + CGD, data=data) > summary(lmall_NIA_GDP_Growth6) Call: lm(formula = UR ~ FFIR + GDP_Per_Capita_Growth + EGS + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.022251 -0.007082 -0.002145 0.007218 0.026688 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.05851 0.02344 2.497 0.0205 * FFIR -0.23699 0.17215 -1.377 0.1825 GDP_Per_Capita_Growth -0.32303 0.15230 -2.121 0.0454 * EGS 0.01255 0.27144 0.046 0.9635 CGD 0.01038 0.02465 0.421 0.6777 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01192 on 22 degrees of freedom Multiple R-squared: 0.4798, Adjusted R-squared: 0.3852 F-statistic: 5.072 on 4 and 22 DF, p-value: 0.004742 > > lmall_NIA_GDP_Growth7 = lm(UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE, data=data) > summary(lmall_NIA_GDP_Growth7) Call: lm(formula = UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.016221 -0.001846 0.001916 0.003884 0.008260 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.18742 0.03414 -5.490 1.62e-05 *** FFIR -0.18358 0.06418 -2.860 0.00909 ** GDP_Per_Capita_Growth 0.15129 0.10086 1.500 0.14785 EGS 0.16216 0.10053 1.613 0.12099 GFCE 1.49547 0.19474 7.679 1.16e-07 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006236 on 22 degrees of freedom Multiple R-squared: 0.8575, Adjusted R-squared: 0.8316 F-statistic: 33.1 on 4 and 22 DF, p-value: 5.127e-09 > > ##Take out NIA, GDP_Per_Capita_Growth, and another variable > lmall_NIA_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + GDP_Growth + GFCE + CGD, data=data)
  • 49. 49 > summary(lmall_NIA_GDP_Per_Capita_Growth5) Call: lm(formula = UR ~ FFIR + GDP_Growth + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.013633 -0.003384 0.001594 0.004603 0.007712 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.172314 0.032177 -5.355 2.24e-05 *** FFIR -0.180964 0.090825 -1.992 0.0589 . GDP_Growth 0.152207 0.099562 1.529 0.1406 GFCE 1.464791 0.194078 7.547 1.53e-07 *** CGD 0.009470 0.009342 1.014 0.3217 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006407 on 22 degrees of freedom Multiple R-squared: 0.8496, Adjusted R-squared: 0.8222 F-statistic: 31.06 on 4 and 22 DF, p-value: 9.232e-09 > > lmall_NIA_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + GDP_Growth + EGS + CGD, data=data) > summary(lmall_NIA_GDP_Per_Capita_Growth6) Call: lm(formula = UR ~ FFIR + GDP_Growth + EGS + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.022424 -0.007278 -0.002546 0.007850 0.026589 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.062299 0.023997 2.596 0.0165 * FFIR -0.232209 0.176322 -1.317 0.2014 GDP_Growth -0.287546 0.152988 -1.880 0.0735 . EGS 0.003099 0.276416 0.011 0.9912 CGD 0.009609 0.025122 0.382 0.7058 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01214 on 22 degrees of freedom Multiple R-squared: 0.4601, Adjusted R-squared: 0.3619 F-statistic: 4.687 on 4 and 22 DF, p-value: 0.006888 > > lmall_NIA_GDP_Per_Capita_Growth7 = lm(UR ~ FFIR + GDP_Growth + EGS + GFCE, data=data) > summary(lmall_NIA_GDP_Growth7) Call: lm(formula = UR ~ FFIR + GDP_Per_Capita_Growth + EGS + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.016221 -0.001846 0.001916 0.003884 0.008260 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.18742 0.03414 -5.490 1.62e-05 *** FFIR -0.18358 0.06418 -2.860 0.00909 **
  • 50. 50 GDP_Per_Capita_Growth 0.15129 0.10086 1.500 0.14785 EGS 0.16216 0.10053 1.613 0.12099 GFCE 1.49547 0.19474 7.679 1.16e-07 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006236 on 22 degrees of freedom Multiple R-squared: 0.8575, Adjusted R-squared: 0.8316 F-statistic: 33.1 on 4 and 22 DF, p-value: 5.127e-09 > > ##Take out NIA, EGS, and another variable > lmall_NIA_EGS6 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + CGD, data=data) > summary(lmall_NIA_EGS6) Call: lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.0200263 -0.0039673 -0.0004585 0.0023024 0.0247340 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.00234 0.02270 0.103 0.91885 FFIR -0.39466 0.15038 -2.624 0.01549 * GDP_Growth 4.86803 1.60982 3.024 0.00624 ** GDP_Per_Capita_Growth -5.24262 1.63197 -3.212 0.00401 ** CGD 0.03288 0.01627 2.020 0.05568 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01001 on 22 degrees of freedom Multiple R-squared: 0.6325, Adjusted R-squared: 0.5657 F-statistic: 9.465 on 4 and 22 DF, p-value: 0.0001315 > > lmall_NIA_EGS7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data=data) > summary(lmall_NIA_EGS7) Call: lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + GFCE, data = data) Residuals: Min 1Q Median 3Q Max -0.0144425 -0.0025935 0.0007452 0.0048754 0.0089290 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.15861 0.03220 -4.927 6.29e-05 *** FFIR -0.31546 0.09044 -3.488 0.00208 ** GDP_Growth 1.00671 1.00499 1.002 0.32738 GDP_Per_Capita_Growth -0.89437 1.04591 -0.855 0.40171 GFCE 1.38561 0.21665 6.396 1.96e-06 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.006449 on 22 degrees of freedom Multiple R-squared: 0.8476, Adjusted R-squared: 0.8199 F-statistic: 30.59 on 4 and 22 DF, p-value: 1.062e-08 >
  • 51. 51 > ##Take out NIA, GFCE, and another variable > lmall_NIA_GFCE_7 = lm(UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS, data=data) > summary(lmall_NIA_GFCE_7) Call: lm(formula = UR ~ FFIR + GDP_Growth + GDP_Per_Capita_Growth + EGS, data = data) Residuals: Min 1Q Median 3Q Max -0.0194226 -0.0043323 -0.0000213 0.0031121 0.0245960 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.00624 0.03002 -0.208 0.837269 FFIR -0.52375 0.13182 -3.973 0.000644 *** GDP_Growth 4.64708 1.63315 2.845 0.009410 ** GDP_Per_Capita_Growth -5.02265 1.65667 -3.032 0.006126 ** EGS 0.31508 0.18174 1.734 0.096980 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01023 on 22 degrees of freedom Multiple R-squared: 0.6167, Adjusted R-squared: 0.547 F-statistic: 8.847 on 4 and 22 DF, p-value: 0.0002045 > > ##Take out GDP_Growth, GDP_Per_Capita_Growth, and another variable > lmall_GDP_Growth_GDP_Per_Capita_Growth5 = lm(UR ~ FFIR + NIA + GFCE + CGD, data=data) > summary(lmall_GDP_Growth_GDP_Per_Capita_Growth5) Call: lm(formula = UR ~ FFIR + NIA + GFCE + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.015267 -0.004288 0.002410 0.004754 0.007979 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.14861 0.03020 -4.921 6.39e-05 *** FFIR -0.17256 0.09615 -1.795 0.0865 . NIA -0.33061 0.76380 -0.433 0.6693 GFCE 1.33088 0.18864 7.055 4.45e-07 *** CGD 0.01375 0.01405 0.979 0.3384 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.00671 on 22 degrees of freedom Multiple R-squared: 0.835, Adjusted R-squared: 0.805 F-statistic: 27.83 on 4 and 22 DF, p-value: 2.514e-08 > > lmall_GDP_Growth_GDP_Per_Capita_Growth6 = lm(UR ~ FFIR + NIA + EGS + CGD, data=data) > summary(lmall_GDP_Growth_GDP_Per_Capita_Growth6) Call: lm(formula = UR ~ FFIR + NIA + EGS + CGD, data = data) Residuals: Min 1Q Median 3Q Max -0.016679 -0.008986 -0.002073 0.008389 0.019655 Coefficients: