1.1 Barisan Fibonacci
METODE NUMERIK FIBONACCI
Amelia Noviasari 1384202071
Denny Hardi 1384202110
Mona Yulinda Santika 1384202115
Risti Apriani Dewi 1384202141
Rudi Alviansyah 1384202100
March 11, 2016
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Barisan Fibonacci
1 1.1 Barisan Fibonacci
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Definisi
Barisan f0, f1, f2, f3, ..., fn − 2, fn − 1, fn disebut Fibonacci jika untuk
f0 = 1, f1 = 0 + f0, f2 = f0 + f1,f3 = f2 + f1,...,fn = fn − 2 + fn − 1
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Definisi
Barisan f0, f1, f2, f3, ..., fn − 2, fn − 1, fn disebut Fibonacci jika untuk
f0 = 1, f1 = 0 + f0, f2 = f0 + f1,f3 = f2 + f1,...,fn = fn − 2 + fn − 1
contoh barisan fibonacci
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Algoritma nilai optimal dengan Metode Fibonacci
Dicari nilai n terkecil
1
Fn+1
<
2δ
L
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Algoritma nilai optimal dengan Metode Fibonacci
Dicari nilai n terkecil
1
Fn+1
<
2δ
L
dibentuk
L0 = Fn+1Ln
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Algoritma nilai optimal dengan Metode Fibonacci
Dicari nilai n terkecil
1
Fn+1
<
2δ
L
dibentuk
L0 = Fn+1Ln
dibentuk
λi = ai +
F(n+1)−i−1
F(n+1)−i+1
(bi − ai )
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan
dicari
µi = ai +
F(n+1)−i
F(n+1)−i+1
(bi − ai )
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan
dicari
µi = ai +
F(n+1)−i
F(n+1)−i+1
(bi − ai )
jika
f (µi ) > f (λi )
ambil µi dan ai , masing-masing sebagai bi+1 dan ai+1
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan
dicari
µi = ai +
F(n+1)−i
F(n+1)−i+1
(bi − ai )
jika
f (µi ) > f (λi )
ambil µi dan ai , masing-masing sebagai bi+1 dan ai+1
iterasi berhenti ketika bi − ai < 2δ
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Soal
minimalkan
f (x) = 2x3
− 3x2
dengan δ = 0, 1 pada selang −2 <= x <= 3
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Soal
minimalkan
f (x) = 2x3
− 3x2
dengan δ = 0, 1 pada selang −2 <= x <= 3
dengan cara analitik, diperoleh nilai x yang meminimalkan
f (x) adalah x = 1
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Dicari nilai n terkecil
1
Fn+1
<
2δ
L
1
F7+1
<
2δ
5
1
34
<
1
25
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Dicari nilai n terkecil
1
Fn+1
<
2δ
L
1
F7+1
<
2δ
5
1
34
<
1
25
dibentuk
L0 = Fn+1Ln
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Dicari nilai n terkecil
1
Fn+1
<
2δ
L
1
F7+1
<
2δ
5
1
34
<
1
25
dibentuk
L0 = Fn+1Ln
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi I
λ1 = a1 +
F(7+1)−1−1
F(7+1)−1+1
(b1 − a1)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi I
λ1 = a1 +
F(7+1)−1−1
F(7+1)−1+1
(b1 − a1)
λ1 = −2 +
F(6)
F(8)
(3 − (−2))
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi I
λ1 = a1 +
F(7+1)−1−1
F(7+1)−1+1
(b1 − a1)
λ1 = −2 +
F(6)
F(8)
(3 − (−2))
λ1 = −2 +
13
34
(5)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi I
λ1 = a1 +
F(7+1)−1−1
F(7+1)−1+1
(b1 − a1)
λ1 = −2 +
F(6)
F(8)
(3 − (−2))
λ1 = −2 +
13
34
(5)
λ1 = −0, 088
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
µ1 = a1 +
F(7+1)−1
F(7+1)−1+1
(b1 − a1)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
µ1 = a1 +
F(7+1)−1
F(7+1)−1+1
(b1 − a1)
µ1 = −2 +
F(7)
F(8)
(3 − (−2))
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
µ1 = a1 +
F(7+1)−1
F(7+1)−1+1
(b1 − a1)
µ1 = −2 +
F(7)
F(8)
(3 − (−2))
µ1 = −2 +
21
34
(5)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
µ1 = a1 +
F(7+1)−1
F(7+1)−1+1
(b1 − a1)
µ1 = −2 +
F(7)
F(8)
(3 − (−2))
µ1 = −2 +
21
34
(5)
µ1 = 1, 088
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (λ1) = 2λ1
3
− 3λ1
2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (λ1) = 2λ1
3
− 3λ1
2
f (λ1) = 2(−0, 088)3
− 3(−0, 088)2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (λ1) = 2λ1
3
− 3λ1
2
f (λ1) = 2(−0, 088)3
− 3(−0, 088)2
f (λ1) = −0, 001 − 0, 023
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (λ1) = 2λ1
3
− 3λ1
2
f (λ1) = 2(−0, 088)3
− 3(−0, 088)2
f (λ1) = −0, 001 − 0, 023
f (λ1) = −0, 024
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (µ1) = 2µ1
3
− 3µ1
2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (µ1) = 2µ1
3
− 3µ1
2
f (µ1) = 2(1, 088)3
− 3(1, 088)2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (µ1) = 2µ1
3
− 3µ1
2
f (µ1) = 2(1, 088)3
− 3(1, 088)2
f (µ1) = 2, 576 − 3, 551
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (µ1) = 2µ1
3
− 3µ1
2
f (µ1) = 2(1, 088)3
− 3(1, 088)2
f (µ1) = 2, 576 − 3, 551
f (µ1) = −0, 975
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (µ1) = 2µ1
3
− 3µ1
2
f (µ1) = 2(1, 088)3
− 3(1, 088)2
f (µ1) = 2, 576 − 3, 551
f (µ1) = −0, 975
f (λ1) > f (µ1)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (µ1) = 2µ1
3
− 3µ1
2
f (µ1) = 2(1, 088)3
− 3(1, 088)2
f (µ1) = 2, 576 − 3, 551
f (µ1) = −0, 975
f (λ1) > f (µ1)
λ1 = −0, 088(a2)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi I
f (µ1) = 2µ1
3
− 3µ1
2
f (µ1) = 2(1, 088)3
− 3(1, 088)2
f (µ1) = 2, 576 − 3, 551
f (µ1) = −0, 975
f (λ1) > f (µ1)
λ1 = −0, 088(a2)
b1 = 3(b2)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi II
λ2 = a2 +
F(7+1)−2−1
F(7+1)−2+1
(b2 − a2)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi II
λ2 = a2 +
F(7+1)−2−1
F(7+1)−2+1
(b2 − a2)
λ2 = −0, 088 +
F(5)
F(7)
(3 − (−0, 088))
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi II
λ2 = a2 +
F(7+1)−2−1
F(7+1)−2+1
(b2 − a2)
λ2 = −0, 088 +
F(5)
F(7)
(3 − (−0, 088))
λ2 = −0, 088 +
8
21
(3, 088)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi II
λ2 = a2 +
F(7+1)−2−1
F(7+1)−2+1
(b2 − a2)
λ2 = −0, 088 +
F(5)
F(7)
(3 − (−0, 088))
λ2 = −0, 088 +
8
21
(3, 088)
λ2 = 1, 088
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
µ2 = a2 +
F(7+1)−2
F(7+1)−2+1
(b2 − a2)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
µ2 = a2 +
F(7+1)−2
F(7+1)−2+1
(b2 − a2)
µ2 = −0, 088 +
F(6)
F(7)
(3 − (−0, 088))
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
µ2 = a2 +
F(7+1)−2
F(7+1)−2+1
(b2 − a2)
µ2 = −0, 088 +
F(6)
F(7)
(3 − (−0, 088))
µ2 = −0, 088 +
13
21
(3, 088)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
µ2 = a2 +
F(7+1)−2
F(7+1)−2+1
(b2 − a2)
µ2 = −0, 088 +
F(6)
F(7)
(3 − (−0, 088))
µ2 = −0, 088 +
13
21
(3, 088)
µ2 = 1, 744
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (λ2) = 2λ2
3
− 3λ2
2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (λ2) = 2λ2
3
− 3λ2
2
f (λ2) = 2(1, 088)3
− 3(1, 088)2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (λ2) = 2λ2
3
− 3λ2
2
f (λ2) = 2(1, 088)3
− 3(1, 088)2
f (λ2) = 2, 576 − 3, 551
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (λ2) = 2λ2
3
− 3λ2
2
f (λ2) = 2(1, 088)3
− 3(1, 088)2
f (λ2) = 2, 576 − 3, 551
f (λ2) = −0, 975
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (µ2) = 2µ2
3
− 3µ2
2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (µ2) = 2µ2
3
− 3µ2
2
f (µ2) = 2(1, 744)3
− 3(1, 744)2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (µ2) = 2µ2
3
− 3µ2
2
f (µ2) = 2(1, 744)3
− 3(1, 744)2
f (µ2) = 10, 609 − 9, 125
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (µ2) = 2µ2
3
− 3µ2
2
f (µ2) = 2(1, 744)3
− 3(1, 744)2
f (µ2) = 10, 609 − 9, 125
f (µ2) = 1, 484
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (µ2) = 2µ2
3
− 3µ2
2
f (µ2) = 2(1, 744)3
− 3(1, 744)2
f (µ2) = 10, 609 − 9, 125
f (µ2) = 1, 484
f (µ2) > f (λ2)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (µ2) = 2µ2
3
− 3µ2
2
f (µ2) = 2(1, 744)3
− 3(1, 744)2
f (µ2) = 10, 609 − 9, 125
f (µ2) = 1, 484
f (µ2) > f (λ2)
µ2 = −1, 744(b3)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi II
f (µ2) = 2µ2
3
− 3µ2
2
f (µ2) = 2(1, 744)3
− 3(1, 744)2
f (µ2) = 10, 609 − 9, 125
f (µ2) = 1, 484
f (µ2) > f (λ2)
µ2 = −1, 744(b3)
a2 = −0, 088(a3)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi III
λ3 = a3 +
F(7+1)−3−1
F(7+1)−3+1
(b3 − a3)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi III
λ3 = a3 +
F(7+1)−3−1
F(7+1)−3+1
(b3 − a3)
λ3 = −0, 088 +
F(4)
F(6)
(1, 744 − (−0, 088))
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi III
λ3 = a3 +
F(7+1)−3−1
F(7+1)−3+1
(b3 − a3)
λ3 = −0, 088 +
F(4)
F(6)
(1, 744 − (−0, 088))
λ3 = −0, 088 +
5
13
(1, 832)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Iterasi III
λ3 = a3 +
F(7+1)−3−1
F(7+1)−3+1
(b3 − a3)
λ3 = −0, 088 +
F(4)
F(6)
(1, 744 − (−0, 088))
λ3 = −0, 088 +
5
13
(1, 832)
λ3 = −0, 617
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
µ3 = a3 +
F(7+1)−3
F(7+1)−3+1
(b3 − a3)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
µ3 = a3 +
F(7+1)−3
F(7+1)−3+1
(b3 − a3)
µ3 = −0, 088 +
F(5)
F(6)
(1, 744 − (−0, 088))
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
µ3 = a3 +
F(7+1)−3
F(7+1)−3+1
(b3 − a3)
µ3 = −0, 088 +
F(5)
F(6)
(1, 744 − (−0, 088))
µ3 = −0, 088 +
8
13
(1, 832)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
µ3 = a3 +
F(7+1)−3
F(7+1)−3+1
(b3 − a3)
µ3 = −0, 088 +
F(5)
F(6)
(1, 744 − (−0, 088))
µ3 = −0, 088 +
8
13
(1, 832)
µ3 = 1, 039
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (λ3) = 2λ3
3
− 3λ3
2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (λ3) = 2λ3
3
− 3λ3
2
f (λ3) = 2(0, 617)3
− 3(0, 617)2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (λ3) = 2λ3
3
− 3λ3
2
f (λ3) = 2(0, 617)3
− 3(0, 617)2
f (λ3) = 0, 470 − 1, 142
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (λ3) = 2λ3
3
− 3λ3
2
f (λ3) = 2(0, 617)3
− 3(0, 617)2
f (λ3) = 0, 470 − 1, 142
f (λ3) = −0, 672
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (µ3) = 2µ3
3
− 3µ3
2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (µ3) = 2µ3
3
− 3µ3
2
f (µ3) = 2(1, 039)3
− 3(1, 039)2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (µ3) = 2µ3
3
− 3µ3
2
f (µ3) = 2(1, 039)3
− 3(1, 039)2
f (µ3) = 2, 243 − 3, 239
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (µ3) = 2µ3
3
− 3µ3
2
f (µ3) = 2(1, 039)3
− 3(1, 039)2
f (µ3) = 2, 243 − 3, 239
f (µ3) = −1, 086
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (µ3) = 2µ3
3
− 3µ3
2
f (µ3) = 2(1, 039)3
− 3(1, 039)2
f (µ3) = 2, 243 − 3, 239
f (µ3) = −1, 086
f (λ3) > f (µ3)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (µ3) = 2µ3
3
− 3µ3
2
f (µ3) = 2(1, 039)3
− 3(1, 039)2
f (µ3) = 2, 243 − 3, 239
f (µ3) = −1, 086
f (λ3) > f (µ3)
λ3 = 0, 617(a4)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
lanjutan iterasi III
f (µ3) = 2µ3
3
− 3µ3
2
f (µ3) = 2(1, 039)3
− 3(1, 039)2
f (µ3) = 2, 243 − 3, 239
f (µ3) = −1, 086
f (λ3) > f (µ3)
λ3 = 0, 617(a4)
b3 = 1, 744(b4)
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
Tabel perhitungan dengan Metode Fibonacci
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
x∗
= a8 +
b8 − a8
2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
x∗
= a8 +
b8 − a8
2
x∗
= 1, 039 +
1, 180 − 1, 039
2
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
1.1 Barisan Fibonacci
x∗
= a8 +
b8 − a8
2
x∗
= 1, 039 +
1, 180 − 1, 039
2
x∗
= 1, 109
Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI

Tugas Metode Numerik Pendidikan Matematika UMT

  • 1.
    1.1 Barisan Fibonacci METODENUMERIK FIBONACCI Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi Alviansyah 1384202100 March 11, 2016 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 2.
    1.1 Barisan Fibonacci BarisanFibonacci 1 1.1 Barisan Fibonacci Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 3.
    1.1 Barisan Fibonacci Definisi Barisanf0, f1, f2, f3, ..., fn − 2, fn − 1, fn disebut Fibonacci jika untuk f0 = 1, f1 = 0 + f0, f2 = f0 + f1,f3 = f2 + f1,...,fn = fn − 2 + fn − 1 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 4.
    1.1 Barisan Fibonacci Definisi Barisanf0, f1, f2, f3, ..., fn − 2, fn − 1, fn disebut Fibonacci jika untuk f0 = 1, f1 = 0 + f0, f2 = f0 + f1,f3 = f2 + f1,...,fn = fn − 2 + fn − 1 contoh barisan fibonacci 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 5.
    1.1 Barisan Fibonacci Algoritmanilai optimal dengan Metode Fibonacci Dicari nilai n terkecil 1 Fn+1 < 2δ L Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 6.
    1.1 Barisan Fibonacci Algoritmanilai optimal dengan Metode Fibonacci Dicari nilai n terkecil 1 Fn+1 < 2δ L dibentuk L0 = Fn+1Ln Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 7.
    1.1 Barisan Fibonacci Algoritmanilai optimal dengan Metode Fibonacci Dicari nilai n terkecil 1 Fn+1 < 2δ L dibentuk L0 = Fn+1Ln dibentuk λi = ai + F(n+1)−i−1 F(n+1)−i+1 (bi − ai ) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 8.
    1.1 Barisan Fibonacci lanjutan dicari µi= ai + F(n+1)−i F(n+1)−i+1 (bi − ai ) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 9.
    1.1 Barisan Fibonacci lanjutan dicari µi= ai + F(n+1)−i F(n+1)−i+1 (bi − ai ) jika f (µi ) > f (λi ) ambil µi dan ai , masing-masing sebagai bi+1 dan ai+1 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 10.
    1.1 Barisan Fibonacci lanjutan dicari µi= ai + F(n+1)−i F(n+1)−i+1 (bi − ai ) jika f (µi ) > f (λi ) ambil µi dan ai , masing-masing sebagai bi+1 dan ai+1 iterasi berhenti ketika bi − ai < 2δ Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 11.
    1.1 Barisan Fibonacci Soal minimalkan f(x) = 2x3 − 3x2 dengan δ = 0, 1 pada selang −2 <= x <= 3 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 12.
    1.1 Barisan Fibonacci Soal minimalkan f(x) = 2x3 − 3x2 dengan δ = 0, 1 pada selang −2 <= x <= 3 dengan cara analitik, diperoleh nilai x yang meminimalkan f (x) adalah x = 1 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 13.
    1.1 Barisan Fibonacci Dicarinilai n terkecil 1 Fn+1 < 2δ L 1 F7+1 < 2δ 5 1 34 < 1 25 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 14.
    1.1 Barisan Fibonacci Dicarinilai n terkecil 1 Fn+1 < 2δ L 1 F7+1 < 2δ 5 1 34 < 1 25 dibentuk L0 = Fn+1Ln Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 15.
    1.1 Barisan Fibonacci Dicarinilai n terkecil 1 Fn+1 < 2δ L 1 F7+1 < 2δ 5 1 34 < 1 25 dibentuk L0 = Fn+1Ln Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 16.
    1.1 Barisan Fibonacci IterasiI λ1 = a1 + F(7+1)−1−1 F(7+1)−1+1 (b1 − a1) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 17.
    1.1 Barisan Fibonacci IterasiI λ1 = a1 + F(7+1)−1−1 F(7+1)−1+1 (b1 − a1) λ1 = −2 + F(6) F(8) (3 − (−2)) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 18.
    1.1 Barisan Fibonacci IterasiI λ1 = a1 + F(7+1)−1−1 F(7+1)−1+1 (b1 − a1) λ1 = −2 + F(6) F(8) (3 − (−2)) λ1 = −2 + 13 34 (5) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 19.
    1.1 Barisan Fibonacci IterasiI λ1 = a1 + F(7+1)−1−1 F(7+1)−1+1 (b1 − a1) λ1 = −2 + F(6) F(8) (3 − (−2)) λ1 = −2 + 13 34 (5) λ1 = −0, 088 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 20.
    1.1 Barisan Fibonacci lanjutaniterasi I µ1 = a1 + F(7+1)−1 F(7+1)−1+1 (b1 − a1) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 21.
    1.1 Barisan Fibonacci lanjutaniterasi I µ1 = a1 + F(7+1)−1 F(7+1)−1+1 (b1 − a1) µ1 = −2 + F(7) F(8) (3 − (−2)) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 22.
    1.1 Barisan Fibonacci lanjutaniterasi I µ1 = a1 + F(7+1)−1 F(7+1)−1+1 (b1 − a1) µ1 = −2 + F(7) F(8) (3 − (−2)) µ1 = −2 + 21 34 (5) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 23.
    1.1 Barisan Fibonacci lanjutaniterasi I µ1 = a1 + F(7+1)−1 F(7+1)−1+1 (b1 − a1) µ1 = −2 + F(7) F(8) (3 − (−2)) µ1 = −2 + 21 34 (5) µ1 = 1, 088 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 24.
    1.1 Barisan Fibonacci lanjutaniterasi I f (λ1) = 2λ1 3 − 3λ1 2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 25.
    1.1 Barisan Fibonacci lanjutaniterasi I f (λ1) = 2λ1 3 − 3λ1 2 f (λ1) = 2(−0, 088)3 − 3(−0, 088)2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 26.
    1.1 Barisan Fibonacci lanjutaniterasi I f (λ1) = 2λ1 3 − 3λ1 2 f (λ1) = 2(−0, 088)3 − 3(−0, 088)2 f (λ1) = −0, 001 − 0, 023 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 27.
    1.1 Barisan Fibonacci lanjutaniterasi I f (λ1) = 2λ1 3 − 3λ1 2 f (λ1) = 2(−0, 088)3 − 3(−0, 088)2 f (λ1) = −0, 001 − 0, 023 f (λ1) = −0, 024 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 28.
    1.1 Barisan Fibonacci lanjutaniterasi I f (µ1) = 2µ1 3 − 3µ1 2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 29.
    1.1 Barisan Fibonacci lanjutaniterasi I f (µ1) = 2µ1 3 − 3µ1 2 f (µ1) = 2(1, 088)3 − 3(1, 088)2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 30.
    1.1 Barisan Fibonacci lanjutaniterasi I f (µ1) = 2µ1 3 − 3µ1 2 f (µ1) = 2(1, 088)3 − 3(1, 088)2 f (µ1) = 2, 576 − 3, 551 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 31.
    1.1 Barisan Fibonacci lanjutaniterasi I f (µ1) = 2µ1 3 − 3µ1 2 f (µ1) = 2(1, 088)3 − 3(1, 088)2 f (µ1) = 2, 576 − 3, 551 f (µ1) = −0, 975 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 32.
    1.1 Barisan Fibonacci lanjutaniterasi I f (µ1) = 2µ1 3 − 3µ1 2 f (µ1) = 2(1, 088)3 − 3(1, 088)2 f (µ1) = 2, 576 − 3, 551 f (µ1) = −0, 975 f (λ1) > f (µ1) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 33.
    1.1 Barisan Fibonacci lanjutaniterasi I f (µ1) = 2µ1 3 − 3µ1 2 f (µ1) = 2(1, 088)3 − 3(1, 088)2 f (µ1) = 2, 576 − 3, 551 f (µ1) = −0, 975 f (λ1) > f (µ1) λ1 = −0, 088(a2) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 34.
    1.1 Barisan Fibonacci lanjutaniterasi I f (µ1) = 2µ1 3 − 3µ1 2 f (µ1) = 2(1, 088)3 − 3(1, 088)2 f (µ1) = 2, 576 − 3, 551 f (µ1) = −0, 975 f (λ1) > f (µ1) λ1 = −0, 088(a2) b1 = 3(b2) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 35.
    1.1 Barisan Fibonacci IterasiII λ2 = a2 + F(7+1)−2−1 F(7+1)−2+1 (b2 − a2) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 36.
    1.1 Barisan Fibonacci IterasiII λ2 = a2 + F(7+1)−2−1 F(7+1)−2+1 (b2 − a2) λ2 = −0, 088 + F(5) F(7) (3 − (−0, 088)) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 37.
    1.1 Barisan Fibonacci IterasiII λ2 = a2 + F(7+1)−2−1 F(7+1)−2+1 (b2 − a2) λ2 = −0, 088 + F(5) F(7) (3 − (−0, 088)) λ2 = −0, 088 + 8 21 (3, 088) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 38.
    1.1 Barisan Fibonacci IterasiII λ2 = a2 + F(7+1)−2−1 F(7+1)−2+1 (b2 − a2) λ2 = −0, 088 + F(5) F(7) (3 − (−0, 088)) λ2 = −0, 088 + 8 21 (3, 088) λ2 = 1, 088 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 39.
    1.1 Barisan Fibonacci lanjutaniterasi II µ2 = a2 + F(7+1)−2 F(7+1)−2+1 (b2 − a2) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 40.
    1.1 Barisan Fibonacci lanjutaniterasi II µ2 = a2 + F(7+1)−2 F(7+1)−2+1 (b2 − a2) µ2 = −0, 088 + F(6) F(7) (3 − (−0, 088)) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 41.
    1.1 Barisan Fibonacci lanjutaniterasi II µ2 = a2 + F(7+1)−2 F(7+1)−2+1 (b2 − a2) µ2 = −0, 088 + F(6) F(7) (3 − (−0, 088)) µ2 = −0, 088 + 13 21 (3, 088) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 42.
    1.1 Barisan Fibonacci lanjutaniterasi II µ2 = a2 + F(7+1)−2 F(7+1)−2+1 (b2 − a2) µ2 = −0, 088 + F(6) F(7) (3 − (−0, 088)) µ2 = −0, 088 + 13 21 (3, 088) µ2 = 1, 744 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 43.
    1.1 Barisan Fibonacci lanjutaniterasi II f (λ2) = 2λ2 3 − 3λ2 2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 44.
    1.1 Barisan Fibonacci lanjutaniterasi II f (λ2) = 2λ2 3 − 3λ2 2 f (λ2) = 2(1, 088)3 − 3(1, 088)2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 45.
    1.1 Barisan Fibonacci lanjutaniterasi II f (λ2) = 2λ2 3 − 3λ2 2 f (λ2) = 2(1, 088)3 − 3(1, 088)2 f (λ2) = 2, 576 − 3, 551 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 46.
    1.1 Barisan Fibonacci lanjutaniterasi II f (λ2) = 2λ2 3 − 3λ2 2 f (λ2) = 2(1, 088)3 − 3(1, 088)2 f (λ2) = 2, 576 − 3, 551 f (λ2) = −0, 975 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 47.
    1.1 Barisan Fibonacci lanjutaniterasi II f (µ2) = 2µ2 3 − 3µ2 2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 48.
    1.1 Barisan Fibonacci lanjutaniterasi II f (µ2) = 2µ2 3 − 3µ2 2 f (µ2) = 2(1, 744)3 − 3(1, 744)2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 49.
    1.1 Barisan Fibonacci lanjutaniterasi II f (µ2) = 2µ2 3 − 3µ2 2 f (µ2) = 2(1, 744)3 − 3(1, 744)2 f (µ2) = 10, 609 − 9, 125 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 50.
    1.1 Barisan Fibonacci lanjutaniterasi II f (µ2) = 2µ2 3 − 3µ2 2 f (µ2) = 2(1, 744)3 − 3(1, 744)2 f (µ2) = 10, 609 − 9, 125 f (µ2) = 1, 484 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 51.
    1.1 Barisan Fibonacci lanjutaniterasi II f (µ2) = 2µ2 3 − 3µ2 2 f (µ2) = 2(1, 744)3 − 3(1, 744)2 f (µ2) = 10, 609 − 9, 125 f (µ2) = 1, 484 f (µ2) > f (λ2) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 52.
    1.1 Barisan Fibonacci lanjutaniterasi II f (µ2) = 2µ2 3 − 3µ2 2 f (µ2) = 2(1, 744)3 − 3(1, 744)2 f (µ2) = 10, 609 − 9, 125 f (µ2) = 1, 484 f (µ2) > f (λ2) µ2 = −1, 744(b3) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 53.
    1.1 Barisan Fibonacci lanjutaniterasi II f (µ2) = 2µ2 3 − 3µ2 2 f (µ2) = 2(1, 744)3 − 3(1, 744)2 f (µ2) = 10, 609 − 9, 125 f (µ2) = 1, 484 f (µ2) > f (λ2) µ2 = −1, 744(b3) a2 = −0, 088(a3) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 54.
    1.1 Barisan Fibonacci IterasiIII λ3 = a3 + F(7+1)−3−1 F(7+1)−3+1 (b3 − a3) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 55.
    1.1 Barisan Fibonacci IterasiIII λ3 = a3 + F(7+1)−3−1 F(7+1)−3+1 (b3 − a3) λ3 = −0, 088 + F(4) F(6) (1, 744 − (−0, 088)) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 56.
    1.1 Barisan Fibonacci IterasiIII λ3 = a3 + F(7+1)−3−1 F(7+1)−3+1 (b3 − a3) λ3 = −0, 088 + F(4) F(6) (1, 744 − (−0, 088)) λ3 = −0, 088 + 5 13 (1, 832) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 57.
    1.1 Barisan Fibonacci IterasiIII λ3 = a3 + F(7+1)−3−1 F(7+1)−3+1 (b3 − a3) λ3 = −0, 088 + F(4) F(6) (1, 744 − (−0, 088)) λ3 = −0, 088 + 5 13 (1, 832) λ3 = −0, 617 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 58.
    1.1 Barisan Fibonacci lanjutaniterasi III µ3 = a3 + F(7+1)−3 F(7+1)−3+1 (b3 − a3) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 59.
    1.1 Barisan Fibonacci lanjutaniterasi III µ3 = a3 + F(7+1)−3 F(7+1)−3+1 (b3 − a3) µ3 = −0, 088 + F(5) F(6) (1, 744 − (−0, 088)) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 60.
    1.1 Barisan Fibonacci lanjutaniterasi III µ3 = a3 + F(7+1)−3 F(7+1)−3+1 (b3 − a3) µ3 = −0, 088 + F(5) F(6) (1, 744 − (−0, 088)) µ3 = −0, 088 + 8 13 (1, 832) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 61.
    1.1 Barisan Fibonacci lanjutaniterasi III µ3 = a3 + F(7+1)−3 F(7+1)−3+1 (b3 − a3) µ3 = −0, 088 + F(5) F(6) (1, 744 − (−0, 088)) µ3 = −0, 088 + 8 13 (1, 832) µ3 = 1, 039 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 62.
    1.1 Barisan Fibonacci lanjutaniterasi III f (λ3) = 2λ3 3 − 3λ3 2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 63.
    1.1 Barisan Fibonacci lanjutaniterasi III f (λ3) = 2λ3 3 − 3λ3 2 f (λ3) = 2(0, 617)3 − 3(0, 617)2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 64.
    1.1 Barisan Fibonacci lanjutaniterasi III f (λ3) = 2λ3 3 − 3λ3 2 f (λ3) = 2(0, 617)3 − 3(0, 617)2 f (λ3) = 0, 470 − 1, 142 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 65.
    1.1 Barisan Fibonacci lanjutaniterasi III f (λ3) = 2λ3 3 − 3λ3 2 f (λ3) = 2(0, 617)3 − 3(0, 617)2 f (λ3) = 0, 470 − 1, 142 f (λ3) = −0, 672 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 66.
    1.1 Barisan Fibonacci lanjutaniterasi III f (µ3) = 2µ3 3 − 3µ3 2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 67.
    1.1 Barisan Fibonacci lanjutaniterasi III f (µ3) = 2µ3 3 − 3µ3 2 f (µ3) = 2(1, 039)3 − 3(1, 039)2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 68.
    1.1 Barisan Fibonacci lanjutaniterasi III f (µ3) = 2µ3 3 − 3µ3 2 f (µ3) = 2(1, 039)3 − 3(1, 039)2 f (µ3) = 2, 243 − 3, 239 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 69.
    1.1 Barisan Fibonacci lanjutaniterasi III f (µ3) = 2µ3 3 − 3µ3 2 f (µ3) = 2(1, 039)3 − 3(1, 039)2 f (µ3) = 2, 243 − 3, 239 f (µ3) = −1, 086 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 70.
    1.1 Barisan Fibonacci lanjutaniterasi III f (µ3) = 2µ3 3 − 3µ3 2 f (µ3) = 2(1, 039)3 − 3(1, 039)2 f (µ3) = 2, 243 − 3, 239 f (µ3) = −1, 086 f (λ3) > f (µ3) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 71.
    1.1 Barisan Fibonacci lanjutaniterasi III f (µ3) = 2µ3 3 − 3µ3 2 f (µ3) = 2(1, 039)3 − 3(1, 039)2 f (µ3) = 2, 243 − 3, 239 f (µ3) = −1, 086 f (λ3) > f (µ3) λ3 = 0, 617(a4) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 72.
    1.1 Barisan Fibonacci lanjutaniterasi III f (µ3) = 2µ3 3 − 3µ3 2 f (µ3) = 2(1, 039)3 − 3(1, 039)2 f (µ3) = 2, 243 − 3, 239 f (µ3) = −1, 086 f (λ3) > f (µ3) λ3 = 0, 617(a4) b3 = 1, 744(b4) Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 73.
    1.1 Barisan Fibonacci Tabelperhitungan dengan Metode Fibonacci Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 74.
    1.1 Barisan Fibonacci x∗ =a8 + b8 − a8 2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 75.
    1.1 Barisan Fibonacci x∗ =a8 + b8 − a8 2 x∗ = 1, 039 + 1, 180 − 1, 039 2 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI
  • 76.
    1.1 Barisan Fibonacci x∗ =a8 + b8 − a8 2 x∗ = 1, 039 + 1, 180 − 1, 039 2 x∗ = 1, 109 Amelia Noviasari 1384202071 Denny Hardi 1384202110 Mona Yulinda Santika 1384202115 Risti Apriani Dewi 1384202141 Rudi AMETODE NUMERIK FIBONACCI