SlideShare a Scribd company logo
Part-9
The Gibbs Free Energy
and equilibria
• “Gibbs Free Energy” is energy that is still useful.
• A chemical reaction will occur if the Gibbs would decrease.
G = H - TS
Gibbs free energy is a measure of chemical energy
All chemical systems tend naturally toward states of minimum
Gibbs free energy
G = Gibbs Free Energy
H = Enthalpy (heat content)
T = Temperature in Kelvins
S = Entropy (can think of as
randomness)
Gibbs free energy also known as the free enthalpy
Is a thermodynamic potential that measures the maximum or reversible work
that may be performed by a system at a constant temperature and pressure
(Isothermal, Isobaric)
Spontaneity and Gibbs Free Energy
• Gibbs Free energy is a measure of the spontaneity of a process
• ΔG is the free energy change for a reaction under standard state
conditions
• At constant temperature and pressure: ΔG = ΔH – TΔS
– an increase in ΔS leads to a decrease in ΔG
– if ΔG < 0, the forward reaction is spontaneous
– if ΔG > 0, the forward reaction is nonspontaneous
– if ΔG = 0, the process is in equilibrium
• The Gibbs Free Energy is generally agreed to be the
“weapon of choice” for describing (a) chemical reactions
and (b) equilibria between phases. It is defined as:
• G = H – TS = U + PV – TS (1)
Where H = Enthalpy
• U = Total internal energy
• T = [Absolute] Temperature
• S = Entropy
• Obviously dG = dU + PdV +VdP – TdS – SdT
The Gibbs Free Energy and equilibria
• Remember that thermodynamic variables come in pairs
One is “intrinsic” (does not depend on system size)
The other is “extrinsic” (depends on system size)
• Examples: P and V, T and S…
• Also G and n, the number of moles of stuff in the system.
• Hence G is the appropriate variable when material is moving between
phases
Note:
From the First Law of Thermodynamics
• dU = TdS – PdV
since dS = dQ/T and the mechanical work done on a system
when it expands is –PdV.
• Substituting into
• dG = dU + PdV +VdP – TdS – SdT
• Leaves: dG = -SdT + VdP
Clapeyron’s Equation
Closed System
• Closed system contains pure substance
– vapor
– condensed phase
• Phases co-exist in equilibrium.
Write the Free Energy Equation twice
• Once for each phase
• dGc = -ScdT + VcdP c refers to the condensed phase
• dGv = -SvdT + VvdP v refers to the vapor phase
Definition of chemical equilibrium between two phases
• Free energy is the same in both phases Gc = Gv
• Changes in free energy when some independent variable is
changed must be the same if they are to remain in equilibrium
dGc = dGv
-ScdT + VcdP = -SvdT + VvdP
(Sv - Sc )dT = (Vv- Vc)dP
• (Sv - Sc ) is the entropy change that takes place when material moves from
the condensed phase to the vapor
• ΔS = ΔQ/T where ΔQ is the amount of heat required per mole of material
moved between the phases
• ΔQ is just the heat of vaporization!
• dP/dT = (Sv – Sc)/(Vv – Vc) = ΔHv/(TΔV)
This is the Clapeyron equation
• It relates the change in pressure of a vapor to the temperature
in a closed, mono-component system to the heat of
vaporization, system temperature and molar volume change of
the material on vaporization.
dP S
or
dT V



From the Clapeyron’s Equation we can calculate phase diagrams.
H=U+PV=Q
Creating of an Ideal Gas
• For lack of a better model, we treat most vapors as ideal gases, whose
molar volume is given by:
• V/n = RT/P
• Alternatively, equation of state is needed
• Molar volume of gas is typically factor of 500 larger than condensed phase
• Hence Vc is negligible in comparison
Substituting and Integrating
dP = (ΔHv/Vv)dT/T = (PΔHv/RT)dT/T
dP/P = ΔHv/R)dT/T2
ln(P(T)/ P0) = -(ΔHv/R)(1/T – 1/T0)
P(T) = P0 exp(-ΔHv/R(1/T – 1/T0))
Integrating
• The vapor pressure in equilibrium with a condensed phase
increases exponentially (sort of: exp(-1/T) isn’t exactly an
exponential!) with temperature from zero up to the critical
temperature.
• Deviations from linearity on the log-log plot
– Temperature dependence of the heat of vaporization
– exp (-1/T) isn’t really linear in the exponent.
Heat of Vaporization from CRC Data
Log10p(Torr) = -0.2185*A/T + B
Vapor Pressure of Water
Temperature (C)
-20 0 20 40 60 80 100 120
Vapor
Pressure
(Torr)
0.1
1
10
100
1000
10000
"Normal boiling point"
1. Determine the vapor pressure at 77 K for
a. Water
b. Carbon monoxide
2. What is the boiling point of water in a vacuum system at 10-6 Torr?
HW
3. In the chemical equation G = H - TS, the term G stands for
A) entropy
B) the reactants
C) enthalpy
D) free energy
E) the products

More Related Content

Featured

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
Marius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
Expeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
Pixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
marketingartwork
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
Skeleton Technologies
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
SpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Lily Ray
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
Rajiv Jayarajah, MAppComm, ACC
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
Christy Abraham Joy
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
Vit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
MindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
RachelPearson36
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

Thermodynamic_part_8.ppt

  • 1. Part-9 The Gibbs Free Energy and equilibria
  • 2. • “Gibbs Free Energy” is energy that is still useful. • A chemical reaction will occur if the Gibbs would decrease. G = H - TS Gibbs free energy is a measure of chemical energy All chemical systems tend naturally toward states of minimum Gibbs free energy G = Gibbs Free Energy H = Enthalpy (heat content) T = Temperature in Kelvins S = Entropy (can think of as randomness) Gibbs free energy also known as the free enthalpy Is a thermodynamic potential that measures the maximum or reversible work that may be performed by a system at a constant temperature and pressure (Isothermal, Isobaric)
  • 3. Spontaneity and Gibbs Free Energy • Gibbs Free energy is a measure of the spontaneity of a process • ΔG is the free energy change for a reaction under standard state conditions • At constant temperature and pressure: ΔG = ΔH – TΔS – an increase in ΔS leads to a decrease in ΔG – if ΔG < 0, the forward reaction is spontaneous – if ΔG > 0, the forward reaction is nonspontaneous – if ΔG = 0, the process is in equilibrium
  • 4. • The Gibbs Free Energy is generally agreed to be the “weapon of choice” for describing (a) chemical reactions and (b) equilibria between phases. It is defined as: • G = H – TS = U + PV – TS (1) Where H = Enthalpy • U = Total internal energy • T = [Absolute] Temperature • S = Entropy • Obviously dG = dU + PdV +VdP – TdS – SdT The Gibbs Free Energy and equilibria
  • 5. • Remember that thermodynamic variables come in pairs One is “intrinsic” (does not depend on system size) The other is “extrinsic” (depends on system size) • Examples: P and V, T and S… • Also G and n, the number of moles of stuff in the system. • Hence G is the appropriate variable when material is moving between phases Note:
  • 6. From the First Law of Thermodynamics • dU = TdS – PdV since dS = dQ/T and the mechanical work done on a system when it expands is –PdV. • Substituting into • dG = dU + PdV +VdP – TdS – SdT • Leaves: dG = -SdT + VdP Clapeyron’s Equation
  • 7. Closed System • Closed system contains pure substance – vapor – condensed phase • Phases co-exist in equilibrium. Write the Free Energy Equation twice • Once for each phase • dGc = -ScdT + VcdP c refers to the condensed phase • dGv = -SvdT + VvdP v refers to the vapor phase
  • 8. Definition of chemical equilibrium between two phases • Free energy is the same in both phases Gc = Gv • Changes in free energy when some independent variable is changed must be the same if they are to remain in equilibrium dGc = dGv -ScdT + VcdP = -SvdT + VvdP (Sv - Sc )dT = (Vv- Vc)dP • (Sv - Sc ) is the entropy change that takes place when material moves from the condensed phase to the vapor • ΔS = ΔQ/T where ΔQ is the amount of heat required per mole of material moved between the phases • ΔQ is just the heat of vaporization!
  • 9. • dP/dT = (Sv – Sc)/(Vv – Vc) = ΔHv/(TΔV) This is the Clapeyron equation • It relates the change in pressure of a vapor to the temperature in a closed, mono-component system to the heat of vaporization, system temperature and molar volume change of the material on vaporization. dP S or dT V    From the Clapeyron’s Equation we can calculate phase diagrams. H=U+PV=Q
  • 10. Creating of an Ideal Gas • For lack of a better model, we treat most vapors as ideal gases, whose molar volume is given by: • V/n = RT/P • Alternatively, equation of state is needed • Molar volume of gas is typically factor of 500 larger than condensed phase • Hence Vc is negligible in comparison Substituting and Integrating dP = (ΔHv/Vv)dT/T = (PΔHv/RT)dT/T dP/P = ΔHv/R)dT/T2 ln(P(T)/ P0) = -(ΔHv/R)(1/T – 1/T0) P(T) = P0 exp(-ΔHv/R(1/T – 1/T0)) Integrating
  • 11. • The vapor pressure in equilibrium with a condensed phase increases exponentially (sort of: exp(-1/T) isn’t exactly an exponential!) with temperature from zero up to the critical temperature. • Deviations from linearity on the log-log plot – Temperature dependence of the heat of vaporization – exp (-1/T) isn’t really linear in the exponent.
  • 12. Heat of Vaporization from CRC Data Log10p(Torr) = -0.2185*A/T + B Vapor Pressure of Water Temperature (C) -20 0 20 40 60 80 100 120 Vapor Pressure (Torr) 0.1 1 10 100 1000 10000 "Normal boiling point"
  • 13. 1. Determine the vapor pressure at 77 K for a. Water b. Carbon monoxide 2. What is the boiling point of water in a vacuum system at 10-6 Torr? HW 3. In the chemical equation G = H - TS, the term G stands for A) entropy B) the reactants C) enthalpy D) free energy E) the products