SlideShare a Scribd company logo
1 of 56
Download to read offline
No 134 (134) (2024)
The scientific heritage
(Budapest, Hungary)
The journal is registered and published in Hungary.
The journal publishes scientific studies, reports and reports about achievements in different scientific fields.
Journal is published in English, Hungarian, Polish, Russian, Ukrainian, German and French.
Articles are accepted each month.
Frequency: 24 issues per year.
Format - A4
ISSN 9215 — 0365
All articles are reviewed
Free access to the electronic version of journal
Edition of journal does not carry responsibility for the materials published in a journal.
Sending the article to the editorial the author confirms it’s uniqueness and takes full responsibility for possible
consequences for breaking copyright laws
Chief editor: Biro Krisztian
Managing editor: Khavash Bernat
• Singula Aleksandra - Professor, Department of Organization and Management at the University of Zagreb
(Zagreb, Croatia)
• Bogdanov Dmitrij - Ph.D., candidate of pedagogical sciences, managing the laboratory (Kiev, Ukraine)
• Chukurov Valeriy - Doctor of Biological Sciences, Head of the Department of Biochemistry of the Faculty of
Physics, Mathematics and Natural Sciences (Minsk, Republic of Belarus)
• Torok Dezso - Doctor of Chemistry, professor, Head of the Department of Organic Chemistry (Budapest,
Hungary)
• Filipiak Pawel - doctor of political sciences, pro-rector on a management by a property complex and to the
public relations (Gdansk, Poland)
• Flater Karl - Doctor of legal sciences, managing the department of theory and history of the state and legal
(Koln, Germany)
• Bence Orban - Doctor of sociological sciences, professor of department of philosophy of religion and reli-
gious studies (Miskolc, Hungary)
• Feld Ella - Doctor of historical sciences, managing the department of historical informatics, scientific leader
of Center of economic history historical faculty (Dresden, Germany)
• Owczarek Zbigniew - Doctor of philological sciences (Warsaw, Poland)
• Gál Jenő - MD, assistant professor of history of medicine and the social sciences and humanities (Budapest,
Hungary)
• Borbély Kinga - Ph.D, Professor, Department of Philosophy and History (Kosice, Slovakia)
• Eberhardt Mona - Doctor of Psychology, Professor, Chair of General Psychology and Pedagogy (Munich,
Germany)
• Kramarchuk Vyacheslav - Doctor of Pharmacy, Department of Clinical Pharmacy and Clinical Pharmacol-
ogy (Vinnytsia, Ukraine)
«The scientific heritage»
Editorial board address: Budapest, Kossuth Lajos utca 84,1204
E-mail: public@tsh-journal.com
Web: www.tsh-journal.com
CONTENT
AGRICULTURAL SCIENCES
Ten Ye., Oshergina I.
BREEDING OF LENTILS OF THE SCIENTIFIC AND
PRODUCTION CENTER GRAIN FARM NAMED AFTER
A.I. BARAEV .................................................................3
BIOLOGICAL SCIENCES
Aliyev E., Safarova E.,
Najafova J., Zeynalov Yu.
STUDY OF VEGANT COVER OF THE TERRITORY
GABALIN DISTRICT (AZERBAIJAN) ...............................8
CULTUROLOGY
Mambaeva S.
NATIONAL GAMES AMONG KYRGYZ AND AMERICAN
TRIBAL PEOPLE..........................................................11
EARTH SCIENCES
Isgаndаrov E., Abbasov K., Isgandarova L.
IDENTIFICATION OF GRADIENT ZONES ACCORDING
TO GRAVITY PROSPECTING DATA .............................16
ECONOMIC SCIENCES
Urinov B.
FINANCE VS. CORPORATE FINANCE ..........................25
MEDICAL SCIENCES
Boboc D., Cojocaru M., Roșoiu N.
THE RELATIONSHIP BETWEEN THE INTESTINAL
MICROBIOME AND THE KETOGENIC DIET IN PEOPLE
WITH AUTISTIC SPECTRUM DISORDERS....................30
Pankov I., Belyakov V.,
Sirazitdinov S., Emelin A.
MODERN METHODS OF SURGICAL TREATMENT OF
SEVERE COMPRESSION FRACTURES OF THE TIBIAL
CONDYLES .................................................................33
Pankov I., Belyakov V.,
Sirazitdinov S., Emelin A.
MODERN PRINCIPLES OF REHABILITATION THERAPY
FOR PATIENTS WITH THE CONSEQUENCES OF
INTRAARTICULAR FRACTURES OF THE KNEE JOINT ..39
Ostapchuk V., Zymagopova N.,
Ostapchuk M., Bizhuk M., Tanasescu D.
RISK FACTORS OF BILIRUBIN CLUSTER AND
GALLSTONE DISEASE IN CHILDREN (LITERATURE
REVIEW AND CASE FROM PRACTICE)........................44
PEDAGOGICAL SCIENCES
Ruzieva Ch., Kudaibergeneva K.
INFLUENCE OF NEUROPSYCHOLOGICAL GAMES ON
THE ATTENTION OF SENIOR PRESCHOOL CHILDREN 47
PHILOLOGICAL SCIENCES
Tadevosyan R., Bejanyan K.
LERMONTOV’S POEM «A STAR» («AND THERE AFAR»)
TRANSLATED INTO ENGLISH AND ARMENIAN ..........52
The scientific heritage No 134 (2024) 3
AGRICULTURAL SCIENCES
СЕЛЕКЦИЯ ЧЕЧЕВИЦЫ НАУЧНО ПРОИЗВОДСТВЕННОГО ЦЕНТРА ЗЕРНОВОГО
ХОЗЯЙСТВА ИМ. А.И. БАРАЕВА
Тен Е.А.
магистр агрономии, аспирант, заведующий лабораторией селекции зернобобовых и масличных куль-
тур, ТОО «Научно производственный цент
зернового хозяйства им. А.И. Бараева»
Ошергина И.П.
магистр агрономии, аспирант,
заведующий отделом селекции зернобобовых, зернофуражных,
масличных и крупяных культур, ТОО «Научно производственный цент
зернового хозяйства им. А.И. Бараева»
BREEDING OF LENTILS OF THE SCIENTIFIC AND PRODUCTION CENTER GRAIN FARM
NAMED AFTER A.I. BARAEV
Ten Ye.,
Master of Agronomy, postgraduate student, Head of the laboratory of selection of legumes and oilseeds,
LLP "Scientific and Production Center
of grain farming named after A.I. Baraev"
Oshergina I.
Master of Agronomy, postgraduate student,
Head of the Department of selection of legumes, grain
fodder, oilseeds and cereals, LLP "Scientific and Production Center
of grain farming named after A.I. Baraev"
DOI: 10.5281/zenodo.10939532
Аннотация
Для расширения посевных площадей чечевицы в Республике Казахстан и за ее пределами необходимо
создание новых продуктивных, пластичных, с высокими качественными показателями зерна сортов и ве-
дение их первичного семеноводства. В Научно производственном центре зернового хозяйства им. А.И.
Бараева, в лаборатории селекции зернобобовых и масличных культур с привлечением разнообразного ге-
нетического исходного материала созданы ряд перспективных сортов чечевицы. В период с 2000 по 2022
гг. в центре созданы сорта чечевицы – Шырайлы, Сакура (крупносеменные сорта) и мелкосеменной сорт
Крапинка.
Abstract
To expand the acreage of lentils in the Republic of Kazakhstan and beyond, it is necessary to create new
productive, plastic, high-quality grain varieties and conduct their primary seed production. A number of promising
varieties of lentils have been created in the Scientific and Production Center of Grain Farming named after A.I.
Baraev, in the laboratory of selection of legumes and oilseeds with the involvement of a variety of genetic source
material. In the period from 2000 to 2022. The center has created varieties of lentils – Shyraily, Sakura (large-
seeded varieties) and small-seeded variety Krapinka.
Ключевые слова: сорт, чечевица, вегетационный период, урожайность, продуктивность.
Keywords: variety, lentils, growing season, yield, productivity.
Введение. Зернобобовые культуры состав-
ляют 27 % мирового производства сельскохозяй-
ственных культур и обеспечивают 33 % белка, по-
требляемого человеком [7]. Глобальное и быстрое
изменение климатических условий на планете
представляет угрозу для обеспечения не только Ка-
захстанской, но и всемирной продовольственной
безопасности и повышает риск недоедания в бед-
ных районах, хотя разрушительные последствия из-
менения климата в различных регионах и для раз-
личных сельскохозяйственных культур могут быть
неодинаковы. В решении проблем продовольствен-
ной безопасности, в целом, ключевую роль должна
играть селекция растений, а именно выведение но-
вых, под конкретные условия, сортов. Помимо вы-
сокой урожайности, новые сорта, предназначенные
для решения проблемы растущих факторов отсут-
ствия продовольственной безопасности, должны
быть адаптированы к экстремальным явления по-
годы и связанным на этой основе с ними постоянно
развивающимся новым штаммам и биотипам вре-
дителей и болезней [6].
Неопровержима тесная взаимосвязь между
производством продукции растениеводства, продо-
вольственной безопасностью и изменением кли-
мата. На продовольственную безопасность, а также
геологические процессы оказывает негативное воз-
действие глобальное потепление, содействуя опу-
стыниванию и деградации плодородных земель.
4 The scientific heritage No 134 (2024)
Что, в свою очередь, влияет на передвижение пло-
щадей посева продовольственных и непродоволь-
ственных культур в мире [1].
Чечевица – одна из ярких представительниц
зернобобовых культур, которая непосредственно
выделяется по питательному составу. Именно чече-
вица может помочь решить проблему продоволь-
ственной безопасности не только в Казахстане, но
и во всём мире. Это засухоустойчивая культура, бо-
гатая диетическим белком (22–25%), минералами
(K, P, Fe и Zn), углеводами, а также витаминами [8,
3, 5].
К примеру, исследователь Venugopalan VK, с
соавторами определил, что влажность почвы и тем-
пературный стресс являются двумя основными
абиотическими факторами, ограничивающими рост
и продуктивность чечевицы (Lens culinaris Medik.)
независимо от изучаемого сорта [2].
В исследовании Sehgal A тепловой стресс сни-
жал урожайность семян больше, чем стресс от за-
сухи, в то время как комбинированный стресс
сильно влиял на размер и вес семян. Комбиниро-
ванный стресс также заметно нарушил фотосинте-
тическую способность, углеводный обмен как в ли-
стьях, так и в семенах, что привело к задержке роста
растений с меньшим количеством семян, исключе-
нием являлись специально созданные для засушли-
вых условий, изучаемого региона сорта, которые
показали хорошую устойчивость к абиотическим
стрессам [4]. Этот фактор доказывает необходи-
мость селективно создавать сорта, приспособлен-
ные к условиям произрастания в том или ином ре-
гионе.
Цель исследований заключалась в создании вы-
сокопродуктивных, высокоурожайных, с высоким
качеством сортов чечевицы, устойчивых к стрессо-
вым факторам внешней среды, отвечающих всем
стандартам качества выпускаемой продукции.
Сорт Шырайлы. Сорт выведен методом ги-
бридизации при простом парном скрещивании сор-
тов ILL 4401 х ILL 5569 с последующим индивиду-
альным отбором (рисунок 1)
Рисунок 1 – Растение и семена сорта Шырайлы
Подвид macrosperma Bar. Разновидность нум-
мулярия (var. nummularia Alef.). Чечевица тарелоч-
ная. Высота растения 35-49 см., стебель прямостоя-
чей формы, с высоким прикреплением нижнего
боба на растении – 19-25 см. Листья с тремя – ше-
стью парами удлиненно-овальных листочков, за-
канчиваются непарным усиком. Прилистники ко-
пьевидные – цельнокрайние. Цветки крупные-бе-
лые, парус с фиолетовыми жилками, цветоносы 1-3
цветков. Бобы средние и крупные длиной 13-20мм,
средней ширины и широкие 8-11 мм. с заостренным
кончиком, преимущественно средние двухсемен-
ные. Устойчивость к растрескиванию бобов – сред-
няя. Семена тарелочные, сплюснутые, крупные
(6,0-7,5 мм), плоские, желто-зеленые с мраморно-
стью. Семядоли желтые. Масса 1000 семян 73-77
грамм. Содержание белка 25,95-29,17 %. В благо-
приятных условиях содержание белка очень высо-
кое 31,5 %. Разваримость и вкусовые качества хо-
рошие. Сорт среднеспелого типа созревания. Про-
должительность периода от всходов до созревания
колеблется от 76 до 101 суток. Повреждаемость
вредителями слабая. Поражаемость аскохитозом и
фузариозным увяданием средняя, на уровне стан-
дартного.
В питомнике конкурсного сортоиспытания
урожай зерна, в условиях засухи, по паровому пред-
шественнику составил в среднем 9,6 ц/га при уро-
жайности стандарта Веховская – 8,6 ц/га. При этом
отмечено, что сорт отличается большей устойчиво-
стью к полеганию. На фоне недостаточного увлаж-
нения и минерального питания при минимальной
обработке в среднем за три года урожайность соста-
вила 4,2 ц/га, при урожайности стандарта 3,6 ц/га,
полное созревание нового сорта отмечено на 3-6 су-
ток раньше.
Правовые параметры: Сорт Шырайлы с 2016 г.
районирован в двух областях: Акмолинская, Се-
веро-Казахстанская. Патент № 791 от 08.12.2017 г.
Авторы: Сулейменов Р.М., Каскарбаев Ж.А.,
Халикулов З., Рам Шарма, Чечерина А.Н., Вергун
И.В
Сорт Крапинка. Сорт выведен отбором из ги-
бридной комбинации ILL5588/ILL4265 междуна-
родного питомника скрининга ИКАРДА. (рисунок
2)
The scientific heritage No 134 (2024) 5
Рисунок 2 – Растение и семена сорта Крапинка
Подвид microsperma Bar. Разновидность var.
Atrogrisea. Растение среднерослое, высота от 20-62
см., с высоким прикрепление нижнего боба 12-39
см. и не полегающее. Форма куста прямостоячая,
компактная. Ветвистость и облиственность сред-
няя. Листья с 3-6 парами удлиненно овальных ли-
сточков, заканчиваются непарным усиком. При-
листники копьевидные цельнокрайние. Цветки
мелкие, белые, парус с фиолетовыми жилками, цве-
тоносы 1-2 цветковые. Бобы цилиндрической
формы, средние, длиной 13-15 мм, шириной 5-7
мм., с заостренным кончиком, преимущественно
двухсеменные. Устойчивость к растрескиванию бо-
бов средняя. Семена шаровидные, мелкие, розовые
с черными крапинками. Семядоли желтые. Вес
1000 семян от 39 до 43 г, содержание белка от 26,11
до 29,52 %. Разваримость и вкусовые качества хо-
рошие. Сорт отличается повышенной натурой се-
мян – 829 г/л (774 г/л у сорта Веховская). Сорт ран-
неспелого типа созревания. Продолжительность
периода от всходов до созревания варьирует от 70
до 110 суток. В сравнении со стандартным сортом
отличается равномерностью созревания. Повре-
ждаемость вредителями слабая. Поражаемость ас-
кохитозом и фузариозным увяданием средняя, на
уровне стандартного. В питомнике конкурсного
(экологического) сортоиспытания урожай зерна
сорта составила в среднем 18,9 ц/га при урожайно-
сти сорта Веховская – 14,4 ц/га, превышение со-
ставляло до 4,5 ц/га. При этом отмечено, что сорт
отличается ранним созреванием. В производствен-
ном сортоиспытании урожайность сорта составила
27,2 ц/га, что превысило стандарт на 4,70 ц/га.
Правовые параметры: Сорт Крапинка с 2016 г.
районирован в трех областях: Акмолинская, Се-
веро-Казахстанская, Костанайская. Патент № 792
от 08.12.2017 г.
Авторы: Сулейменов Р.М., Каскарбаев Ж.А.,
Чечерина А.Н., Чилимова И.В.
Сорт Сакура. Сорт чечевицы Сакура выведен
в ТОО «НПЦЗХ им. А. И. Бараева» методом инди-
видуального отбора из образца №115/2 (Россия), в
каталоге «НПЦЗХ им. А. И. Бараева» образец про-
шел регистрацию под № К-385 (рисунок 3).
Рисунок 3 – Растение и семена сорта Сакура
6 The scientific heritage No 134 (2024)
Подвид microsperma Bar. Разновидность var.
Atrogrisea.
Растение среднерослое, высота от 27 до 52 см,
с высоким прикреплением нижнего боба – 13-30 см
и неполегающее. Форма куста прямостоячая, ком-
пактная. Ветвистость и облиственность средние.
Листья с 3-5 парами удлинено-овальных ли-
сточков, заканчиваются непарным усиком. При-
листники копьевидные, цельнокрайние. Цветки
мелкие, белые, парус с фиолетовыми жилками, цве-
тоносы 1-2 цветковые. Бобы цилиндрической
формы, средние, длиной 11-14 мм, шириной 5-7 мм,
с заостренным кончиком, преимущественно 2-ух
семенные. Устойчивость к растрескиванию бобов
высокая. Семена шаровидные, средние, розовые.
Семядоли розовые. Вес 1000 семян от 53,6 до 77,7
г, содержание белка до 32,67 %.
Сорт раннеспелого типа созревания. Сорт со-
зревает на одни-двое суток раньше сорта стандарта
Веховская в зависимости от погодных условий и
предшественника. Продолжительность периода от
всходов до созревания варьирует от 91 до 117 су-
ток. В сравнении со стандартным сортом отлича-
ется равномерностью созревания.
Повреждаемость вредителями слабая. Поража-
емость аскохитозом и фузариозным увяданием
средняя, на уровне стандартного. Сорт крупносе-
менного типа, раннеспелый, с прямостоячим ком-
пактным кустом, с прикреплением нижнего боба
достаточным для механизированной уборки.
Урожайность зерна нового сорта в стрессовых
условиях составила в среднем 11,26 ц/га при уро-
жайности сорта стандарта Веховская – 10,04 ц/га,
превышение составило 1,22 ц/га. При этом отме-
чено, что сорт Сакура отличается ранним созрева-
нием. В производственном сортоиспытании уро-
жайность нового сорта составила 17,55 ц/га.
Авторы: Сулейменов Р.М., Ошергина И.П.,
Абдуллаев К.К., Чилимова И.В.
Краткая информация, представленная ниже,
обобщает многолетний анализ условий и результа-
тивности отдельных мероприятий при проведении
полевых работ в засушливом регионе Казахстана.
Заблаговременное планирование работ с учетом
особенностей начала полевого сезона позволит
максимально реализовать потенциал чечевицы и
позволит повысить эффективность производства.
Размещение в севообороте
• Зернобобовые культуры (горох, чечевица,
нут), являются улучшителями почвенного плодоро-
дия в севообороте за счет способности фиксировать
атмосферный азот в симбиозе с клубеньковыми
бактериями;
• Лучшие предшественники: яровые зерно-
вые, не рекомендуется сеять ее по бобовым культу-
рам;
• Чечевицу необходимо размещать только
после культур, оставляющих после себя чистое от
сорняков поле;
• Срок возврата на прежнее поле не ранее
чем через 4 года;
• Бобовые культуры хорошие предшествен-
ники для пшеницы.
Обработка почвы
• Посевы чечевицы весьма чувствительны к
сорнякам, поэтому обработка почвы должна быть
направлена в первую очередь на очищения поля от
сорняков;
• На полях, засоренных многолетними сор-
няками, применяют препараты на основе глифоса-
тов в рекомендуемых дозах;
• Рекомендуется применять варианты не
только минимальной и нулевой обработки почвы,
но и традиционной.
Применение удобрений
• Вносят только по результатам почвенной и
растительной диагностики;
• Азотные удобрения, во избежание угнете-
ния клубеньковых бактерий, вносить не рекоменду-
ется;
• Фосфорные удобрения необходимо вно-
сить в рекомендованных дозах;
• Калийные удобрения – потребность в них
на черноземах Северного Казахстана, как правило,
не возникает;
• Микроудобрения и росторегуляторы повы-
шают устойчивость растений к болезням и стрессо-
вым погодным факторам. Используются при пред-
посевной обработке семян или для некорневой под-
кормки растений в рекомендуемых дозах.
Предпосевная обработка почвы
• В случае применение предпосевной обра-
ботки на глубину заделки семян необходимо прово-
дить стрельчатыми лапами. При обработке диско-
выми орудиями значительно увеличиваются потери
влаги;
• При прямом посеве предпосевную обра-
ботку необходимо проводить препаратами на ос-
нове глифосатов в рекомендуемых дозах;
• Предпосевную культивацию проводят с це-
лью формирования посевного ложа, необходимого
для получения дружных всходов. Поверхность
почвы перед посевом должна быть выровнена.
Посев
• Семена перед посевом необходимо обраба-
тывать защитными композициями инсектицидного
и фунгицидного действия. Одновременно с про-
травливанием семян возможно добавление молиб-
дена, что положительно влияет на урожайность;
• В день посева семена необходимо обрабо-
тать бактериальным препаратом (инокулянтом) для
образования азотофиксирующих клубеньков на
корнях растений;
• Оптимальная глубина заделки семян 4-6
см;
• Зернобобовые культуры, высокотребова-
тельные к влаге в начальный период развития и хо-
рошо переносящие ранневесенние заморозки, сле-
дует высевать в рекомендованные сроки. Запозда-
ние с посевом во всех зонах возделывания приводит
к снижению урожая;
• Лучший способ посева – сплошной рядо-
вой, в более увлажненных зонах ему не уступает уз-
корядный. Рекомендуется вслед за посевом прика-
тывание почвы;
The scientific heritage No 134 (2024) 7
• Нормы посева зависят от крупности семян
и почвенно-климатических условий. Оптимальной
нормой высева считается 1,3-1,5 всхожих семян на
гектар. В увлажненных районах на бедных почвах
эту среднюю норму следует повышать на 15-20%,
на более плодородных почвах и в засушливых рай-
онах, наоборот, снижать на 15%. На сильно засо-
ренных полях норму высева, возможно, увеличить
до 2,0-2,1 млн. всхожих семян на гектар.
• Рекомендованные сроки посева конец вто-
рой, начало 3 декады мая
Уход за посевами
• Все агромероприятия должны быть
направлены на борьбу с сорной растительностью;
• В зависимости от количества и видового
состава сорняков используют почвенные и повсхо-
довые гербициды в соответствии с регламентом их
применения;
• При необходимости для защиты посевов от
насекомых вредителей и болезней применять пе-
стициды, рекомендованные на чечевице.
Уборка урожая
• Применяют зерновые комбайны, переобо-
рудованные на низкий срез растений и пониженное
число оборотов (350-450 оборотов в минуту) при
влажности семян 14-16%;
• Применяется прямое комбайнирование и
раздельная уборка;
• К уборке раздельным способом присту-
пают при наличии 60-70% сухих бобов на расте-
ниях. Растрескивание бобов и осыпания семян в это
время не наблюдается. Чечевица и горох хорошо
дозревают в валках и сохраняют высокие товарные
качества;
• Низкорослые сорта лучше убирать прямым
комбайнированием, когда созреет 85-90% куль-
туры;
• В потоке с уборкой проводится очистка се-
мян. При влажности семян выше 15% необходима
их искусственная сушка. На хранение культуры за-
кладывают при влажности семян, не превышающей
14% (12-13%).
Список литературы
1. МГЭИК (Межправительственная группа
экспертов по изменению климата) Изменение кли-
мата и земля // Специальный доклад МГЭИК об из-
менении климата, опустынивании, деградации зе-
мель, устойчивом управлении земельными ресур-
сами, продовольственной безопасности и потоках
парниковых газов в наземных экосистемах. – Же-
нева, 2020 г. –39 с.
2. Venugopalan VK, Nath R, Sengupta K, Nalia
A, Banerjee S, Chandran MAS, Ibrahimova U, Des-
soky ES, Attia AO, Hassan MM and Hossain A (2021)
The Response of Lentil (Lens culinaris Medik.) to Soil
Moisture and Heat Stress Under Different Dates of
Sowing and Foliar Application of Micronutrients.
Front. Plant Sci. 12:679469. doi:
10.3389/fpls.2021.679469
3. Sharpe A.G., Ramsay L., Sanderson LA. et al.
Ancient orphan crop joins modern era: gene-based SNP
discovery and mapping in lentil. BMC Genomics 14,
192 (2013). https://doi.org/10.1186/1471-2164-14-192
4. Sehgal A, Sita K, Kumar J, Kumar S, Singh S,
Siddique KHM and Nayyar H (2017) Effects of
Drought, Heat and Their Interaction on the Growth,
Yield and Photosynthetic Function of Lentil (Lens culi-
naris Medikus) Genotypes Varying in Heat and
Drought Sensitivity. Front. Plant Sci. 8:1776. doi:
10.3389/fpls.2017.01776
5. Sarker A., Rizvi A., Singh M. (28/11/2017).
Genetic variability for nutritional quality in Lentil
(Lens culinaris Medikus Subsp. culinaris). Legume
Research, 41 (3), pp. 363-368. DOI:
https://hdl.handle.net/20.500.11766/8371
6. Mba C., Guimaraes E.P. & Ghosh, K. Re-ori-
enting crop improvement for the changing climatic
conditions of the 21st century. Agric & Food Secur 1,
7 (2012). https://doi.org/10.1186/2048-7010-1-7
7. Legume crops phylogeny and genetic diver-
sity for science and ecological genetics breeding /
Smýkal P, Coyne C.J, Ambrose M.J, et al // Critical Re-
views in Plant Sciences. - 2015.- Vol. 34. - pр 43-104.
https://doi.org/10.1080/07352689.2014.897904.
8. Kumar J., Gupta S., Biradar R.S., Gupta P.,
Dubey S., Singh N.P., 2018. Association of functional
markers with flowering time in lentil. J. Appl. Genet.
59,9. https://doi.org/10.1007/s13353-017-0419-0
8 The scientific heritage No 134 (2024)
BIOLOGICAL SCIENCES
ИССЛЕДОВАНИЕ РАСТИТЕЛЬНОГО ПОКРОВА ТЕРРИТОРИИ ГАБАЛИНСКОГО РАЙОНА
(АЗЕРБАЙДЖАН)
Алиев Э.Я.
доцент, ведущий научный сотрудник Института
Ботаники Министерства Науки и Образования (Баку),
Сафарова Э.П.
доцент, ведущий научный сотрудник
Института Ботаники Министерства Науки и Образования (Баку),
Наджафова Д.Н.
доцент, ведущий научный сотрудник Института Ботаники Министерства Науки и Образования
(Баку),
Зейналов Ю.М.
доцент, ведущий научный сотрудник Института Ботаники Министерства Науки и Образования
(Баку),
STUDY OF VEGANT COVER OF THE TERRITORY GABALIN DISTRICT (AZERBAIJAN)
Aliyev E.,
Associate Professor,
Leading Researcher of the InstituteBotany of the Ministry of Science and Education (Baku),
Safarova E.,
Associate Professor,
Leading Researcher of the Institute Botany of the Ministry of Science and Education (Baku),
Najafova J.,
Associate Professor,
Leading Researcher of the InstituteBotany of the Ministry of Science and Education (Baku),
Zeynalov Yu.
Associate Professor,
Leading Researcher of the Institute Botany of the Ministry of Science and Education (Baku)
DOI: 10.5281/zenodo.10939537
Аннотация
В статье приводятся данные о древесно-кустарниковых и травянистых растений распространенных на
территории Габалинского района. В результате мониторинга, проведенного в условиях естественного аре-
ала, собрано 55 видов растений, из них в «Красную книгу» относятся 10 видов: Quercus castaneifolia
C.A.Mey., Celtis caucasica Willd., Parrotia persica C.A.Mey., Pyrus caucasica L., Castanea sativa Mill., Pyrus
vsevolodii Heideman, Jasminum officinale L., Rosa sosnovskyi Chrshan, Orchis masculata L., Marrubium
propinguum Fisch.&C.A.Meyl. В результате комплексного изучения Габалинского района выявлены имею-
щие научно-практическое значение характерные и доминирующие виды. В дальнейшем для восстановле-
ния и проведения, находящихся под угрозой исчезновения исследуемых видов рекомендуется их реинтро-
дукция.
Abstract
The article provides data on trees, shrubs and herbaceous plants common in the Gabala district. As a result of
monitoring carried out in the natural habitat, 55 plant species were collected, of which 10 species are included in
the “Red Book”: Quercus castaneifolia C.A.Mey., Celtis caucasica Willd., Parrotia persica C.A.Mey., Pyrus cau-
casica L., Castanea sativa Mill., Pyrus vsevolodii Heideman, Jasminum officinale L., Rosa sosnovskyi Chrshan,
Orchis masculata L., Marrubium propinguum Fisch.&C.A.Meyl. As a result of a comprehensive study of the
Gabala district, characteristic and dominant species of scientific and practical importance were identified. In the
future, for the restoration and implementation of endangered species under study, their reintroduction is recom-
mended.
Ключевые слова: Габала, мониторинг, вид, естественный ареал, гербарий, реинтродукция, Красная
книга.
Keywords: Gabala, monitoring, species, natural habitat, herbarium, reintroduction, Red Book.
The scientific heritage No 134 (2024) 9
Введение
В настоящее время одной из актуальных про-
блем современности является сохранение, восста-
новление и защита редких и исчезающих видов рас-
тений. Для уточнения ареалов растений по семей-
ствам, определения их биоэкологических
особенностей, а также мониторинга, занесенных в
Красную книгу видов, были проведены исследова-
ния в селах и окружающих территориях Габалин-
ского района Азербайджана, выявлены характер-
ные и доминирующие виды для территории, собран
гербарий материал.
Габалинский район расположен в северо-за-
падной части Азербайджанской Республики, в пре-
делах Шеки-Закатальского экономического района.
На западе граничит с Огузским районом, с севера
Российской Федерацией и Гусарским районом, на
востоке с Губинским и Исмаиллинским районами и
на юге Евлахским и Гейчайским районами (Рис.1).
Рис.1 Карта Габалинского района
В системе природных ресурсов Габалинского
района его почвы и растительность занимают осо-
бое место. Начиная от южных склонов района,
окаймленных Ширванской равниной, до водораз-
дельных вершин Большого Кавказа, обращает на
себя внимание чередование ареалов и зон, отлича-
ющихся по вертикальной зональности разнообра-
зием почвы и растительности [1].
Разнообразие типов почв, рельефа и климати-
ческих условий способствовало обогащению расти-
тельного покрова региона.
Материалы и методы
Материалом наших исследований было изуче-
ние произрастающих в лесах Габалинского района
древесно-кустарниковой растительности и выявле-
ние занесенных в «Красную книгу» Азербайджана
видов [5]. Во время экспедиции были определены
ареалы распространения видов, собраны гербарные
материалы, зафиксирована информация об усло-
виях произрастания, в том числе данные GPS [9].
Кроме того, были изучены материалы, хранящиеся
в Гербарном фонде института Ботаники Министер-
ства науки и образования Азербайджанской Рес-
публики [4].
Для определения жизненных форм видов ис-
пользовались системы К. Раункера [8], фенология
по материалам ГБС [2] и Л.И.Прилипко [6]. Для
уточнения изменений номенклатуры использова-
лись базы данных [9].
Результаты и их обсуждение
Габалинский район составляет всего 2% терри-
тории республики, привлекает внимание естествен-
ным разнообразием растительности начиная от по-
лынной и галофитовой растительности до харак-
терных для горной тундры мхов и лишайников, от
ксерофитов сухих степей до различных древесных
пород равнин и горных лесов.
Южная часть территории района покрыта по-
лынными, полынно-сорновыми полупустынными
растениями, ксерофитными редколесьями, а в цен-
тральной части (в Алазань-Хафтаранской долине)
наряду с дубовыми, буковыми, грабовыми лесами
формируется равнинный лесной ландшафт с преоб-
ладанием лапины, ольхи, ивы и тополя. Равнинные
леса постепенно сменяются горно-лесным поясом
доходящим до 1800-2000 м высоты.
Выше лесного пояса, от 1800-2000 до 2500-
3000 м над уровнем моря субальпийские и альпий-
ские луга чередуются со скалистым субнивальным
и снежно-ледниковым нирельским поясом. Лесной
покров региона составляет 60 000 га, что составляет
23,1% от общей площади [7].
Горные и равнинные леса Габалинского рай-
она богаты эндемичными, реликтовыми, плодово-
ягодными деревьями и кустарниками: бук, дуб,
граб, лапины, тополь серебристый, ива, вяз, липа,
клен, можжевельник, фисташка, каштан, грецкий
орех, лещина, боярышник, груша, яблоня, айва,
мушмула, кизил, алыча, облепиха, сумах, шипов-
10 The scientific heritage No 134 (2024)
ник, дикая малина и др. На лугах и равнинах преоб-
ладают такие нектароносные растения, как тимьян,
душица, астрагал, эспарцет, борщевик и др.
В 2002 году возле села Мамедагали Габалин-
ского района был выявлен новый лесной ареал же-
лезного дерева, а на территории селения Хамзалли
находится густой тисовый лес, который является
единственным природным памятником азербай-
джанской природы.
В ходе экспедиции на территории Габалин-
ского района на высоте 300-2000 метров над уров-
нем моря был проведен мониторинг и собраны 55
видов растений относящихся к 34 родам (Primula,
Orchis, Thymus, Viola, Valeriana, Ferula, Sambucus,
Fagus, Carpinus, Rosa, Acer, Malus и др.), выявлены
характерные и доминирующие виды и составлен
гербарий образцов растений [2]. Также были выяв-
лены занесеные в Красную книгу Азербайджана 10
видов.
1. Primula vulgaris L.
2. Orchis anatolica Boiss.
3. Orchis simia Lam.
4. Orchis masculata L. +
5. Thymus vulgaris Wild.ex.Ronn.
6. Viola odorata L.
7. Viola canina L.
8. Viola arvensis Mur.=V.
9. Valeriana alliariifolia Adams
10. Valeriana officinalis L.=V.
11. Scilla bifolia Grossh.
12. Ferula persica Willd.
13. Marrubium propinguum Fisch.&C.A.Meyl. +
14. Hyacintus orientalis L.
15. Muscari commutatum Mill.
16. Orintagalum vulgaris L.
17. Sambucus ebulus L.
18. Sambucus nigra L.
19. Mespilus germanica L.
20. Fagus orientalis L.
21. Juniperus exelsior L.
22. Carpinus betulus L.
23. Punica granatum L.
24. Pyrus vsevolodii Heideman +
25. Rhus coriaria L.
26. Rosa sosnovskyi Chrshan. +
27. Rosa pulverulenta L.
28. Salix nigra L.
29. Jasminum officinale L. +
30. Prunus divaricata Ledeb.
31. Malus orientalis Uglizk.
32. Acer pseudoplatanus L.
33. Castanea sativa Mill. +
34. İris musulmanica Fomin
35. İris reticulate Bieb.
36. Asphodeluna aestivus Reishb.
37. Parrotia persica C.A.Mey.+
38. Pyrus caucasica L. +
39. Diospyros lotus L.
40. Quercus castaneifolia C.A.Mey. +
41. Celtis caucasica Willd. +
42. Gleditsia caspica Desf.
43. Punica granatum L.
44. Platanus orientalis L.
45. Trifolium pratense L.
46. Juncus effuses L.
47. Carum carvi L.
48. Rumex crispus L.
49. Chaerophyllum sp. L.
50. Plantago major L.
51. Glaucium grandiflorum Adans.
52. Mentha aquatic L.
53. Thlaspi arvense L.
54. Amaranthus retroflexus L.
55. Centaurea behen L.
Pyurus Таким образом, нами, из естественных
условий в условия культуры интродуцированы
виды растений, имеющие научно-практическое
значение, которые в дальнейшем для восстановле-
ния были реинтродуцированы.
Список литературы
1. Аскеров А.М. Растительный мир Азербай-
джана. Баку. - Изд. Пресс TEAS,-2016. – c.444
2. Бейдеман И.Н. Методика фенологических
наблюдений при геоботтанических исследованиях.
– М.: АН СССР. -1954. –с.127
3. Касумова Г.Д. «Современная наука:
актуальные проблемы теории и практики. Серия
естественные и технические науки», №11, 2023,
с.42-46.
4. Конспект Флоры Кавказа (2006-2012)
Санкт-Петербург, Москва; Т. 1, 2, 3(1-2)
5. Красная книга Азербайджана. Редкие и ис-
чезающие виды растений и грибов. //Восток - За-
пад. – 2013.Часть 2. – с.676
6. Прилипко Л.И. Лесная растительность
Азербайджана. Баку, 1954
7. Флора Азербайджана. Баку: АН Азерб.
ССР, т. I – VIII, 1950- 1961
8. Raunkiaer Ch. plant life forms. Oxford: Clar-
endon Press, 1937
9. worldfloraonline.org http://ww2.bgbm.org
The scientific heritage No 134 (2024) 11
CULTUROLOGY
NATIONAL GAMES AMONG KYRGYZ AND AMERICAN TRIBAL PEOPLE
Mambaeva S.
Assoc. Prof.(PhD), Kyrgyz- Turkish Manas University,
Faculty of Humanıtıes, Simultaneous Translation Dept.
ORCID: https://orcid.org/0000-0001-7137-1579
Bishkek, Kyrgyzstan
DOI: 10.5281/zenodo.10939545
Abstract
Gaming has deep historical roots among the Kyrgyz people and tribal people in the Americas. It is connected
to rituals of play and storytelling that link the peoples to their communal origins and destiny. Traditional games
played by American Indians had cultural or religious significance, and gaming was often a sacred act connected
to myth, legend, and ritual. Games were also used for entertainment and as a teaching tool (Fairebaugh,
Tippeconnic,2019, p.76).
For the Kyrgyz people, games have been played since ancient times and were a moment of truce during
warring times between tribes. There were valuable prizes for winners of the games, with the most valuable being
horses and other domestic animals. The American Indians learned about horses only after the Europeans entered
their territories in the mid-14th century. Games served as a way for American tribal people to improve their
position within their own tribe and often served to redistribute wealth among tribal members. This was widely
misunderstood by non-Indians during the early years of the country, leading to misrepresentations of American
Indians, especially males who gambled, as lazy and wasteful. This stereotype was reinforced by scholars such as
Francis Parkman and Henry Morgan, who viewed Native gambling only in European-American terms and never
attempted to understand the tribal perspective. The disparate accumulation of wealth was not encouraged by
traditional Indian societies, which stressed the notions of balance and strong interrelationships (Paul Pasquaretta,
Gambling and Survival in Native North America, Tucson: The University of Arizona Press, 2003), 119–20..
Keywords: Games, customs, traditions, tribal people.
Many writers and poets compare our lives to a
game, where each player has a role. The ability to play
and give free rein to one's imagination, without worry-
ing about immediate results, is evident in children's
amusements and adult entertainment, and it is a funda-
mental aspect of humanity. Scholars have shown that
the game is closely associated with an individual's de-
sire to explore the unknown and satisfy their curiosity,
and it encourages people and all higher animals to ex-
plore the world around us. Emphasizing a casual game
in a particular culture gives us an opportunity to assess
its main features.
The game is a phenomenon inherent in all living
nature, not just in humans. Studies show that all higher
animals use play as a way of communicating, spending
time, and learning. In humans, the game has reached the
peak of its development. Humans play throughout their
lives. It is important to highlight that even in the sim-
plest forms, the game goes beyond biological or physi-
cal activity. The game is a meaningful function with
many facets of meaning. In any scientific approach, it
is universally accepted that the game serves a necessary
and useful function. In childhood, the game is a way of
learning to communicate, developing certain skills, and
so on. In adulthood, many activities are also associated
with the gaming component. Additionally, people use
games to communicate, relax, and structure their lei-
sure time.
The game can serve as a harmless outlet for pent-
up energy and the need for variety in daily activities. It
can provide a sense of satisfaction, allowing individuals
to fulfill unrealistic desires and maintain a sense of per-
sonal stability. Many researchers seek to understand the
essence of games and why players become so en-
grossed, often losing themselves in the experience. The
intensity of gaming cannot be fully explained by bio-
logical factors alone. Yet, it is this very intensity that
captures the essence of gaming, its fundamental qual-
ity. Nature has bestowed upon us the gift of games, with
their stress, joy, humor, and amusement.
Games have been a part of human existence since
the beginning of time. They accompany us throughout
our lives, and some games have even evolved into cus-
toms and traditions. Games vary from one group of
people to another. In this article, I will explore two dis-
tinct groups: the Kyrgyz and Native Americans. De-
spite their geographical separation, they both belong to
tribal cultures.
“In recent decades Western historians and anthro-
pologists have come closer together in common en-
deavors to reexamine both Western and Third World
society and history. A welcome feature of this trend has
been the willingness of each kind of specialist to learn
from the other in studying the tribal peoples of the so
called Fourth World. In most cases a lack of documen-
tation gives anthropologist precedence, but various
tribal peoples have participated in the economics and
politics of states and empires long enough and actively
enough to have left a considerable mark in the archives,
even producing their own chronicles” (Khoury,
Kostiner 1990, p. 45)
Most of the scholars were naming tribal people as
“primitive society” outlining them as a culturally and
linguistically primitive too. But it was quite an inappro-
priate for the cultural groups as Arabs, Turks, Persians,
Berbers, Pashtuns and etc. which can hardly be termed
either tribes or primitive societies, if only on grounds
12 The scientific heritage No 134 (2024)
of scale, complexity, and lack of unity (Khoury,
Kostiner 1990, p. 53)
In this article, I am eager to explore the traditional
games of the Kyrgyz people and the games of American
Indian tribes. I have a keen interest in the language,
culture, and customs of American Indians, and I have
previously published several articles on the topics
connected with culture and languages, which have
some simiarities. Here, I am excited to delve into the
unique and traditional games of both of these cultures.
The Kyrgyz games
The paper I am presenting today focuses on the
games that are an integral part of tribal culture. While
the culture of Kyrgyz and Amerindian tribal communi-
ties has been extensively studied and discussed, the
games that are central to their way of life have not re-
ceived as much attention. All games are national values
and people try to keep the and teach their children to
play into those games.
Despite living in close proximity to other cultures,
the Kyrgyz people have maintained their unique way of
life and traditional forms of entertainment over the cen-
turies. This was evident during the 1st, 2nd, and 3rd
World Nomad Games held in Kyrgyzstan in 2014,
2016, and 2018. These games not only showcased tra-
ditional nomadic competitions but also highlighted the
cultural significance of the Kyrgyz people to the world.
One can get a glimpse of the national games by observ-
ing children playing with sheep knuckle bones or la-
crosse balls. These games are a testament to the rich
cultural heritage and unique way of life of tribal com-
munities.
The Kyrgyz people have a tradition of playing
games during big festivals, and winning a prize is
considered a great honor. The most popular games for
Kyrgyz children involve riding a horse or creating a
horse using various materials such as wood or stone.
Parents would provide their children with toys that
would help them learn skills they could use as adults.
For girls, mothers and grandmothers would make dolls
dressed in traditional Kyrgyz clothing, and the girls
would sew the clothes themselves to prepare for their
future roles as wives and mothers. Through these
games, Kyrgyz children were taught skills that would
prepare them for adulthood. Games were a significant
part of Kyrgyz social life and played a role in the
upbringing of children. Because the Kyrgyz people
were nomadic, many of the games were related to
horses and riding.
The game from the other side was a business for
adults, such as cock-fighting, which was a real and very
popular game among settled Kyrgyz tribes. It usually
took place at big markets and people would place bets.
On the other hand, games involving horses were mostly
for the youth, such as racing, and also involved big
betting during big festivals or wakes dedicated to well-
known or famous people (e.g. Kokotaidin Ashi). When
discussing Kyrgyz people, it is important to highlight
their national pride, and after customs and traditions,
Kyrgyz national games and sports come to mind. Not
long ago, these games were included in the list of
Nomadic Olympic games, such as Kok bory, Kiz
Kyymai, Odarysh, and Kyrgyz chess (Togyz kymalak
or Togyz korgool), among many others.
The most well-known game is At Chabysh, also
known as horse racing. It is an ancient game, and the
horse for this race must be prepared and trained in a
special way so that it can easily run and win the game.
The horse's age should not be less than 3 years old. The
race distance was originally 53 miles (100 km), but now
it ranges from 4-50 km. Racers should not be younger
than 13 years old.
Another type of racing is Jorgo-salysh, which is
one of the most beautiful types of racing. In this race,
the horse moves two legs together in a balanced way,
which is called "allure" in modern racing. This is a
special art of training the horse and is considered the
top art of racing.
One of the main national games of the Kyrgyz
people is the team game "Kök-boru" (The grey wolf),
where teams of 12 members play on the field from both
sides.
The territory for this game is usually chosen by
both sides together, and it is typically around 500
meters long and 250-300 meters in depth. In the middle,
there is a "tai kazan," a national Asian kettle for boiling
the meat of a young horse. The rules are similar to
modern football, and the goal is to put the body of a
goat weighing around 30-40 kilograms into the tai
kazan as a goal within a set time. The players must keep
the body of the goat with one hand and control the horse
with the other hand. The goal in this game is around 10
meters. At the beginning of the game, the team captains
fight for the body of the goat, and the team that wins
keeps the body and can start to attack the tai kazan to
score a goal.
Another fascinating game is Oodarysh, also
known as wrestling on the back of a horse, which only
the strongest players of the team could participate in.
Similar to Oodarysh is Kűresh, where the riders remove
their clothes and sit on a horse wearing only pants and
leather belts. The main objective of this game is for the
fighters to take the opponent off the horse by grabbing
their belt.
The tradition of racing to pick up a coin from the
ground, commonly seen in circuses, has its roots in
nomadic games. In Tyin Enmei, the horse and the rider
must work together as a team to pick up the coin while
racing at high speed. The winner is the one who collects
the most coins.
Kiz Kyymai is another race that includes girls,
with the girls racing ahead and the boys trying to catch
them. If a boy catches a girl, he gets to kiss her, but if
he fails, the girl gets to publicly whip him.
Among the nomadic people, the Kyrgyz people
have Kiz jarysh, a race for girls and newly married
women. The married and unmarried girls can be
distinguished by the type of hats they wear, with
unmarried girls wearing one type of hat and married
women wearing a kerchief on their heads.
Another type of Kyrgyz national sport is Jaa atmai
- archery, which involves riding on horseback. This is
a very exciting game that young men and women can
participate in. It is considered a shame if a participant
misses the target, which is a needle attached to a silver
plate.
One of the most beautiful and attractive types of
Kyrgyz national sport is Angchylik hunting with eagles
or falcons. Kyrgyz hunters still use eagles and falcons
for hunting. There are many legends about this type of
hunting, with stories of eagles easily capturing hares
and deer. Hunters spend several years training their
eagles and falcons before they are ready for real
hunting. Another important helper in this type of
The scientific heritage No 134 (2024) 13
hunting is the Kyrgyz hound, a very smart dog and a
great friend to the hunter. I have mentioned games that
are mostly connected with horses.
Tolstoy once wrote: “If we always judged from re-
ality, games would be nonsense. But if games were
nonsense, what else would there be left to do” (Cited in
Opie and Opie 1969: 338). Tolstoy, in justifying play,
suggests several dimensions that are central to the un-
derstanding of shared fantasy: reality/fantasy,
work/games, (play), and sense/nonsense. Often, fan-
tasy, play, and nonsense have been depicted as opposed
to the important activities of human life - working and
knowing the real world. These dichotomies have influ-
enced even those who profess not to accept their impli-
cations” (Alan,1983).
The American Indians and their games
Game playing is a pastime enjoyed by most peo-
ple, and Native Americans are no exception. The ori-
gins of many games were with the tribal gods, and be-
cause of this, games were played ceremonially to bring
rain, ensure good harvests, cure illness, expel evil spir-
its, or give pleasure to the gods by demonstrating phys-
ical fitness. Though games are usually played for fun
and pleasure, Native American games also played a role
in the education of children by helping them develop
skills necessary to be successful adults. In general, boys
and girls played separately, though they often might
play the same games with variations in the rules. Cer-
tain ceremonial games were forbidden to women, par-
ticularly those games which might disrupt the protec-
tive powers of hunting and warfare spirits. In addition
to games similar to boys' games, girls played "house,"
sometimes with miniature tipis or igloos. They also had
dolls made from various materials such as wood,
grasses, corn husks, animal skin, or bone. Doll play
helped girls learn the skills of childcare (Lavine, Sig-
mund,1974)
Native Americans highly honored skilled athletes
just as they honored brave warriors. Many games
played by men and boys served to train them in skills
needed for warfare and/or hunting. These games tested
a boy’s skill, dexterity, agility, strength, and stamina.
The Cherokee Indians refer to stickball games as
“the little brother of war.” Children played most of the
same games as adults. In addition, they enjoyed races,
tug-of-war, hide and seek, and blind man’s bluff types
of games. Native American games fall into two general
categories: games of chance, the outcome of which de-
pends on luck, and games of skill. Games of chance are
played with sticks, dice, or involved guessing. Skill
games require physical and/or mental abilities. In the
past, many games were played with balls made of ani-
mal skin stuffed with grass or hair, or inflated animal
bladders (Internet sources). Native American game Kit,
Bull Roarer, Buzz Toy, Ring and Pin, Running Game,
Laughing Game, Game of Silence, Bean Game Etc.
(Underwood, Thomas Bryan,1979)
Native American Game Kit
This kit includes an assortment of games of both
skill and chance, plus directions for variations of run-
ning games. There are games suitable for both indoors
and outside play, as well as a variety of group sizes.
Equipment for several players or two teams are in-
cluded in the kit. Also, there are directions for simple
and inexpensive versions of the games. These could be
made at home or as part of a classroom study. We sug-
gest that when large numbers of children are using the
kit, several stations be set up and the group divided so
everyone would be playing different games but at the
same time. By rotating groups, the children could have
an opportunity to learn and play most or all of the
games. Since a variety of games are in the kit, teachers
are encouraged to select the games that best suit their
needs.
Lacrosse. The best known of Indian games is la-
crosse. It was most common among the tribes of the At-
lantic seaboard and around the Great Lakes, but it was
also played in the South, on the plains, in California,
and in the Pacific Northwest. It was played with a ball
made either of wood or of buckskin, which was caught
with curved rackets with a net on one end. The goal was
usually marked with two poles although in some areas
only one was used. In 1860 J. G. Kohl, a white traveler
in Wisconsin, examined some lacrosse equipment. He
admired the fine carving of crosses, circles, and stars on
the white willow ball and praised lacrosse as “the finest
and grandest” sport of the Indians. Although he was un-
able to see a game, he claimed that the Indians “often
play village against village or tribe against tribe. Hun-
dreds of players assemble, and the wares and goods of-
fered as prizes often reach a value of a thousand dollars
and more.” (Underwood, Thomas Bryan,1979)
Shinny. A kind of field hockey known as shinny
was among the most popular Native American games.
Shinny, generally believed to be a precursor to ice
hockey It was usually played by women, but some-
times, especially on the plains, might also be played by
men. Among the Sauk, Foxes, and Assiniboine Indians,
men and women played the game together, and among
the Crows, teams of men played against teams of
women. Native Americans in the East, on the plains, in
the Southwest, and on the Pacific Coast played shinny.
It was played with a ball or bag, often made of buck-
skin, which was hit with sticks curved at one end. The
ball and sticks might be decorated with paint or beads.
The length of the field varied from two hundred yards
(among the Miwok Indians) to a mile or more (among
the Navajos). The object of the game was to hit the ball
through the opponent’s goal. The ball could be kicked
or hit with the stick but not touched with the hands
(https://nativeamericans.mrdonn.org/games.html )
Snow-Snake. In regions of the West cold enough
to have snow and ice in the winter, snow-snake was
played. Its rules varied even more than those of lacrosse
or shinny, but in general the game involved sliding
darts or poles along snow or ice as far as possible. The
projectile could be only a few inches long or might be
a javelin up to ten feet long. The game was usually, but
not always, played by men. Among the Crees, who
played a variant of the game in which the dart had to
pass through barriers of snow, only men played the
game. Among the Arapahos, on the other hand, snow-
snake might be played by adults or children but was
most commonly played by girls
(https://nativeamericans.mrdonn.org/games.html).
Hoop and Pole. Hoop and pole was another wide-
spread game with varying rules. In general a hoop was
rolled along the ground while men tried to knock it over
with spears or arrows. The hoop was usually relatively
small, from three inches to a foot in diameter. The hoop
might be open, but often the players stretched cords or
a net across it. The hoop itself was often of wood but
might be made of corn husks, stone, or iron. It was
sometimes decorated with paint or beads. The score
14 The scientific heritage No 134 (2024)
was determined by the way the hoop fell when hit by
the pole. The game was most frequently played by two
men although in some cases more participated.
Iditarod and Alaska Native Games
For Alaska Natives, the tradition of ancestral
games is as strong as ever. Most famous is the Iditarod
dog sled race, a highly competitive endurance sport that
promotes survival skills in a challenging Arctic envi-
ronment. Alaska Native John Baker of Kotzebue won
the 2011 Iditarod in record-breaking time. At annual
events such as Alaska Native Youth Games and the
World Eskimo-Indian Olympics, children and adults
test their strength, endurance, and agility in traditional
contests such as the high kick, in which competitors
kick balls suspended at head level or higher. As of
2011, the world record was 7’ 10” for men, and 6’ 1”
for women. Other more conventional sports, such as
basketball and cribbage, are also important to Native
communities, young and old, especially during the long
winters
(https://nativeamericans.mrdonn.org/games.html ).
Native Hawaiian Sports: At Sea and on Land
Hawai‘i is justly famous for its water sports of ca-
noeing, surfboarding, and swimming. Canoe and pad-
dling clubs attract large numbers of members of all
ages. Events range from outrigger canoe races on week-
ends to sea-going voyages in traditional double-hulled
canoes such as the Hōkūle‘a. The iconic Hawaiian sport
of surfboarding was a tradition that was nearly lost by
the turn of the 20th century. It was revived by the Na-
tive Hawaiian sportsman Duke Kahanamoku, who in
three successive Olympics also won medals in swim-
ming. Kahanamoku is revered in Hawai‘i, with his
statue prominently located on Waikīkī Beach, Hono-
lulu. (https://media.gohawaii.com/statewide/press-
room/story-ideas/modern-ways-experience-traditional-
hawaiian-sports)
The story of the American Indians is, without a
doubt, one of survival. It is estimated that in AD 1500,
100 million indigenous people lived in prosperous na-
tions within the current boundaries of the United States.
That population would nose-dive, however, to a scant
250,000 by 1900 as a result of germ warfare, military
actions, and genocidal policies. As U.S. Gen. William
T. Sherman would complain in the mid-1800s, if not for
civilian interference, his army would have gotten rid of
all American Indians.6 The poverty and other substand-
ard economic situations of most In-dian tribes in the
past are undisputed. Native Americans traditionally
have been among the poorest of the poor.7 One of the
main obstacles to economic success for these tribes has
been the location of their lands. Many tribal reserva-
tions, rancherías, pueblos, and other landholdings are
in rural or isolated locations. Remoteness was often
preferable from a cultural-preservation standpoint, but
it worked against later efforts to develop economies on
the reservations (Firebaughand, Tippeconnic Spring
2010 pp 75-86).
Access to markets is one of the most important
components of economy building, and much tribal land
is simply too isolated to attract customers. Examples of
this in Indian gaming can be seen where location is the
key factor in a gaming facility’s success (Froelich,
Schaller, and Klaczek, 2005., p19–25).
The tribal casinos that are most successful are lo-
cated close to urban markets. Location can be particu-
larly favorable to Indian casinos in the case of an eco-
nomic downturn; when airplane fares and other costs of
transportation are high, some gaming customers prefer
to drive to a relatively close Indian casino instead of to
large gaming establishments that are farther away.
In the twenty-first century, American Indian gam-
ing is big business, but it has always been around.
American Indian nations have always played games,
and this gaming was and is an important custom. Tra-
ditionally, it served to preserve culture and ceremonies,
redistribute wealth, and teach traditional values to com-
munity members and children. Skill and luck came to-
gether to level the playing field upon which all lived
their lives. Today games of skill and luck, such as the
hand games at Northwest Coast Tribal Stommash, are
huge attractions and can go on, around the clock, for
days at a time. While traditional forms of games con-
tinue throughout Indian Country, casino-type gambling
has turned into a major modern industry for Indian na-
tions. Since 1832 the U.S. Supreme Court has upheld
the right of Native American tribes to self-rule, allow-
ing them to control everything from fishing, hunting,
and mineral rights to the establishment of gaming casi-
nos. In the 1960s no states ran lotteries, and only one,
Nevada, allowed casinos. Beginning in the late 1970s,
however, a number of Indian tribes established bingo
operations in order to raise revenues to fund tribal gov-
ernments. In 1987, in California v. Cabazon Band of
Mission Indians, the U.S. Supreme Court upheld one of
the most significant turning points for tribal govern-
ments: the legal right of Native American tribes to offer
gaming on reservation lands, free of state interference.
Essentially, the band argued that its status as a sover-
eign government prevented state interference in its af-
fairs (Froelich, Schaller, and Klaczek, 2005., p34).
The publication of Steward Culin’s study, Games
of the North American Indians, changed academic atti-
tudes about the role of gaming in the social and spiritual
lives of American Indians. This comprehensive account
of gaming was a collaborative effort between Frank
Cushing, an ethnologist, and Steward Culin, curator of
the Columbian Exposition in Chicago. The study,
which took fourteen years to complete, was published
in 1907. Culin’s investigation showed widespread gam-
ing among 229 tribes in North America and Mexico.
More than thirty-six different kinds of games were used
throughout the Western Hemisphere and predated Eu-
ropeans. The games were classified as those of chance
or dexterity; games of chance used dice-like pieces,
with players guessing on the outcome of a throw, while
games of dexterity included archery, sliding, javelins or
darts, shooting a netted or stone wheel or ring, ball
games, and racing. Some tribes combined activities; for
example, the Iroquois played a combination of six prin-
cipal games divided into athletic contests and games of
chance. The study showed nearly every tribe played
several versions of games, but not all games were
played or could be gambled upon. Games were played
by adults, most restricted to one gender and occurring
at fixed times or during certain festivals and religious
rites frequently associated with spiritual beliefs and
practices. During the games, waging possessions was
not uncommon for American Indians (Culin S., 1992)
Casino growth on a national level has occurred
most significantly in Native American communities.
One of the main reasons for this is, as mentioned ear-
The scientific heritage No 134 (2024) 15
lier, that tribal communities have the ability to self-gov-
ern without the influence of state governments. As of
2006, because of their ability to self-govern, gaming
tribes operated in twenty-eight states: Alaska, Arizona,
California, Colorado, Connecticut, Florida, Idaho,
Iowa, Kansas, Louisiana, Michigan, Minnesota, Mis-
sissippi, Missouri, Montana, Nebraska, Nevada, New
Mexico, New York, North Carolina, North Dakota, Ok-
lahoma, Oregon, South Dakota, Texas, Washington,
Wisconsin, and Wyoming. Four of these states, Califor-
nia, Connecticut, Florida, and New York, experienced
major growth in tribal gaming (Froelich, Schaller, and
Klaczek, 2005., p34).
As of 2008 233 Indian tribes, including two
Alaska Native villages, operated 411 casinos, bingo
halls, and pull-tab operations spread through-out the
same 28 states listed above, creating more than 636,000
jobs: 284,000 direct Indian gaming, 102,000 indirect
Indian gaming, and 208,000 Indian gaming and govern-
ment projects.23 In addition, Indian gaming revenues,
as shown in figure 1, topped $26.7 billion. This com-
pares very favorably to revenues of $7.4 billion twelve
years earlier (National Indian Gaming Commission,
June 2009)
Tribal gaming is different from other forms of
gaming. It is conducted by Native American govern-
ments as a way to carry out their natural self-governing
rights as independent nations. As such, there are three
formal classes of gaming (Schaap2010), pp. 365-389)
Class I gaming includes social games for prizes of
minimal value and traditional forms of tribal gaming as
a part of or in connection with tribal ceremonies or cel-
ebrations (e.g., contests and games of skill). Because no
money is exchanged here, Class I gaming is regulated
solely by the tribes.
Class II gaming includes bingo, other games sim-
ilar to bingo (e.g., pull-tabs, lotto, punch boards, tip
jars, instant bingo) if conducted at the same location,
and certain non-house-banked card games allowed in a
state (i.e., poker). (Nonbanking refers to poker and
other card games in which players bet against each
other rather than against the house.) The use of techno-
logical aids in conducting such games is permitted.
Subject to certain conditions set forth in IGRA and
some oversight by the National Indian Gaming Com-
mission, Class II gaming is also regulated by tribes
Class III gaming includes all other types of gam-
ing not considered to be Class I or Class II, including
slot machines, other video and electronic games of
chance, craps, roulette, pari-mutuel wagering, and
house-banked card games like blackjack. Class III gam-
ing is governed by tribal-state compacts (Schaap2010),
pp. 365-389).
Native games as Kyrgyz so American Indian’s are
more than just games, they build body and spirit
through exercise and are played by all age groups—
children, youth, and adults. Many games have roots in
ancestral tests of strength and sport that reinforced
group cooperation and sharpened survival skills in of-
ten hostile environments. For warriors, the games
helped maintain their readiness and combat skills be-
tween times of war. Today, games are as important as
ever. The gradual shift to a more sedentary lifestyle has
highlighted the need to reawaken interest in physical
activity, especially among Native youth. Promoting
games and sports is an important part of improving the
health and well-being of Native populations (Lavine,
Sigmund,1974).
In conclusion, I would like to emphasize that this
article represents the first attempt to compare Kyrgyz
games with the games of Native American Indian tribal
people. The games of each group provide opportunities
to acquire knowledge and skills, both physical and
mental, and were essential not only for children but also
for adults.
References
1. Alan G.F., Shared Fantasy: Role Playing
Games as Social Worlds., University of Chicago Press,
1983.
2. Fairebaugh E.M.L, Tippeconnic M.J., Fox:
2019, p.76
3. Froelich, Cezar M. Schaller, Michael J. and
Klaczek Kristin A., “Investing in Tribal Gaming,”
Gaming Law Review 9, no. 1 (2005): 19–25.
4. Khoury Ph.S., Kostiner J.“Tribes and State
formation in the Middle East. University of California
Press, Berkeley, Los Angeles, Oxford 1990, p. 45
5. Lavine, Sigmund A. The Games the Indians
Played, Dodd, Mead and Company, New York, 1974.
Underwood, Thomas Bryan, The Story of the Cherokee
People, Cherokee Publications, Cherokee, NC, 1961.
National Museum of Man, Ottawa, publication “Ora-
cle” Cat. #R34-2/14-1979.
6. Luna-Firebaughand E. M, JoTippeconnic Sa
Fo Wicazo M., The Sharing Tradition Indian Gaming
in Stories and Modern Life. Review, Volume25,Num-
ber 1, Spring 2010 pp 75-86 (article) Minnesota Press.
7. National Indian Gaming Commission, June
2009, PR-113, http://www.nigc.gov/Reading-
Room/PressReleases/PressReleas-
esMain/PR113062009/tabid/918/Default.aspx
8. Pasquaretta Paul, Gambling and Survival in
Native North America, Tucson: The University of Ari-
zona Press, 2003), 119–20..
9. Schaap James I. The Growth of the Native
American Gaming Industry What Has the Past Pro-
vided, and What Does the Future Hold: Source: Amer-
ican Indian Quarterly, Vol. 34, No. 3 (Summer 2010),
pp. 365-389]:
10. Stewart Culin., Games of the North American
Indians, Volume 1 Games of Chance., November
1992., p.402., ISSN 978-0-8032-6355-0.,
16 The scientific heritage No 134 (2024)
EARTH SCIENCES
IDENTIFICATION OF GRADIENT ZONES ACCORDING TO GRAVITY PROSPECTING DATA
Isgаndаrov E.,
Associate professor,
Department of “Geophysics” Azerbaijan State Oil and Industrial University (ASOIU),
Baku, Azerbaijan
Abbasov K.,
Master student,
Department of "Geophysics" Azerbaijan State Oil and Industrial University (ASOIU),
Baku, Azerbaijan
Isgandarova L.
Senior student,
Department of “Computer engineering” Azerbaijan State Oil and Industrial University (ASOIU),
Baku, Azerbaijan
DOI: 10.5281/zenodo.10939551
Abstract
As is known, new digital instruments have now been developed for more reliable measurements of the grav-
imetric field, which also provides a more accurate division of the gravitational field into local maxima and minima.
There are various methods for transforming and filtering gravimagnetic anomalies, which differ from each other
in the sensitivity of field separation. The most sensitive of them are the gradient methods and the methods of higher
derivatives, which make it possible to identify small variations in gravitational and magnetic anomalies and line-
arly elongated gradient zones. These anomalies may be associated with zones of faults and disturbances, as well
as the accumulation of hydrocarbons and the presence of ore deposits. At the Department of Geophysics of ASOIU,
algorithms and programs for identifying such anomalies on a computer have been developed. The article analyzes
some results on identifying such zones on model profile and area materials.
Keywords: anomaly, gradient zones, field transformation, transformation palette, derivative method, local
anomaly, observed field, algorithm.
Introduction
The observed gravimagnetic field is usually com-
plex, as it consists of local and regional field compo-
nents that correspond to local and regional geological
structures. Local structures are geological objects of
small size and located at shallow depths in sedimentary
strata. Regional objects make up the deep structure of
the earth's crust.
There are various methods for transforming and
filtering gravimagnetic fields, such as a graphical
method for identifying anomalies along a profile, a
method of averaging over an area or over a profile, the
Sachsov-Nygaard gradient method, and the method of
higher derivatives. methods of analytical continuation
of fields, etc. [9-10]. The initial data are the results of
observations of gravitational and magnetic fields along
a profile or area.
The method of gradients and higher derivative
ones, as well as corresponding filtering methods, are
the most sensitive methods and are capable of identify-
ing gradient zones and areas of change in the potential
field. At the Department of Geophysics of ASOIU, al-
gorithms and programs for identifying such anomalies
on a computer have been developed [2]. Gradient and
higher arbitrary methods are very popular nowadays
and are used to solve a wide range of geological prob-
lems [1,4-8].
Methods for processing the initial gravitational
field
The Sachsov-Nygaard area gradient method uses
a palette with two radii - internal and external (Fig. 1).
The gravity field gradient is calculated using the for-
mula [10]:
Fig.1. Transformation palette with two radii
The scientific heritage No 134 (2024) 17
∆ggrad =
g(𝑅1)−g(𝑅2)
𝑅2−𝑅1
(1)
Here R1 and R2 are the internal and external aver-
aging radii; g(𝑅1) and g(𝑅2) are the average values
of the gravity field at the corresponding averaging radii.
The radius of the circles depends on the task at
hand. The larger the radius, the greater the depth of ex-
ploration. The average values of the gravity field at the
corresponding averaging radii are calculated as fol-
lows:
g(𝑅) =
∑ g𝑖
𝑛
𝑖
𝑛
(2)
Here n is the number of points on the palette;  i
g
- the value of gravity at points around the palette.
Currently, this transformation method is carried
out on a computer. In this case, to enter field values into
a computer, the original field is first quantized by inter-
polation at the nodes of a square grid (Fig. 2), and then
digitally entered into the computer.
Fig.2. Field quantization nodes
Among the methods of higher derivatives, the method of third derivatives of gravity, the Elkins method, has
become widespread. This method uses multiple radii. The third derivative of gravity potential is calculated using
the following formula [9]:
Wzz𝑧 =
∂2g
∂z2 =
1
64R2 [44g(0) + 16g
̅(R) − 12g
̅(𝑅√2) − 48g
̅(𝑅√5)], (3)
where g(0) is the value of the gravity anomaly in
the center of a circle of radius R;
g
̅(R) , g
̅(𝑅√2), g
̅(𝑅√5) are averaged values of gravity
anomalies along the circles R, R√2, R√5.
As you can see, a circular palette with three circles
with different radii is used here.
The Department of Geophysics developed the
Forse–Fortran programs SAXOV and WZZZ, which
were used to process the gravitational field model [4-
8]. The processing also used various filtering of the
gravitational field model using gradient methods of
various directions using the SURFER program.
Results of processing gravitational field
models.
To work with the SAXOV, WZZZ and SURFER
programs, a model of the gravitational field of the
Byandovan area of the Lower Kura depression was
used (Fig. 1)
Fig.1. Model of the gravitational field of the Byandovan area
18 The scientific heritage No 134 (2024)
As can be seen here, an areal gravimetric survey
was carried out along 15 profiles and, based on them,
an initial gravity map with a cross section of 0.5 mGal
was constructed [3]. The field is characterized by
negative isoanomaly values. In the northern part of the
area, a large gravity minimum with an amplitude of 9
mGal, oriented in the north and northwest direction, is
clearly visible. Gravity values decrease from -1 mGal
to -10 mGal in a northerly direction. In general, the
field is complicated by numerous local anomalies and
gradients.
For subsequent conversion, the original map was
digitized in the “Digit” mode of the SURFER graphic
program, and then a grid was created, on the basis of
which maps of the original gravitational field model
were built in 2D and 3D versions in a modern interface
(Fig. 2-3).
To identify gradient zones and sections, at the
beginning, the gravitational field of the Byandovan area
was filtered in 2D and 3D versions using the SURFER
program in the “Gradient directional filter, South
(3x3)” mode, on the basis of which the corresponding
map was built in 2D and 3D versions (Fig. 4-5). As you
can see, the map clearly shows positive gradient areas
with different intensities (1.3-0.8 )x10-6
мГал/см
mGal/cm, oriented in the northeast and east directions,
as well as an intense minimum of negative values of
gravity gradients (0.4 -0.6 ) x10-6
mGal/cm) in the
northern part of the area is oval in shape and somewhat
elongated in the eastern direction. The same picture
(Fig. 6-7) is observed on the constructed map of the first
derivative of the gravitational field of the area in 2D
and 3D versions (Order 1 derivative filter, Roberts Row
director (3x3)).
Next, the gravity field of the study area was
quantized in a uniform square grid of (1x1) cm in size
on a map scale to prepare the initial data for the
developed programs at the Department of Geophysics.
Below are the results of processing using the WSZ
program for calculating the total horizontal gravity
gradient (Fig. 8-10). As can be seen on the map of total
gradients, there are two maxima of the total gradient in
the northeastern part of the study area, oriented in the
eastern and northern directions with a maximum
intensity of the order of 1.45 x10-6
mGal/cm.
On the map of the second derivatives of gravity
obtained using the WZZZ program in the northeastern
part, an intense minimum of the second negative
derivatives of gravity is clearly visible, and in the rest
of the area there are three large maxima with an
intensity of (35-25)x10-11
mGal/cm2 of various
orientations ( Fig.11-13). And finally, the following
shows the results of the transformation of the gravity
field of the study area using the SAXOV program,
which allows you to calculate residual anomalies using
the Saxow-Nygaard method (Fig. 14-16). As you can
see, this map reflects the same picture as the WZZZ
map, but in less detail.
Fig.2. Map of the gravitational field of Byandovan Square in 2D version (in mGal isolines)
The scientific heritage No 134 (2024) 19
Fig.3. Map of the gravitational field of Byandovan Square in 3D version (in mGal isolines)
Fig.4. Map of the gravitational field gradient of the Byandovan area in 2D version in isolines 10 -6
mGal/cm
(Gradient directional filter, South (3x3))
Fig.5. Map of the gravitational field gradient of the Byandovan area in 3D version in isolines 10-6
mGal/cm
(Gradient directional filter, South (3x3))
20 The scientific heritage No 134 (2024)
Fig.6. Map of the first derivative of the gravitational field of the Byandovan area in 2D version in isolines 10-6
mGal/cm (Order 1 derivative filter, Roberts Row director (3x3))
Fig.7. Map of the first derivative of the gravitational field of the Byandovan area in 3D version in isolines 10-6
mGal/cm (Order 1 derivative filter, Roberts Row director (3x3))
Fig.8. Values of the total gradients of the gravitational field of the Byandovan area in units of measurement 10 -5
mGal/cm (Force-Fortran programm WSZ)
0.3 0.3 0.3 0.3 1.2 0.8 0.6 1 0.7
0.5 0.3 0.3 0.3 0.5 1.4 1.2 0.6 1.2
0.6 0.5 0.5 0.4 0.3 0.3 0.8 0.8 1.4
0.6 0.7 0.6 0.6 0.6 0.6 0.5 0.9 1.4
0.6 0.5 0.6 0.6 0.6 0.8 0.8 0.8 0.8
0.5 0.5 0.6 0.8 0.9 0.8 0.8 0.5 0.4
0.5 0.9 1 1 0.9 0.9 0.8 0.6 0.5
0.6 0.8 0.8 0.7 0.7 0.8 0.8 1 0.7
0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8
0.7 0.6 0.7 0.8 0.9 0.8 0.9 0.9 0.8
The scientific heritage No 134 (2024) 21
Fig.9. Map of full gradients of the gravitational field of the Byandovan area in 2D version in isolines 10-6
mGal/cm (Force-Fortran programm WSZ)
Fig.10. Map of gravitational field gradients of the Byandovan area in 3D version in isolines 10-6
mGal/cm
(Force-Fortran programm Saxsow)
Fig. 11. Values of gradients of the gravitational field of the Byandovan area in units of measurement 10-11
mGal/cm2
(Force-Fortran programm WZZZ)
22 The scientific heritage No 134 (2024)
Fig. 12. Map of the second derivatives of the gravitational field of the Byandovan area in 2D version in isolines
10-11
mGal/cm2
(Force-Fortran programm WZZZ)
Fig. 13. Map of the second derivative of the gravitational field of the Byandovan area in 3D version in isolines
10-11
mGal/cm2
(Force-Fortran programm WZZZ)
Fig. 14. Values of gradients of the gravitational field of the Byandovan area in units of measurement 10-6
mGal/cm (Force-Fortran programm SAXOW)
0 0 0 0 -2.7 -1.5 -6.3 -7.7
0.3 0.1 1 0.1 -0.1 -3.1 -5.6 -6.2
0.5 0.3 0 1.2 0.5 -1.6 -6 -4.9
1 0.5 -0.5 -1 -0.8 -1 -4.1 -4.9
1.4 0.1 -0.5 -1.1 -1.1 -0.5 -2.7 -3.7
-0.1 0.1 -1 -0.7 -0.5 -0.8 -2.5 -4
0.3 0.3 0.3 -0.1 0.3 0.3 -2.2 -3.3
0.5 1.5 1.1 1.5 1.1 0.3 -1 -2.6
0.7 1.2 1.1 1.2 0.3 -0.1 -1 -2.2
The scientific heritage No 134 (2024) 23
Fig. 15. Sachsow-Nygard gradient map of the gravitational field of the Byandovan area in 2D version in isolines
10-6
mGal/cm (Force-Fortran programm SAXOW)
Fig. 16. Sachsow -Nygard gradient map of the gravitational field of the Byandovan area in 3D version in
isolines 10-6
mGal/cm (Force-Fortran programm SAXOW)
Conclusions:
1. Gradient methods and higher derivative meth-
ods make it possible to identify small variations in grav-
ity anomalies and linearly elongated gradient zones that
may be associated with mineral accumulations.
2. Algorithms for calculating gravity gradients us-
ing the Sachsov-Nygard and third vertical derivatives
methods are analyzed. gravity. The initial data of the
study area have been prepared for working with the
Forse-Fortran programs SAXOV, WZZZ and WSZ us-
ing the Saxov-Nygaard method, third vertical deriva-
tives. gravity and full gravity gradient, developed at the
Department of Geophysics of ASOIU,
3. Using the example of the gravitational field
model of the Byandovan area, the original field was fil-
tered using the gradient method and the first derivative
of the gravitational field of the Byandovan area in 2D
and 3D versions (Order 1 derivative filter, Roberts Row
director (3x3) and Order 1 derivative filter, Roberts
Row director (3x3 )) using the SURFER program.
4. Based on the filtering results, gradient maps of
the gravitational field model of the Byandovan area
were constructed and analyzed in 2D and 3D versions.
Positive gradient areas with different intensities (1.3-
0.8 )x10-6
mGal/cm, oriented in the northeastern and
eastern directions, as well as an intense minimum of
negative values of gravity gradients (0.4 -0.6 )x10-6
mGal/cm) in the northern part of the square is oval in
shape and somewhat elongated in the eastern direction.
5. The values of gravity gradients were calculated
using the Sachsov-Nygard method, third vertical deriv-
atives gravity potensial and the full gravity gradient us-
ing the SAXOV, WZZZ and WSZ programs and the
corresponding grids of the resulting transformans were
prepared for constructing the corresponding maps using
the Surfer gravity program.
6. Maps of third vertical derivatives, total gradient
and residual gravity anomalies (gradients) of the gravi-
tational field model of the Byandovan area in 2D and
3D versions were constructed and analyzed. On the
maps of total gradients and gradients of residual anom-
alies (Saksova-Nygard), two maximum gradients are
noted in the northeastern part of the study area, with an
intensity of about 1.45 x10-6
mGal/cm. On the WZZZ
map in the northeastern part, an intense minimum of the
second negative derivatives of gravity is clearly visible,
and in the rest of the area there are three large maxima
24 The scientific heritage No 134 (2024)
with an intensity of (35-25)x10-11
mGal/cm2
of various
orientations.
References
1. Al-Banna A.S., Al-Kaisy S.A. Using of Gradi-
ent Techniques for Depth Estimation of Gravity Source
Tikrit Journal of Pure Science Vol. 11 No.(1) 2006, p.8.
2. Jafarov Kh.D., Tsimelzon I.O., Amiraslanov
T.S. and others. Methodological guidelines for per-
forming laboratory work on gravimagnetic prospecting
and electrical prospecting on a computer. Baku, Az-
INEFTEKHIM, 1981, 28 p. (in Russian).
3. Gadyrov V.G. Application of gravi-magnetic
exploration in the search of oil-gas structures in the
Kura basin of Azerbaijan. Baku: "Law" publishing
house - 2010, 224 p.,12 (in Azerbaijani).
4. Isgandarov Elkhan. Transformation of grave-
magnetic anomalies. Proceedings of the International
PARCECO scientific conference organized by the
Azerbaijan-French University (UFAZ), operating un-
der the Azerbaijan State Oil and Industry University,
November 30 - December 1, Baku, 2021, p.13.
5. İsgandarov E.H. Digital processing of
gravimagnetic data. Proceedings of Azerbaijan interna-
tional geophysics conference. Management of Geo-
physics, Baku, 2017, 1p.
6. Iskandarov E. H., You Yunlong You Liguo.
Transformation of gravitational anomalies by methods
derivatives and gradients. Danish Scientific Jornal, №
21,2019, pp.13-16.
7. İsgаndаrov E.H. Digital modeling of gravity
gradients for solving structural problems and direct hy-
drocarbons search. XII Azerbaijan International Geo-
physics Conference "The role of geophysical research
in the exploitation of hydrocarbon resources in the cas-
pian region and similar geological provinces" Dedi-
cated to the 100th Anniversary of the birth of National
Leader Heydar Aliyev, April 26-28, 2023, p.2.
8. İsgаndаrov E.H., Isgandarova L.E. Application
of computer technology to solve the problem of gra-
vimetry. Journal of science. Lyon №48, 2023, pp.6-11.
9. Mudretsova E. A., Veselova K. E. Gravity ex-
ploration, Handbook - geophysics, 2-nd edition, revised
and additional, M. Nedra, 1990, p.608. (in Russian).
10. Znamensky V.V. General course of field geo-
physics, Textbook. manual for universities, M. Nedra,
1989, 520 pp. (in Russian)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)
The scientific heritage No 134 (134) (2024)

More Related Content

Similar to The scientific heritage No 134 (134) (2024)

The scientific heritage No 97 (97) (2022)
The scientific heritage No 97 (97) (2022)The scientific heritage No 97 (97) (2022)
The scientific heritage No 97 (97) (2022)The scientific heritage
 
The scientific heritage No 80 (80) (2021) Vol 2
The scientific heritage No 80 (80) (2021) Vol 2The scientific heritage No 80 (80) (2021) Vol 2
The scientific heritage No 80 (80) (2021) Vol 2The scientific heritage
 
The scientific heritage No 65 (65) (2021) Vol 3
The scientific heritage No 65 (65) (2021) Vol 3The scientific heritage No 65 (65) (2021) Vol 3
The scientific heritage No 65 (65) (2021) Vol 3The scientific heritage
 
Sciences of Europe No 97 (2022)
Sciences of Europe No 97 (2022)Sciences of Europe No 97 (2022)
Sciences of Europe No 97 (2022)Sciences of Europe
 
The scientific heritage No 116 (116) (2023)
The scientific heritage No 116 (116) (2023)The scientific heritage No 116 (116) (2023)
The scientific heritage No 116 (116) (2023)The scientific heritage
 
The scientific heritage No 85 (85) (2022) Vol 1
The scientific heritage No 85 (85) (2022) Vol 1The scientific heritage No 85 (85) (2022) Vol 1
The scientific heritage No 85 (85) (2022) Vol 1The scientific heritage
 
The scientific heritage No 89 (89) (2022
The scientific heritage No 89 (89) (2022The scientific heritage No 89 (89) (2022
The scientific heritage No 89 (89) (2022The scientific heritage
 
The scientific heritage No 131 (131) (2024)
The scientific heritage No 131 (131) (2024)The scientific heritage No 131 (131) (2024)
The scientific heritage No 131 (131) (2024)The scientific heritage
 
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)Sciences of Europe
 
The scientific heritage No 81 (81) (2021) Vol 1
The scientific heritage No 81 (81) (2021) Vol 1The scientific heritage No 81 (81) (2021) Vol 1
The scientific heritage No 81 (81) (2021) Vol 1The scientific heritage
 

Similar to The scientific heritage No 134 (134) (2024) (20)

VOL 1, No 38 (38) (2019)
VOL 1, No 38 (38) (2019)VOL 1, No 38 (38) (2019)
VOL 1, No 38 (38) (2019)
 
Vol 1-№-41-41-2019
Vol 1-№-41-41-2019Vol 1-№-41-41-2019
Vol 1-№-41-41-2019
 
The scientific heritage No 97 (97) (2022)
The scientific heritage No 97 (97) (2022)The scientific heritage No 97 (97) (2022)
The scientific heritage No 97 (97) (2022)
 
The scientific heritage No 80 (80) (2021) Vol 2
The scientific heritage No 80 (80) (2021) Vol 2The scientific heritage No 80 (80) (2021) Vol 2
The scientific heritage No 80 (80) (2021) Vol 2
 
VOL 1, No 52 (52) (2020)
VOL 1, No 52 (52) (2020)VOL 1, No 52 (52) (2020)
VOL 1, No 52 (52) (2020)
 
VOL-2-No-45-45-2020
VOL-2-No-45-45-2020VOL-2-No-45-45-2020
VOL-2-No-45-45-2020
 
The scientific heritage No 65 (65) (2021) Vol 3
The scientific heritage No 65 (65) (2021) Vol 3The scientific heritage No 65 (65) (2021) Vol 3
The scientific heritage No 65 (65) (2021) Vol 3
 
VOL-2-No-50-50-2020
VOL-2-No-50-50-2020VOL-2-No-50-50-2020
VOL-2-No-50-50-2020
 
Sciences of Europe No 97 (2022)
Sciences of Europe No 97 (2022)Sciences of Europe No 97 (2022)
Sciences of Europe No 97 (2022)
 
Vol 2-№-34-34-2019
Vol 2-№-34-34-2019Vol 2-№-34-34-2019
Vol 2-№-34-34-2019
 
VOL 2, No 52 (52) (2020)
VOL 2, No 52 (52) (2020)VOL 2, No 52 (52) (2020)
VOL 2, No 52 (52) (2020)
 
The scientific heritage No 116 (116) (2023)
The scientific heritage No 116 (116) (2023)The scientific heritage No 116 (116) (2023)
The scientific heritage No 116 (116) (2023)
 
The scientific heritage No 85 (85) (2022) Vol 1
The scientific heritage No 85 (85) (2022) Vol 1The scientific heritage No 85 (85) (2022) Vol 1
The scientific heritage No 85 (85) (2022) Vol 1
 
The scientific heritage No 89 (89) (2022
The scientific heritage No 89 (89) (2022The scientific heritage No 89 (89) (2022
The scientific heritage No 89 (89) (2022
 
The scientific heritage No 131 (131) (2024)
The scientific heritage No 131 (131) (2024)The scientific heritage No 131 (131) (2024)
The scientific heritage No 131 (131) (2024)
 
VOL 1, No 4 (4) (2016)
VOL 1, No 4 (4) (2016)VOL 1, No 4 (4) (2016)
VOL 1, No 4 (4) (2016)
 
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
 
VOL 2, No 54 (54) (2020)
VOL 2, No 54 (54) (2020)VOL 2, No 54 (54) (2020)
VOL 2, No 54 (54) (2020)
 
The scientific heritage No 81 (81) (2021) Vol 1
The scientific heritage No 81 (81) (2021) Vol 1The scientific heritage No 81 (81) (2021) Vol 1
The scientific heritage No 81 (81) (2021) Vol 1
 
Vol 2-no-44-44-2020
Vol 2-no-44-44-2020Vol 2-no-44-44-2020
Vol 2-no-44-44-2020
 

More from The scientific heritage

The scientific heritage No 135 (135) (2024)
The scientific heritage No 135 (135) (2024)The scientific heritage No 135 (135) (2024)
The scientific heritage No 135 (135) (2024)The scientific heritage
 
The scientific heritage No 133 (133) (2024)
The scientific heritage No 133 (133) (2024)The scientific heritage No 133 (133) (2024)
The scientific heritage No 133 (133) (2024)The scientific heritage
 
The scientific heritage No 132 (132) (2024)
The scientific heritage No 132 (132) (2024)The scientific heritage No 132 (132) (2024)
The scientific heritage No 132 (132) (2024)The scientific heritage
 
The scientific heritage No 130 (130) (2024)
The scientific heritage No 130 (130) (2024)The scientific heritage No 130 (130) (2024)
The scientific heritage No 130 (130) (2024)The scientific heritage
 
The scientific heritage No 129 (129) (2024)
The scientific heritage No 129 (129) (2024)The scientific heritage No 129 (129) (2024)
The scientific heritage No 129 (129) (2024)The scientific heritage
 
The scientific heritage No 128 (128) (2023)
The scientific heritage No 128 (128) (2023)The scientific heritage No 128 (128) (2023)
The scientific heritage No 128 (128) (2023)The scientific heritage
 
The scientific heritage No 127 (127) (2023)
The scientific heritage No 127 (127) (2023)The scientific heritage No 127 (127) (2023)
The scientific heritage No 127 (127) (2023)The scientific heritage
 
The scientific heritage No 126 (126) (2023)
The scientific heritage No 126 (126) (2023)The scientific heritage No 126 (126) (2023)
The scientific heritage No 126 (126) (2023)The scientific heritage
 
The scientific heritage No 125 (125) (2023)
The scientific heritage No 125 (125) (2023)The scientific heritage No 125 (125) (2023)
The scientific heritage No 125 (125) (2023)The scientific heritage
 
The scientific heritage No 124 (124) (2023)
The scientific heritage No 124 (124) (2023)The scientific heritage No 124 (124) (2023)
The scientific heritage No 124 (124) (2023)The scientific heritage
 
The scientific heritage No 123 (123) (2023)
The scientific heritage No 123 (123) (2023)The scientific heritage No 123 (123) (2023)
The scientific heritage No 123 (123) (2023)The scientific heritage
 
The scientific heritage No 122 (122) (2023)
The scientific heritage No 122 (122) (2023)The scientific heritage No 122 (122) (2023)
The scientific heritage No 122 (122) (2023)The scientific heritage
 
The scientific heritage No 121 (121) (2023)
The scientific heritage No 121 (121) (2023)The scientific heritage No 121 (121) (2023)
The scientific heritage No 121 (121) (2023)The scientific heritage
 
The scientific heritage No 120 (120) (2023)
The scientific heritage No 120 (120) (2023)The scientific heritage No 120 (120) (2023)
The scientific heritage No 120 (120) (2023)The scientific heritage
 
The scientific heritage No 119 (119) (2023)
The scientific heritage No 119 (119) (2023)The scientific heritage No 119 (119) (2023)
The scientific heritage No 119 (119) (2023)The scientific heritage
 
The scientific heritage No 118 (118) (2023)
The scientific heritage No 118 (118) (2023)The scientific heritage No 118 (118) (2023)
The scientific heritage No 118 (118) (2023)The scientific heritage
 
The scientific heritage No 117 (117) (2023)
The scientific heritage No 117 (117) (2023)The scientific heritage No 117 (117) (2023)
The scientific heritage No 117 (117) (2023)The scientific heritage
 
The scientific heritage No 115 (115) (2023)
The scientific heritage No 115 (115) (2023)The scientific heritage No 115 (115) (2023)
The scientific heritage No 115 (115) (2023)The scientific heritage
 
The scientific heritage No 114 (114) (2023)
The scientific heritage No 114 (114) (2023)The scientific heritage No 114 (114) (2023)
The scientific heritage No 114 (114) (2023)The scientific heritage
 
The scientific heritage No 113 (113) (2023)
The scientific heritage No 113 (113) (2023)The scientific heritage No 113 (113) (2023)
The scientific heritage No 113 (113) (2023)The scientific heritage
 

More from The scientific heritage (20)

The scientific heritage No 135 (135) (2024)
The scientific heritage No 135 (135) (2024)The scientific heritage No 135 (135) (2024)
The scientific heritage No 135 (135) (2024)
 
The scientific heritage No 133 (133) (2024)
The scientific heritage No 133 (133) (2024)The scientific heritage No 133 (133) (2024)
The scientific heritage No 133 (133) (2024)
 
The scientific heritage No 132 (132) (2024)
The scientific heritage No 132 (132) (2024)The scientific heritage No 132 (132) (2024)
The scientific heritage No 132 (132) (2024)
 
The scientific heritage No 130 (130) (2024)
The scientific heritage No 130 (130) (2024)The scientific heritage No 130 (130) (2024)
The scientific heritage No 130 (130) (2024)
 
The scientific heritage No 129 (129) (2024)
The scientific heritage No 129 (129) (2024)The scientific heritage No 129 (129) (2024)
The scientific heritage No 129 (129) (2024)
 
The scientific heritage No 128 (128) (2023)
The scientific heritage No 128 (128) (2023)The scientific heritage No 128 (128) (2023)
The scientific heritage No 128 (128) (2023)
 
The scientific heritage No 127 (127) (2023)
The scientific heritage No 127 (127) (2023)The scientific heritage No 127 (127) (2023)
The scientific heritage No 127 (127) (2023)
 
The scientific heritage No 126 (126) (2023)
The scientific heritage No 126 (126) (2023)The scientific heritage No 126 (126) (2023)
The scientific heritage No 126 (126) (2023)
 
The scientific heritage No 125 (125) (2023)
The scientific heritage No 125 (125) (2023)The scientific heritage No 125 (125) (2023)
The scientific heritage No 125 (125) (2023)
 
The scientific heritage No 124 (124) (2023)
The scientific heritage No 124 (124) (2023)The scientific heritage No 124 (124) (2023)
The scientific heritage No 124 (124) (2023)
 
The scientific heritage No 123 (123) (2023)
The scientific heritage No 123 (123) (2023)The scientific heritage No 123 (123) (2023)
The scientific heritage No 123 (123) (2023)
 
The scientific heritage No 122 (122) (2023)
The scientific heritage No 122 (122) (2023)The scientific heritage No 122 (122) (2023)
The scientific heritage No 122 (122) (2023)
 
The scientific heritage No 121 (121) (2023)
The scientific heritage No 121 (121) (2023)The scientific heritage No 121 (121) (2023)
The scientific heritage No 121 (121) (2023)
 
The scientific heritage No 120 (120) (2023)
The scientific heritage No 120 (120) (2023)The scientific heritage No 120 (120) (2023)
The scientific heritage No 120 (120) (2023)
 
The scientific heritage No 119 (119) (2023)
The scientific heritage No 119 (119) (2023)The scientific heritage No 119 (119) (2023)
The scientific heritage No 119 (119) (2023)
 
The scientific heritage No 118 (118) (2023)
The scientific heritage No 118 (118) (2023)The scientific heritage No 118 (118) (2023)
The scientific heritage No 118 (118) (2023)
 
The scientific heritage No 117 (117) (2023)
The scientific heritage No 117 (117) (2023)The scientific heritage No 117 (117) (2023)
The scientific heritage No 117 (117) (2023)
 
The scientific heritage No 115 (115) (2023)
The scientific heritage No 115 (115) (2023)The scientific heritage No 115 (115) (2023)
The scientific heritage No 115 (115) (2023)
 
The scientific heritage No 114 (114) (2023)
The scientific heritage No 114 (114) (2023)The scientific heritage No 114 (114) (2023)
The scientific heritage No 114 (114) (2023)
 
The scientific heritage No 113 (113) (2023)
The scientific heritage No 113 (113) (2023)The scientific heritage No 113 (113) (2023)
The scientific heritage No 113 (113) (2023)
 

The scientific heritage No 134 (134) (2024)

  • 1. No 134 (134) (2024) The scientific heritage (Budapest, Hungary) The journal is registered and published in Hungary. The journal publishes scientific studies, reports and reports about achievements in different scientific fields. Journal is published in English, Hungarian, Polish, Russian, Ukrainian, German and French. Articles are accepted each month. Frequency: 24 issues per year. Format - A4 ISSN 9215 — 0365 All articles are reviewed Free access to the electronic version of journal Edition of journal does not carry responsibility for the materials published in a journal. Sending the article to the editorial the author confirms it’s uniqueness and takes full responsibility for possible consequences for breaking copyright laws Chief editor: Biro Krisztian Managing editor: Khavash Bernat • Singula Aleksandra - Professor, Department of Organization and Management at the University of Zagreb (Zagreb, Croatia) • Bogdanov Dmitrij - Ph.D., candidate of pedagogical sciences, managing the laboratory (Kiev, Ukraine) • Chukurov Valeriy - Doctor of Biological Sciences, Head of the Department of Biochemistry of the Faculty of Physics, Mathematics and Natural Sciences (Minsk, Republic of Belarus) • Torok Dezso - Doctor of Chemistry, professor, Head of the Department of Organic Chemistry (Budapest, Hungary) • Filipiak Pawel - doctor of political sciences, pro-rector on a management by a property complex and to the public relations (Gdansk, Poland) • Flater Karl - Doctor of legal sciences, managing the department of theory and history of the state and legal (Koln, Germany) • Bence Orban - Doctor of sociological sciences, professor of department of philosophy of religion and reli- gious studies (Miskolc, Hungary) • Feld Ella - Doctor of historical sciences, managing the department of historical informatics, scientific leader of Center of economic history historical faculty (Dresden, Germany) • Owczarek Zbigniew - Doctor of philological sciences (Warsaw, Poland) • Gál Jenő - MD, assistant professor of history of medicine and the social sciences and humanities (Budapest, Hungary) • Borbély Kinga - Ph.D, Professor, Department of Philosophy and History (Kosice, Slovakia) • Eberhardt Mona - Doctor of Psychology, Professor, Chair of General Psychology and Pedagogy (Munich, Germany) • Kramarchuk Vyacheslav - Doctor of Pharmacy, Department of Clinical Pharmacy and Clinical Pharmacol- ogy (Vinnytsia, Ukraine) «The scientific heritage» Editorial board address: Budapest, Kossuth Lajos utca 84,1204 E-mail: public@tsh-journal.com Web: www.tsh-journal.com
  • 2. CONTENT AGRICULTURAL SCIENCES Ten Ye., Oshergina I. BREEDING OF LENTILS OF THE SCIENTIFIC AND PRODUCTION CENTER GRAIN FARM NAMED AFTER A.I. BARAEV .................................................................3 BIOLOGICAL SCIENCES Aliyev E., Safarova E., Najafova J., Zeynalov Yu. STUDY OF VEGANT COVER OF THE TERRITORY GABALIN DISTRICT (AZERBAIJAN) ...............................8 CULTUROLOGY Mambaeva S. NATIONAL GAMES AMONG KYRGYZ AND AMERICAN TRIBAL PEOPLE..........................................................11 EARTH SCIENCES Isgаndаrov E., Abbasov K., Isgandarova L. IDENTIFICATION OF GRADIENT ZONES ACCORDING TO GRAVITY PROSPECTING DATA .............................16 ECONOMIC SCIENCES Urinov B. FINANCE VS. CORPORATE FINANCE ..........................25 MEDICAL SCIENCES Boboc D., Cojocaru M., Roșoiu N. THE RELATIONSHIP BETWEEN THE INTESTINAL MICROBIOME AND THE KETOGENIC DIET IN PEOPLE WITH AUTISTIC SPECTRUM DISORDERS....................30 Pankov I., Belyakov V., Sirazitdinov S., Emelin A. MODERN METHODS OF SURGICAL TREATMENT OF SEVERE COMPRESSION FRACTURES OF THE TIBIAL CONDYLES .................................................................33 Pankov I., Belyakov V., Sirazitdinov S., Emelin A. MODERN PRINCIPLES OF REHABILITATION THERAPY FOR PATIENTS WITH THE CONSEQUENCES OF INTRAARTICULAR FRACTURES OF THE KNEE JOINT ..39 Ostapchuk V., Zymagopova N., Ostapchuk M., Bizhuk M., Tanasescu D. RISK FACTORS OF BILIRUBIN CLUSTER AND GALLSTONE DISEASE IN CHILDREN (LITERATURE REVIEW AND CASE FROM PRACTICE)........................44 PEDAGOGICAL SCIENCES Ruzieva Ch., Kudaibergeneva K. INFLUENCE OF NEUROPSYCHOLOGICAL GAMES ON THE ATTENTION OF SENIOR PRESCHOOL CHILDREN 47 PHILOLOGICAL SCIENCES Tadevosyan R., Bejanyan K. LERMONTOV’S POEM «A STAR» («AND THERE AFAR») TRANSLATED INTO ENGLISH AND ARMENIAN ..........52
  • 3. The scientific heritage No 134 (2024) 3 AGRICULTURAL SCIENCES СЕЛЕКЦИЯ ЧЕЧЕВИЦЫ НАУЧНО ПРОИЗВОДСТВЕННОГО ЦЕНТРА ЗЕРНОВОГО ХОЗЯЙСТВА ИМ. А.И. БАРАЕВА Тен Е.А. магистр агрономии, аспирант, заведующий лабораторией селекции зернобобовых и масличных куль- тур, ТОО «Научно производственный цент зернового хозяйства им. А.И. Бараева» Ошергина И.П. магистр агрономии, аспирант, заведующий отделом селекции зернобобовых, зернофуражных, масличных и крупяных культур, ТОО «Научно производственный цент зернового хозяйства им. А.И. Бараева» BREEDING OF LENTILS OF THE SCIENTIFIC AND PRODUCTION CENTER GRAIN FARM NAMED AFTER A.I. BARAEV Ten Ye., Master of Agronomy, postgraduate student, Head of the laboratory of selection of legumes and oilseeds, LLP "Scientific and Production Center of grain farming named after A.I. Baraev" Oshergina I. Master of Agronomy, postgraduate student, Head of the Department of selection of legumes, grain fodder, oilseeds and cereals, LLP "Scientific and Production Center of grain farming named after A.I. Baraev" DOI: 10.5281/zenodo.10939532 Аннотация Для расширения посевных площадей чечевицы в Республике Казахстан и за ее пределами необходимо создание новых продуктивных, пластичных, с высокими качественными показателями зерна сортов и ве- дение их первичного семеноводства. В Научно производственном центре зернового хозяйства им. А.И. Бараева, в лаборатории селекции зернобобовых и масличных культур с привлечением разнообразного ге- нетического исходного материала созданы ряд перспективных сортов чечевицы. В период с 2000 по 2022 гг. в центре созданы сорта чечевицы – Шырайлы, Сакура (крупносеменные сорта) и мелкосеменной сорт Крапинка. Abstract To expand the acreage of lentils in the Republic of Kazakhstan and beyond, it is necessary to create new productive, plastic, high-quality grain varieties and conduct their primary seed production. A number of promising varieties of lentils have been created in the Scientific and Production Center of Grain Farming named after A.I. Baraev, in the laboratory of selection of legumes and oilseeds with the involvement of a variety of genetic source material. In the period from 2000 to 2022. The center has created varieties of lentils – Shyraily, Sakura (large- seeded varieties) and small-seeded variety Krapinka. Ключевые слова: сорт, чечевица, вегетационный период, урожайность, продуктивность. Keywords: variety, lentils, growing season, yield, productivity. Введение. Зернобобовые культуры состав- ляют 27 % мирового производства сельскохозяй- ственных культур и обеспечивают 33 % белка, по- требляемого человеком [7]. Глобальное и быстрое изменение климатических условий на планете представляет угрозу для обеспечения не только Ка- захстанской, но и всемирной продовольственной безопасности и повышает риск недоедания в бед- ных районах, хотя разрушительные последствия из- менения климата в различных регионах и для раз- личных сельскохозяйственных культур могут быть неодинаковы. В решении проблем продовольствен- ной безопасности, в целом, ключевую роль должна играть селекция растений, а именно выведение но- вых, под конкретные условия, сортов. Помимо вы- сокой урожайности, новые сорта, предназначенные для решения проблемы растущих факторов отсут- ствия продовольственной безопасности, должны быть адаптированы к экстремальным явления по- годы и связанным на этой основе с ними постоянно развивающимся новым штаммам и биотипам вре- дителей и болезней [6]. Неопровержима тесная взаимосвязь между производством продукции растениеводства, продо- вольственной безопасностью и изменением кли- мата. На продовольственную безопасность, а также геологические процессы оказывает негативное воз- действие глобальное потепление, содействуя опу- стыниванию и деградации плодородных земель.
  • 4. 4 The scientific heritage No 134 (2024) Что, в свою очередь, влияет на передвижение пло- щадей посева продовольственных и непродоволь- ственных культур в мире [1]. Чечевица – одна из ярких представительниц зернобобовых культур, которая непосредственно выделяется по питательному составу. Именно чече- вица может помочь решить проблему продоволь- ственной безопасности не только в Казахстане, но и во всём мире. Это засухоустойчивая культура, бо- гатая диетическим белком (22–25%), минералами (K, P, Fe и Zn), углеводами, а также витаминами [8, 3, 5]. К примеру, исследователь Venugopalan VK, с соавторами определил, что влажность почвы и тем- пературный стресс являются двумя основными абиотическими факторами, ограничивающими рост и продуктивность чечевицы (Lens culinaris Medik.) независимо от изучаемого сорта [2]. В исследовании Sehgal A тепловой стресс сни- жал урожайность семян больше, чем стресс от за- сухи, в то время как комбинированный стресс сильно влиял на размер и вес семян. Комбиниро- ванный стресс также заметно нарушил фотосинте- тическую способность, углеводный обмен как в ли- стьях, так и в семенах, что привело к задержке роста растений с меньшим количеством семян, исключе- нием являлись специально созданные для засушли- вых условий, изучаемого региона сорта, которые показали хорошую устойчивость к абиотическим стрессам [4]. Этот фактор доказывает необходи- мость селективно создавать сорта, приспособлен- ные к условиям произрастания в том или ином ре- гионе. Цель исследований заключалась в создании вы- сокопродуктивных, высокоурожайных, с высоким качеством сортов чечевицы, устойчивых к стрессо- вым факторам внешней среды, отвечающих всем стандартам качества выпускаемой продукции. Сорт Шырайлы. Сорт выведен методом ги- бридизации при простом парном скрещивании сор- тов ILL 4401 х ILL 5569 с последующим индивиду- альным отбором (рисунок 1) Рисунок 1 – Растение и семена сорта Шырайлы Подвид macrosperma Bar. Разновидность нум- мулярия (var. nummularia Alef.). Чечевица тарелоч- ная. Высота растения 35-49 см., стебель прямостоя- чей формы, с высоким прикреплением нижнего боба на растении – 19-25 см. Листья с тремя – ше- стью парами удлиненно-овальных листочков, за- канчиваются непарным усиком. Прилистники ко- пьевидные – цельнокрайние. Цветки крупные-бе- лые, парус с фиолетовыми жилками, цветоносы 1-3 цветков. Бобы средние и крупные длиной 13-20мм, средней ширины и широкие 8-11 мм. с заостренным кончиком, преимущественно средние двухсемен- ные. Устойчивость к растрескиванию бобов – сред- няя. Семена тарелочные, сплюснутые, крупные (6,0-7,5 мм), плоские, желто-зеленые с мраморно- стью. Семядоли желтые. Масса 1000 семян 73-77 грамм. Содержание белка 25,95-29,17 %. В благо- приятных условиях содержание белка очень высо- кое 31,5 %. Разваримость и вкусовые качества хо- рошие. Сорт среднеспелого типа созревания. Про- должительность периода от всходов до созревания колеблется от 76 до 101 суток. Повреждаемость вредителями слабая. Поражаемость аскохитозом и фузариозным увяданием средняя, на уровне стан- дартного. В питомнике конкурсного сортоиспытания урожай зерна, в условиях засухи, по паровому пред- шественнику составил в среднем 9,6 ц/га при уро- жайности стандарта Веховская – 8,6 ц/га. При этом отмечено, что сорт отличается большей устойчиво- стью к полеганию. На фоне недостаточного увлаж- нения и минерального питания при минимальной обработке в среднем за три года урожайность соста- вила 4,2 ц/га, при урожайности стандарта 3,6 ц/га, полное созревание нового сорта отмечено на 3-6 су- ток раньше. Правовые параметры: Сорт Шырайлы с 2016 г. районирован в двух областях: Акмолинская, Се- веро-Казахстанская. Патент № 791 от 08.12.2017 г. Авторы: Сулейменов Р.М., Каскарбаев Ж.А., Халикулов З., Рам Шарма, Чечерина А.Н., Вергун И.В Сорт Крапинка. Сорт выведен отбором из ги- бридной комбинации ILL5588/ILL4265 междуна- родного питомника скрининга ИКАРДА. (рисунок 2)
  • 5. The scientific heritage No 134 (2024) 5 Рисунок 2 – Растение и семена сорта Крапинка Подвид microsperma Bar. Разновидность var. Atrogrisea. Растение среднерослое, высота от 20-62 см., с высоким прикрепление нижнего боба 12-39 см. и не полегающее. Форма куста прямостоячая, компактная. Ветвистость и облиственность сред- няя. Листья с 3-6 парами удлиненно овальных ли- сточков, заканчиваются непарным усиком. При- листники копьевидные цельнокрайние. Цветки мелкие, белые, парус с фиолетовыми жилками, цве- тоносы 1-2 цветковые. Бобы цилиндрической формы, средние, длиной 13-15 мм, шириной 5-7 мм., с заостренным кончиком, преимущественно двухсеменные. Устойчивость к растрескиванию бо- бов средняя. Семена шаровидные, мелкие, розовые с черными крапинками. Семядоли желтые. Вес 1000 семян от 39 до 43 г, содержание белка от 26,11 до 29,52 %. Разваримость и вкусовые качества хо- рошие. Сорт отличается повышенной натурой се- мян – 829 г/л (774 г/л у сорта Веховская). Сорт ран- неспелого типа созревания. Продолжительность периода от всходов до созревания варьирует от 70 до 110 суток. В сравнении со стандартным сортом отличается равномерностью созревания. Повре- ждаемость вредителями слабая. Поражаемость ас- кохитозом и фузариозным увяданием средняя, на уровне стандартного. В питомнике конкурсного (экологического) сортоиспытания урожай зерна сорта составила в среднем 18,9 ц/га при урожайно- сти сорта Веховская – 14,4 ц/га, превышение со- ставляло до 4,5 ц/га. При этом отмечено, что сорт отличается ранним созреванием. В производствен- ном сортоиспытании урожайность сорта составила 27,2 ц/га, что превысило стандарт на 4,70 ц/га. Правовые параметры: Сорт Крапинка с 2016 г. районирован в трех областях: Акмолинская, Се- веро-Казахстанская, Костанайская. Патент № 792 от 08.12.2017 г. Авторы: Сулейменов Р.М., Каскарбаев Ж.А., Чечерина А.Н., Чилимова И.В. Сорт Сакура. Сорт чечевицы Сакура выведен в ТОО «НПЦЗХ им. А. И. Бараева» методом инди- видуального отбора из образца №115/2 (Россия), в каталоге «НПЦЗХ им. А. И. Бараева» образец про- шел регистрацию под № К-385 (рисунок 3). Рисунок 3 – Растение и семена сорта Сакура
  • 6. 6 The scientific heritage No 134 (2024) Подвид microsperma Bar. Разновидность var. Atrogrisea. Растение среднерослое, высота от 27 до 52 см, с высоким прикреплением нижнего боба – 13-30 см и неполегающее. Форма куста прямостоячая, ком- пактная. Ветвистость и облиственность средние. Листья с 3-5 парами удлинено-овальных ли- сточков, заканчиваются непарным усиком. При- листники копьевидные, цельнокрайние. Цветки мелкие, белые, парус с фиолетовыми жилками, цве- тоносы 1-2 цветковые. Бобы цилиндрической формы, средние, длиной 11-14 мм, шириной 5-7 мм, с заостренным кончиком, преимущественно 2-ух семенные. Устойчивость к растрескиванию бобов высокая. Семена шаровидные, средние, розовые. Семядоли розовые. Вес 1000 семян от 53,6 до 77,7 г, содержание белка до 32,67 %. Сорт раннеспелого типа созревания. Сорт со- зревает на одни-двое суток раньше сорта стандарта Веховская в зависимости от погодных условий и предшественника. Продолжительность периода от всходов до созревания варьирует от 91 до 117 су- ток. В сравнении со стандартным сортом отлича- ется равномерностью созревания. Повреждаемость вредителями слабая. Поража- емость аскохитозом и фузариозным увяданием средняя, на уровне стандартного. Сорт крупносе- менного типа, раннеспелый, с прямостоячим ком- пактным кустом, с прикреплением нижнего боба достаточным для механизированной уборки. Урожайность зерна нового сорта в стрессовых условиях составила в среднем 11,26 ц/га при уро- жайности сорта стандарта Веховская – 10,04 ц/га, превышение составило 1,22 ц/га. При этом отме- чено, что сорт Сакура отличается ранним созрева- нием. В производственном сортоиспытании уро- жайность нового сорта составила 17,55 ц/га. Авторы: Сулейменов Р.М., Ошергина И.П., Абдуллаев К.К., Чилимова И.В. Краткая информация, представленная ниже, обобщает многолетний анализ условий и результа- тивности отдельных мероприятий при проведении полевых работ в засушливом регионе Казахстана. Заблаговременное планирование работ с учетом особенностей начала полевого сезона позволит максимально реализовать потенциал чечевицы и позволит повысить эффективность производства. Размещение в севообороте • Зернобобовые культуры (горох, чечевица, нут), являются улучшителями почвенного плодоро- дия в севообороте за счет способности фиксировать атмосферный азот в симбиозе с клубеньковыми бактериями; • Лучшие предшественники: яровые зерно- вые, не рекомендуется сеять ее по бобовым культу- рам; • Чечевицу необходимо размещать только после культур, оставляющих после себя чистое от сорняков поле; • Срок возврата на прежнее поле не ранее чем через 4 года; • Бобовые культуры хорошие предшествен- ники для пшеницы. Обработка почвы • Посевы чечевицы весьма чувствительны к сорнякам, поэтому обработка почвы должна быть направлена в первую очередь на очищения поля от сорняков; • На полях, засоренных многолетними сор- няками, применяют препараты на основе глифоса- тов в рекомендуемых дозах; • Рекомендуется применять варианты не только минимальной и нулевой обработки почвы, но и традиционной. Применение удобрений • Вносят только по результатам почвенной и растительной диагностики; • Азотные удобрения, во избежание угнете- ния клубеньковых бактерий, вносить не рекоменду- ется; • Фосфорные удобрения необходимо вно- сить в рекомендованных дозах; • Калийные удобрения – потребность в них на черноземах Северного Казахстана, как правило, не возникает; • Микроудобрения и росторегуляторы повы- шают устойчивость растений к болезням и стрессо- вым погодным факторам. Используются при пред- посевной обработке семян или для некорневой под- кормки растений в рекомендуемых дозах. Предпосевная обработка почвы • В случае применение предпосевной обра- ботки на глубину заделки семян необходимо прово- дить стрельчатыми лапами. При обработке диско- выми орудиями значительно увеличиваются потери влаги; • При прямом посеве предпосевную обра- ботку необходимо проводить препаратами на ос- нове глифосатов в рекомендуемых дозах; • Предпосевную культивацию проводят с це- лью формирования посевного ложа, необходимого для получения дружных всходов. Поверхность почвы перед посевом должна быть выровнена. Посев • Семена перед посевом необходимо обраба- тывать защитными композициями инсектицидного и фунгицидного действия. Одновременно с про- травливанием семян возможно добавление молиб- дена, что положительно влияет на урожайность; • В день посева семена необходимо обрабо- тать бактериальным препаратом (инокулянтом) для образования азотофиксирующих клубеньков на корнях растений; • Оптимальная глубина заделки семян 4-6 см; • Зернобобовые культуры, высокотребова- тельные к влаге в начальный период развития и хо- рошо переносящие ранневесенние заморозки, сле- дует высевать в рекомендованные сроки. Запозда- ние с посевом во всех зонах возделывания приводит к снижению урожая; • Лучший способ посева – сплошной рядо- вой, в более увлажненных зонах ему не уступает уз- корядный. Рекомендуется вслед за посевом прика- тывание почвы;
  • 7. The scientific heritage No 134 (2024) 7 • Нормы посева зависят от крупности семян и почвенно-климатических условий. Оптимальной нормой высева считается 1,3-1,5 всхожих семян на гектар. В увлажненных районах на бедных почвах эту среднюю норму следует повышать на 15-20%, на более плодородных почвах и в засушливых рай- онах, наоборот, снижать на 15%. На сильно засо- ренных полях норму высева, возможно, увеличить до 2,0-2,1 млн. всхожих семян на гектар. • Рекомендованные сроки посева конец вто- рой, начало 3 декады мая Уход за посевами • Все агромероприятия должны быть направлены на борьбу с сорной растительностью; • В зависимости от количества и видового состава сорняков используют почвенные и повсхо- довые гербициды в соответствии с регламентом их применения; • При необходимости для защиты посевов от насекомых вредителей и болезней применять пе- стициды, рекомендованные на чечевице. Уборка урожая • Применяют зерновые комбайны, переобо- рудованные на низкий срез растений и пониженное число оборотов (350-450 оборотов в минуту) при влажности семян 14-16%; • Применяется прямое комбайнирование и раздельная уборка; • К уборке раздельным способом присту- пают при наличии 60-70% сухих бобов на расте- ниях. Растрескивание бобов и осыпания семян в это время не наблюдается. Чечевица и горох хорошо дозревают в валках и сохраняют высокие товарные качества; • Низкорослые сорта лучше убирать прямым комбайнированием, когда созреет 85-90% куль- туры; • В потоке с уборкой проводится очистка се- мян. При влажности семян выше 15% необходима их искусственная сушка. На хранение культуры за- кладывают при влажности семян, не превышающей 14% (12-13%). Список литературы 1. МГЭИК (Межправительственная группа экспертов по изменению климата) Изменение кли- мата и земля // Специальный доклад МГЭИК об из- менении климата, опустынивании, деградации зе- мель, устойчивом управлении земельными ресур- сами, продовольственной безопасности и потоках парниковых газов в наземных экосистемах. – Же- нева, 2020 г. –39 с. 2. Venugopalan VK, Nath R, Sengupta K, Nalia A, Banerjee S, Chandran MAS, Ibrahimova U, Des- soky ES, Attia AO, Hassan MM and Hossain A (2021) The Response of Lentil (Lens culinaris Medik.) to Soil Moisture and Heat Stress Under Different Dates of Sowing and Foliar Application of Micronutrients. Front. Plant Sci. 12:679469. doi: 10.3389/fpls.2021.679469 3. Sharpe A.G., Ramsay L., Sanderson LA. et al. Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14, 192 (2013). https://doi.org/10.1186/1471-2164-14-192 4. Sehgal A, Sita K, Kumar J, Kumar S, Singh S, Siddique KHM and Nayyar H (2017) Effects of Drought, Heat and Their Interaction on the Growth, Yield and Photosynthetic Function of Lentil (Lens culi- naris Medikus) Genotypes Varying in Heat and Drought Sensitivity. Front. Plant Sci. 8:1776. doi: 10.3389/fpls.2017.01776 5. Sarker A., Rizvi A., Singh M. (28/11/2017). Genetic variability for nutritional quality in Lentil (Lens culinaris Medikus Subsp. culinaris). Legume Research, 41 (3), pp. 363-368. DOI: https://hdl.handle.net/20.500.11766/8371 6. Mba C., Guimaraes E.P. & Ghosh, K. Re-ori- enting crop improvement for the changing climatic conditions of the 21st century. Agric & Food Secur 1, 7 (2012). https://doi.org/10.1186/2048-7010-1-7 7. Legume crops phylogeny and genetic diver- sity for science and ecological genetics breeding / Smýkal P, Coyne C.J, Ambrose M.J, et al // Critical Re- views in Plant Sciences. - 2015.- Vol. 34. - pр 43-104. https://doi.org/10.1080/07352689.2014.897904. 8. Kumar J., Gupta S., Biradar R.S., Gupta P., Dubey S., Singh N.P., 2018. Association of functional markers with flowering time in lentil. J. Appl. Genet. 59,9. https://doi.org/10.1007/s13353-017-0419-0
  • 8. 8 The scientific heritage No 134 (2024) BIOLOGICAL SCIENCES ИССЛЕДОВАНИЕ РАСТИТЕЛЬНОГО ПОКРОВА ТЕРРИТОРИИ ГАБАЛИНСКОГО РАЙОНА (АЗЕРБАЙДЖАН) Алиев Э.Я. доцент, ведущий научный сотрудник Института Ботаники Министерства Науки и Образования (Баку), Сафарова Э.П. доцент, ведущий научный сотрудник Института Ботаники Министерства Науки и Образования (Баку), Наджафова Д.Н. доцент, ведущий научный сотрудник Института Ботаники Министерства Науки и Образования (Баку), Зейналов Ю.М. доцент, ведущий научный сотрудник Института Ботаники Министерства Науки и Образования (Баку), STUDY OF VEGANT COVER OF THE TERRITORY GABALIN DISTRICT (AZERBAIJAN) Aliyev E., Associate Professor, Leading Researcher of the InstituteBotany of the Ministry of Science and Education (Baku), Safarova E., Associate Professor, Leading Researcher of the Institute Botany of the Ministry of Science and Education (Baku), Najafova J., Associate Professor, Leading Researcher of the InstituteBotany of the Ministry of Science and Education (Baku), Zeynalov Yu. Associate Professor, Leading Researcher of the Institute Botany of the Ministry of Science and Education (Baku) DOI: 10.5281/zenodo.10939537 Аннотация В статье приводятся данные о древесно-кустарниковых и травянистых растений распространенных на территории Габалинского района. В результате мониторинга, проведенного в условиях естественного аре- ала, собрано 55 видов растений, из них в «Красную книгу» относятся 10 видов: Quercus castaneifolia C.A.Mey., Celtis caucasica Willd., Parrotia persica C.A.Mey., Pyrus caucasica L., Castanea sativa Mill., Pyrus vsevolodii Heideman, Jasminum officinale L., Rosa sosnovskyi Chrshan, Orchis masculata L., Marrubium propinguum Fisch.&C.A.Meyl. В результате комплексного изучения Габалинского района выявлены имею- щие научно-практическое значение характерные и доминирующие виды. В дальнейшем для восстановле- ния и проведения, находящихся под угрозой исчезновения исследуемых видов рекомендуется их реинтро- дукция. Abstract The article provides data on trees, shrubs and herbaceous plants common in the Gabala district. As a result of monitoring carried out in the natural habitat, 55 plant species were collected, of which 10 species are included in the “Red Book”: Quercus castaneifolia C.A.Mey., Celtis caucasica Willd., Parrotia persica C.A.Mey., Pyrus cau- casica L., Castanea sativa Mill., Pyrus vsevolodii Heideman, Jasminum officinale L., Rosa sosnovskyi Chrshan, Orchis masculata L., Marrubium propinguum Fisch.&C.A.Meyl. As a result of a comprehensive study of the Gabala district, characteristic and dominant species of scientific and practical importance were identified. In the future, for the restoration and implementation of endangered species under study, their reintroduction is recom- mended. Ключевые слова: Габала, мониторинг, вид, естественный ареал, гербарий, реинтродукция, Красная книга. Keywords: Gabala, monitoring, species, natural habitat, herbarium, reintroduction, Red Book.
  • 9. The scientific heritage No 134 (2024) 9 Введение В настоящее время одной из актуальных про- блем современности является сохранение, восста- новление и защита редких и исчезающих видов рас- тений. Для уточнения ареалов растений по семей- ствам, определения их биоэкологических особенностей, а также мониторинга, занесенных в Красную книгу видов, были проведены исследова- ния в селах и окружающих территориях Габалин- ского района Азербайджана, выявлены характер- ные и доминирующие виды для территории, собран гербарий материал. Габалинский район расположен в северо-за- падной части Азербайджанской Республики, в пре- делах Шеки-Закатальского экономического района. На западе граничит с Огузским районом, с севера Российской Федерацией и Гусарским районом, на востоке с Губинским и Исмаиллинским районами и на юге Евлахским и Гейчайским районами (Рис.1). Рис.1 Карта Габалинского района В системе природных ресурсов Габалинского района его почвы и растительность занимают осо- бое место. Начиная от южных склонов района, окаймленных Ширванской равниной, до водораз- дельных вершин Большого Кавказа, обращает на себя внимание чередование ареалов и зон, отлича- ющихся по вертикальной зональности разнообра- зием почвы и растительности [1]. Разнообразие типов почв, рельефа и климати- ческих условий способствовало обогащению расти- тельного покрова региона. Материалы и методы Материалом наших исследований было изуче- ние произрастающих в лесах Габалинского района древесно-кустарниковой растительности и выявле- ние занесенных в «Красную книгу» Азербайджана видов [5]. Во время экспедиции были определены ареалы распространения видов, собраны гербарные материалы, зафиксирована информация об усло- виях произрастания, в том числе данные GPS [9]. Кроме того, были изучены материалы, хранящиеся в Гербарном фонде института Ботаники Министер- ства науки и образования Азербайджанской Рес- публики [4]. Для определения жизненных форм видов ис- пользовались системы К. Раункера [8], фенология по материалам ГБС [2] и Л.И.Прилипко [6]. Для уточнения изменений номенклатуры использова- лись базы данных [9]. Результаты и их обсуждение Габалинский район составляет всего 2% терри- тории республики, привлекает внимание естествен- ным разнообразием растительности начиная от по- лынной и галофитовой растительности до харак- терных для горной тундры мхов и лишайников, от ксерофитов сухих степей до различных древесных пород равнин и горных лесов. Южная часть территории района покрыта по- лынными, полынно-сорновыми полупустынными растениями, ксерофитными редколесьями, а в цен- тральной части (в Алазань-Хафтаранской долине) наряду с дубовыми, буковыми, грабовыми лесами формируется равнинный лесной ландшафт с преоб- ладанием лапины, ольхи, ивы и тополя. Равнинные леса постепенно сменяются горно-лесным поясом доходящим до 1800-2000 м высоты. Выше лесного пояса, от 1800-2000 до 2500- 3000 м над уровнем моря субальпийские и альпий- ские луга чередуются со скалистым субнивальным и снежно-ледниковым нирельским поясом. Лесной покров региона составляет 60 000 га, что составляет 23,1% от общей площади [7]. Горные и равнинные леса Габалинского рай- она богаты эндемичными, реликтовыми, плодово- ягодными деревьями и кустарниками: бук, дуб, граб, лапины, тополь серебристый, ива, вяз, липа, клен, можжевельник, фисташка, каштан, грецкий орех, лещина, боярышник, груша, яблоня, айва, мушмула, кизил, алыча, облепиха, сумах, шипов-
  • 10. 10 The scientific heritage No 134 (2024) ник, дикая малина и др. На лугах и равнинах преоб- ладают такие нектароносные растения, как тимьян, душица, астрагал, эспарцет, борщевик и др. В 2002 году возле села Мамедагали Габалин- ского района был выявлен новый лесной ареал же- лезного дерева, а на территории селения Хамзалли находится густой тисовый лес, который является единственным природным памятником азербай- джанской природы. В ходе экспедиции на территории Габалин- ского района на высоте 300-2000 метров над уров- нем моря был проведен мониторинг и собраны 55 видов растений относящихся к 34 родам (Primula, Orchis, Thymus, Viola, Valeriana, Ferula, Sambucus, Fagus, Carpinus, Rosa, Acer, Malus и др.), выявлены характерные и доминирующие виды и составлен гербарий образцов растений [2]. Также были выяв- лены занесеные в Красную книгу Азербайджана 10 видов. 1. Primula vulgaris L. 2. Orchis anatolica Boiss. 3. Orchis simia Lam. 4. Orchis masculata L. + 5. Thymus vulgaris Wild.ex.Ronn. 6. Viola odorata L. 7. Viola canina L. 8. Viola arvensis Mur.=V. 9. Valeriana alliariifolia Adams 10. Valeriana officinalis L.=V. 11. Scilla bifolia Grossh. 12. Ferula persica Willd. 13. Marrubium propinguum Fisch.&C.A.Meyl. + 14. Hyacintus orientalis L. 15. Muscari commutatum Mill. 16. Orintagalum vulgaris L. 17. Sambucus ebulus L. 18. Sambucus nigra L. 19. Mespilus germanica L. 20. Fagus orientalis L. 21. Juniperus exelsior L. 22. Carpinus betulus L. 23. Punica granatum L. 24. Pyrus vsevolodii Heideman + 25. Rhus coriaria L. 26. Rosa sosnovskyi Chrshan. + 27. Rosa pulverulenta L. 28. Salix nigra L. 29. Jasminum officinale L. + 30. Prunus divaricata Ledeb. 31. Malus orientalis Uglizk. 32. Acer pseudoplatanus L. 33. Castanea sativa Mill. + 34. İris musulmanica Fomin 35. İris reticulate Bieb. 36. Asphodeluna aestivus Reishb. 37. Parrotia persica C.A.Mey.+ 38. Pyrus caucasica L. + 39. Diospyros lotus L. 40. Quercus castaneifolia C.A.Mey. + 41. Celtis caucasica Willd. + 42. Gleditsia caspica Desf. 43. Punica granatum L. 44. Platanus orientalis L. 45. Trifolium pratense L. 46. Juncus effuses L. 47. Carum carvi L. 48. Rumex crispus L. 49. Chaerophyllum sp. L. 50. Plantago major L. 51. Glaucium grandiflorum Adans. 52. Mentha aquatic L. 53. Thlaspi arvense L. 54. Amaranthus retroflexus L. 55. Centaurea behen L. Pyurus Таким образом, нами, из естественных условий в условия культуры интродуцированы виды растений, имеющие научно-практическое значение, которые в дальнейшем для восстановле- ния были реинтродуцированы. Список литературы 1. Аскеров А.М. Растительный мир Азербай- джана. Баку. - Изд. Пресс TEAS,-2016. – c.444 2. Бейдеман И.Н. Методика фенологических наблюдений при геоботтанических исследованиях. – М.: АН СССР. -1954. –с.127 3. Касумова Г.Д. «Современная наука: актуальные проблемы теории и практики. Серия естественные и технические науки», №11, 2023, с.42-46. 4. Конспект Флоры Кавказа (2006-2012) Санкт-Петербург, Москва; Т. 1, 2, 3(1-2) 5. Красная книга Азербайджана. Редкие и ис- чезающие виды растений и грибов. //Восток - За- пад. – 2013.Часть 2. – с.676 6. Прилипко Л.И. Лесная растительность Азербайджана. Баку, 1954 7. Флора Азербайджана. Баку: АН Азерб. ССР, т. I – VIII, 1950- 1961 8. Raunkiaer Ch. plant life forms. Oxford: Clar- endon Press, 1937 9. worldfloraonline.org http://ww2.bgbm.org
  • 11. The scientific heritage No 134 (2024) 11 CULTUROLOGY NATIONAL GAMES AMONG KYRGYZ AND AMERICAN TRIBAL PEOPLE Mambaeva S. Assoc. Prof.(PhD), Kyrgyz- Turkish Manas University, Faculty of Humanıtıes, Simultaneous Translation Dept. ORCID: https://orcid.org/0000-0001-7137-1579 Bishkek, Kyrgyzstan DOI: 10.5281/zenodo.10939545 Abstract Gaming has deep historical roots among the Kyrgyz people and tribal people in the Americas. It is connected to rituals of play and storytelling that link the peoples to their communal origins and destiny. Traditional games played by American Indians had cultural or religious significance, and gaming was often a sacred act connected to myth, legend, and ritual. Games were also used for entertainment and as a teaching tool (Fairebaugh, Tippeconnic,2019, p.76). For the Kyrgyz people, games have been played since ancient times and were a moment of truce during warring times between tribes. There were valuable prizes for winners of the games, with the most valuable being horses and other domestic animals. The American Indians learned about horses only after the Europeans entered their territories in the mid-14th century. Games served as a way for American tribal people to improve their position within their own tribe and often served to redistribute wealth among tribal members. This was widely misunderstood by non-Indians during the early years of the country, leading to misrepresentations of American Indians, especially males who gambled, as lazy and wasteful. This stereotype was reinforced by scholars such as Francis Parkman and Henry Morgan, who viewed Native gambling only in European-American terms and never attempted to understand the tribal perspective. The disparate accumulation of wealth was not encouraged by traditional Indian societies, which stressed the notions of balance and strong interrelationships (Paul Pasquaretta, Gambling and Survival in Native North America, Tucson: The University of Arizona Press, 2003), 119–20.. Keywords: Games, customs, traditions, tribal people. Many writers and poets compare our lives to a game, where each player has a role. The ability to play and give free rein to one's imagination, without worry- ing about immediate results, is evident in children's amusements and adult entertainment, and it is a funda- mental aspect of humanity. Scholars have shown that the game is closely associated with an individual's de- sire to explore the unknown and satisfy their curiosity, and it encourages people and all higher animals to ex- plore the world around us. Emphasizing a casual game in a particular culture gives us an opportunity to assess its main features. The game is a phenomenon inherent in all living nature, not just in humans. Studies show that all higher animals use play as a way of communicating, spending time, and learning. In humans, the game has reached the peak of its development. Humans play throughout their lives. It is important to highlight that even in the sim- plest forms, the game goes beyond biological or physi- cal activity. The game is a meaningful function with many facets of meaning. In any scientific approach, it is universally accepted that the game serves a necessary and useful function. In childhood, the game is a way of learning to communicate, developing certain skills, and so on. In adulthood, many activities are also associated with the gaming component. Additionally, people use games to communicate, relax, and structure their lei- sure time. The game can serve as a harmless outlet for pent- up energy and the need for variety in daily activities. It can provide a sense of satisfaction, allowing individuals to fulfill unrealistic desires and maintain a sense of per- sonal stability. Many researchers seek to understand the essence of games and why players become so en- grossed, often losing themselves in the experience. The intensity of gaming cannot be fully explained by bio- logical factors alone. Yet, it is this very intensity that captures the essence of gaming, its fundamental qual- ity. Nature has bestowed upon us the gift of games, with their stress, joy, humor, and amusement. Games have been a part of human existence since the beginning of time. They accompany us throughout our lives, and some games have even evolved into cus- toms and traditions. Games vary from one group of people to another. In this article, I will explore two dis- tinct groups: the Kyrgyz and Native Americans. De- spite their geographical separation, they both belong to tribal cultures. “In recent decades Western historians and anthro- pologists have come closer together in common en- deavors to reexamine both Western and Third World society and history. A welcome feature of this trend has been the willingness of each kind of specialist to learn from the other in studying the tribal peoples of the so called Fourth World. In most cases a lack of documen- tation gives anthropologist precedence, but various tribal peoples have participated in the economics and politics of states and empires long enough and actively enough to have left a considerable mark in the archives, even producing their own chronicles” (Khoury, Kostiner 1990, p. 45) Most of the scholars were naming tribal people as “primitive society” outlining them as a culturally and linguistically primitive too. But it was quite an inappro- priate for the cultural groups as Arabs, Turks, Persians, Berbers, Pashtuns and etc. which can hardly be termed either tribes or primitive societies, if only on grounds
  • 12. 12 The scientific heritage No 134 (2024) of scale, complexity, and lack of unity (Khoury, Kostiner 1990, p. 53) In this article, I am eager to explore the traditional games of the Kyrgyz people and the games of American Indian tribes. I have a keen interest in the language, culture, and customs of American Indians, and I have previously published several articles on the topics connected with culture and languages, which have some simiarities. Here, I am excited to delve into the unique and traditional games of both of these cultures. The Kyrgyz games The paper I am presenting today focuses on the games that are an integral part of tribal culture. While the culture of Kyrgyz and Amerindian tribal communi- ties has been extensively studied and discussed, the games that are central to their way of life have not re- ceived as much attention. All games are national values and people try to keep the and teach their children to play into those games. Despite living in close proximity to other cultures, the Kyrgyz people have maintained their unique way of life and traditional forms of entertainment over the cen- turies. This was evident during the 1st, 2nd, and 3rd World Nomad Games held in Kyrgyzstan in 2014, 2016, and 2018. These games not only showcased tra- ditional nomadic competitions but also highlighted the cultural significance of the Kyrgyz people to the world. One can get a glimpse of the national games by observ- ing children playing with sheep knuckle bones or la- crosse balls. These games are a testament to the rich cultural heritage and unique way of life of tribal com- munities. The Kyrgyz people have a tradition of playing games during big festivals, and winning a prize is considered a great honor. The most popular games for Kyrgyz children involve riding a horse or creating a horse using various materials such as wood or stone. Parents would provide their children with toys that would help them learn skills they could use as adults. For girls, mothers and grandmothers would make dolls dressed in traditional Kyrgyz clothing, and the girls would sew the clothes themselves to prepare for their future roles as wives and mothers. Through these games, Kyrgyz children were taught skills that would prepare them for adulthood. Games were a significant part of Kyrgyz social life and played a role in the upbringing of children. Because the Kyrgyz people were nomadic, many of the games were related to horses and riding. The game from the other side was a business for adults, such as cock-fighting, which was a real and very popular game among settled Kyrgyz tribes. It usually took place at big markets and people would place bets. On the other hand, games involving horses were mostly for the youth, such as racing, and also involved big betting during big festivals or wakes dedicated to well- known or famous people (e.g. Kokotaidin Ashi). When discussing Kyrgyz people, it is important to highlight their national pride, and after customs and traditions, Kyrgyz national games and sports come to mind. Not long ago, these games were included in the list of Nomadic Olympic games, such as Kok bory, Kiz Kyymai, Odarysh, and Kyrgyz chess (Togyz kymalak or Togyz korgool), among many others. The most well-known game is At Chabysh, also known as horse racing. It is an ancient game, and the horse for this race must be prepared and trained in a special way so that it can easily run and win the game. The horse's age should not be less than 3 years old. The race distance was originally 53 miles (100 km), but now it ranges from 4-50 km. Racers should not be younger than 13 years old. Another type of racing is Jorgo-salysh, which is one of the most beautiful types of racing. In this race, the horse moves two legs together in a balanced way, which is called "allure" in modern racing. This is a special art of training the horse and is considered the top art of racing. One of the main national games of the Kyrgyz people is the team game "Kök-boru" (The grey wolf), where teams of 12 members play on the field from both sides. The territory for this game is usually chosen by both sides together, and it is typically around 500 meters long and 250-300 meters in depth. In the middle, there is a "tai kazan," a national Asian kettle for boiling the meat of a young horse. The rules are similar to modern football, and the goal is to put the body of a goat weighing around 30-40 kilograms into the tai kazan as a goal within a set time. The players must keep the body of the goat with one hand and control the horse with the other hand. The goal in this game is around 10 meters. At the beginning of the game, the team captains fight for the body of the goat, and the team that wins keeps the body and can start to attack the tai kazan to score a goal. Another fascinating game is Oodarysh, also known as wrestling on the back of a horse, which only the strongest players of the team could participate in. Similar to Oodarysh is Kűresh, where the riders remove their clothes and sit on a horse wearing only pants and leather belts. The main objective of this game is for the fighters to take the opponent off the horse by grabbing their belt. The tradition of racing to pick up a coin from the ground, commonly seen in circuses, has its roots in nomadic games. In Tyin Enmei, the horse and the rider must work together as a team to pick up the coin while racing at high speed. The winner is the one who collects the most coins. Kiz Kyymai is another race that includes girls, with the girls racing ahead and the boys trying to catch them. If a boy catches a girl, he gets to kiss her, but if he fails, the girl gets to publicly whip him. Among the nomadic people, the Kyrgyz people have Kiz jarysh, a race for girls and newly married women. The married and unmarried girls can be distinguished by the type of hats they wear, with unmarried girls wearing one type of hat and married women wearing a kerchief on their heads. Another type of Kyrgyz national sport is Jaa atmai - archery, which involves riding on horseback. This is a very exciting game that young men and women can participate in. It is considered a shame if a participant misses the target, which is a needle attached to a silver plate. One of the most beautiful and attractive types of Kyrgyz national sport is Angchylik hunting with eagles or falcons. Kyrgyz hunters still use eagles and falcons for hunting. There are many legends about this type of hunting, with stories of eagles easily capturing hares and deer. Hunters spend several years training their eagles and falcons before they are ready for real hunting. Another important helper in this type of
  • 13. The scientific heritage No 134 (2024) 13 hunting is the Kyrgyz hound, a very smart dog and a great friend to the hunter. I have mentioned games that are mostly connected with horses. Tolstoy once wrote: “If we always judged from re- ality, games would be nonsense. But if games were nonsense, what else would there be left to do” (Cited in Opie and Opie 1969: 338). Tolstoy, in justifying play, suggests several dimensions that are central to the un- derstanding of shared fantasy: reality/fantasy, work/games, (play), and sense/nonsense. Often, fan- tasy, play, and nonsense have been depicted as opposed to the important activities of human life - working and knowing the real world. These dichotomies have influ- enced even those who profess not to accept their impli- cations” (Alan,1983). The American Indians and their games Game playing is a pastime enjoyed by most peo- ple, and Native Americans are no exception. The ori- gins of many games were with the tribal gods, and be- cause of this, games were played ceremonially to bring rain, ensure good harvests, cure illness, expel evil spir- its, or give pleasure to the gods by demonstrating phys- ical fitness. Though games are usually played for fun and pleasure, Native American games also played a role in the education of children by helping them develop skills necessary to be successful adults. In general, boys and girls played separately, though they often might play the same games with variations in the rules. Cer- tain ceremonial games were forbidden to women, par- ticularly those games which might disrupt the protec- tive powers of hunting and warfare spirits. In addition to games similar to boys' games, girls played "house," sometimes with miniature tipis or igloos. They also had dolls made from various materials such as wood, grasses, corn husks, animal skin, or bone. Doll play helped girls learn the skills of childcare (Lavine, Sig- mund,1974) Native Americans highly honored skilled athletes just as they honored brave warriors. Many games played by men and boys served to train them in skills needed for warfare and/or hunting. These games tested a boy’s skill, dexterity, agility, strength, and stamina. The Cherokee Indians refer to stickball games as “the little brother of war.” Children played most of the same games as adults. In addition, they enjoyed races, tug-of-war, hide and seek, and blind man’s bluff types of games. Native American games fall into two general categories: games of chance, the outcome of which de- pends on luck, and games of skill. Games of chance are played with sticks, dice, or involved guessing. Skill games require physical and/or mental abilities. In the past, many games were played with balls made of ani- mal skin stuffed with grass or hair, or inflated animal bladders (Internet sources). Native American game Kit, Bull Roarer, Buzz Toy, Ring and Pin, Running Game, Laughing Game, Game of Silence, Bean Game Etc. (Underwood, Thomas Bryan,1979) Native American Game Kit This kit includes an assortment of games of both skill and chance, plus directions for variations of run- ning games. There are games suitable for both indoors and outside play, as well as a variety of group sizes. Equipment for several players or two teams are in- cluded in the kit. Also, there are directions for simple and inexpensive versions of the games. These could be made at home or as part of a classroom study. We sug- gest that when large numbers of children are using the kit, several stations be set up and the group divided so everyone would be playing different games but at the same time. By rotating groups, the children could have an opportunity to learn and play most or all of the games. Since a variety of games are in the kit, teachers are encouraged to select the games that best suit their needs. Lacrosse. The best known of Indian games is la- crosse. It was most common among the tribes of the At- lantic seaboard and around the Great Lakes, but it was also played in the South, on the plains, in California, and in the Pacific Northwest. It was played with a ball made either of wood or of buckskin, which was caught with curved rackets with a net on one end. The goal was usually marked with two poles although in some areas only one was used. In 1860 J. G. Kohl, a white traveler in Wisconsin, examined some lacrosse equipment. He admired the fine carving of crosses, circles, and stars on the white willow ball and praised lacrosse as “the finest and grandest” sport of the Indians. Although he was un- able to see a game, he claimed that the Indians “often play village against village or tribe against tribe. Hun- dreds of players assemble, and the wares and goods of- fered as prizes often reach a value of a thousand dollars and more.” (Underwood, Thomas Bryan,1979) Shinny. A kind of field hockey known as shinny was among the most popular Native American games. Shinny, generally believed to be a precursor to ice hockey It was usually played by women, but some- times, especially on the plains, might also be played by men. Among the Sauk, Foxes, and Assiniboine Indians, men and women played the game together, and among the Crows, teams of men played against teams of women. Native Americans in the East, on the plains, in the Southwest, and on the Pacific Coast played shinny. It was played with a ball or bag, often made of buck- skin, which was hit with sticks curved at one end. The ball and sticks might be decorated with paint or beads. The length of the field varied from two hundred yards (among the Miwok Indians) to a mile or more (among the Navajos). The object of the game was to hit the ball through the opponent’s goal. The ball could be kicked or hit with the stick but not touched with the hands (https://nativeamericans.mrdonn.org/games.html ) Snow-Snake. In regions of the West cold enough to have snow and ice in the winter, snow-snake was played. Its rules varied even more than those of lacrosse or shinny, but in general the game involved sliding darts or poles along snow or ice as far as possible. The projectile could be only a few inches long or might be a javelin up to ten feet long. The game was usually, but not always, played by men. Among the Crees, who played a variant of the game in which the dart had to pass through barriers of snow, only men played the game. Among the Arapahos, on the other hand, snow- snake might be played by adults or children but was most commonly played by girls (https://nativeamericans.mrdonn.org/games.html). Hoop and Pole. Hoop and pole was another wide- spread game with varying rules. In general a hoop was rolled along the ground while men tried to knock it over with spears or arrows. The hoop was usually relatively small, from three inches to a foot in diameter. The hoop might be open, but often the players stretched cords or a net across it. The hoop itself was often of wood but might be made of corn husks, stone, or iron. It was sometimes decorated with paint or beads. The score
  • 14. 14 The scientific heritage No 134 (2024) was determined by the way the hoop fell when hit by the pole. The game was most frequently played by two men although in some cases more participated. Iditarod and Alaska Native Games For Alaska Natives, the tradition of ancestral games is as strong as ever. Most famous is the Iditarod dog sled race, a highly competitive endurance sport that promotes survival skills in a challenging Arctic envi- ronment. Alaska Native John Baker of Kotzebue won the 2011 Iditarod in record-breaking time. At annual events such as Alaska Native Youth Games and the World Eskimo-Indian Olympics, children and adults test their strength, endurance, and agility in traditional contests such as the high kick, in which competitors kick balls suspended at head level or higher. As of 2011, the world record was 7’ 10” for men, and 6’ 1” for women. Other more conventional sports, such as basketball and cribbage, are also important to Native communities, young and old, especially during the long winters (https://nativeamericans.mrdonn.org/games.html ). Native Hawaiian Sports: At Sea and on Land Hawai‘i is justly famous for its water sports of ca- noeing, surfboarding, and swimming. Canoe and pad- dling clubs attract large numbers of members of all ages. Events range from outrigger canoe races on week- ends to sea-going voyages in traditional double-hulled canoes such as the Hōkūle‘a. The iconic Hawaiian sport of surfboarding was a tradition that was nearly lost by the turn of the 20th century. It was revived by the Na- tive Hawaiian sportsman Duke Kahanamoku, who in three successive Olympics also won medals in swim- ming. Kahanamoku is revered in Hawai‘i, with his statue prominently located on Waikīkī Beach, Hono- lulu. (https://media.gohawaii.com/statewide/press- room/story-ideas/modern-ways-experience-traditional- hawaiian-sports) The story of the American Indians is, without a doubt, one of survival. It is estimated that in AD 1500, 100 million indigenous people lived in prosperous na- tions within the current boundaries of the United States. That population would nose-dive, however, to a scant 250,000 by 1900 as a result of germ warfare, military actions, and genocidal policies. As U.S. Gen. William T. Sherman would complain in the mid-1800s, if not for civilian interference, his army would have gotten rid of all American Indians.6 The poverty and other substand- ard economic situations of most In-dian tribes in the past are undisputed. Native Americans traditionally have been among the poorest of the poor.7 One of the main obstacles to economic success for these tribes has been the location of their lands. Many tribal reserva- tions, rancherías, pueblos, and other landholdings are in rural or isolated locations. Remoteness was often preferable from a cultural-preservation standpoint, but it worked against later efforts to develop economies on the reservations (Firebaughand, Tippeconnic Spring 2010 pp 75-86). Access to markets is one of the most important components of economy building, and much tribal land is simply too isolated to attract customers. Examples of this in Indian gaming can be seen where location is the key factor in a gaming facility’s success (Froelich, Schaller, and Klaczek, 2005., p19–25). The tribal casinos that are most successful are lo- cated close to urban markets. Location can be particu- larly favorable to Indian casinos in the case of an eco- nomic downturn; when airplane fares and other costs of transportation are high, some gaming customers prefer to drive to a relatively close Indian casino instead of to large gaming establishments that are farther away. In the twenty-first century, American Indian gam- ing is big business, but it has always been around. American Indian nations have always played games, and this gaming was and is an important custom. Tra- ditionally, it served to preserve culture and ceremonies, redistribute wealth, and teach traditional values to com- munity members and children. Skill and luck came to- gether to level the playing field upon which all lived their lives. Today games of skill and luck, such as the hand games at Northwest Coast Tribal Stommash, are huge attractions and can go on, around the clock, for days at a time. While traditional forms of games con- tinue throughout Indian Country, casino-type gambling has turned into a major modern industry for Indian na- tions. Since 1832 the U.S. Supreme Court has upheld the right of Native American tribes to self-rule, allow- ing them to control everything from fishing, hunting, and mineral rights to the establishment of gaming casi- nos. In the 1960s no states ran lotteries, and only one, Nevada, allowed casinos. Beginning in the late 1970s, however, a number of Indian tribes established bingo operations in order to raise revenues to fund tribal gov- ernments. In 1987, in California v. Cabazon Band of Mission Indians, the U.S. Supreme Court upheld one of the most significant turning points for tribal govern- ments: the legal right of Native American tribes to offer gaming on reservation lands, free of state interference. Essentially, the band argued that its status as a sover- eign government prevented state interference in its af- fairs (Froelich, Schaller, and Klaczek, 2005., p34). The publication of Steward Culin’s study, Games of the North American Indians, changed academic atti- tudes about the role of gaming in the social and spiritual lives of American Indians. This comprehensive account of gaming was a collaborative effort between Frank Cushing, an ethnologist, and Steward Culin, curator of the Columbian Exposition in Chicago. The study, which took fourteen years to complete, was published in 1907. Culin’s investigation showed widespread gam- ing among 229 tribes in North America and Mexico. More than thirty-six different kinds of games were used throughout the Western Hemisphere and predated Eu- ropeans. The games were classified as those of chance or dexterity; games of chance used dice-like pieces, with players guessing on the outcome of a throw, while games of dexterity included archery, sliding, javelins or darts, shooting a netted or stone wheel or ring, ball games, and racing. Some tribes combined activities; for example, the Iroquois played a combination of six prin- cipal games divided into athletic contests and games of chance. The study showed nearly every tribe played several versions of games, but not all games were played or could be gambled upon. Games were played by adults, most restricted to one gender and occurring at fixed times or during certain festivals and religious rites frequently associated with spiritual beliefs and practices. During the games, waging possessions was not uncommon for American Indians (Culin S., 1992) Casino growth on a national level has occurred most significantly in Native American communities. One of the main reasons for this is, as mentioned ear-
  • 15. The scientific heritage No 134 (2024) 15 lier, that tribal communities have the ability to self-gov- ern without the influence of state governments. As of 2006, because of their ability to self-govern, gaming tribes operated in twenty-eight states: Alaska, Arizona, California, Colorado, Connecticut, Florida, Idaho, Iowa, Kansas, Louisiana, Michigan, Minnesota, Mis- sissippi, Missouri, Montana, Nebraska, Nevada, New Mexico, New York, North Carolina, North Dakota, Ok- lahoma, Oregon, South Dakota, Texas, Washington, Wisconsin, and Wyoming. Four of these states, Califor- nia, Connecticut, Florida, and New York, experienced major growth in tribal gaming (Froelich, Schaller, and Klaczek, 2005., p34). As of 2008 233 Indian tribes, including two Alaska Native villages, operated 411 casinos, bingo halls, and pull-tab operations spread through-out the same 28 states listed above, creating more than 636,000 jobs: 284,000 direct Indian gaming, 102,000 indirect Indian gaming, and 208,000 Indian gaming and govern- ment projects.23 In addition, Indian gaming revenues, as shown in figure 1, topped $26.7 billion. This com- pares very favorably to revenues of $7.4 billion twelve years earlier (National Indian Gaming Commission, June 2009) Tribal gaming is different from other forms of gaming. It is conducted by Native American govern- ments as a way to carry out their natural self-governing rights as independent nations. As such, there are three formal classes of gaming (Schaap2010), pp. 365-389) Class I gaming includes social games for prizes of minimal value and traditional forms of tribal gaming as a part of or in connection with tribal ceremonies or cel- ebrations (e.g., contests and games of skill). Because no money is exchanged here, Class I gaming is regulated solely by the tribes. Class II gaming includes bingo, other games sim- ilar to bingo (e.g., pull-tabs, lotto, punch boards, tip jars, instant bingo) if conducted at the same location, and certain non-house-banked card games allowed in a state (i.e., poker). (Nonbanking refers to poker and other card games in which players bet against each other rather than against the house.) The use of techno- logical aids in conducting such games is permitted. Subject to certain conditions set forth in IGRA and some oversight by the National Indian Gaming Com- mission, Class II gaming is also regulated by tribes Class III gaming includes all other types of gam- ing not considered to be Class I or Class II, including slot machines, other video and electronic games of chance, craps, roulette, pari-mutuel wagering, and house-banked card games like blackjack. Class III gam- ing is governed by tribal-state compacts (Schaap2010), pp. 365-389). Native games as Kyrgyz so American Indian’s are more than just games, they build body and spirit through exercise and are played by all age groups— children, youth, and adults. Many games have roots in ancestral tests of strength and sport that reinforced group cooperation and sharpened survival skills in of- ten hostile environments. For warriors, the games helped maintain their readiness and combat skills be- tween times of war. Today, games are as important as ever. The gradual shift to a more sedentary lifestyle has highlighted the need to reawaken interest in physical activity, especially among Native youth. Promoting games and sports is an important part of improving the health and well-being of Native populations (Lavine, Sigmund,1974). In conclusion, I would like to emphasize that this article represents the first attempt to compare Kyrgyz games with the games of Native American Indian tribal people. The games of each group provide opportunities to acquire knowledge and skills, both physical and mental, and were essential not only for children but also for adults. References 1. Alan G.F., Shared Fantasy: Role Playing Games as Social Worlds., University of Chicago Press, 1983. 2. Fairebaugh E.M.L, Tippeconnic M.J., Fox: 2019, p.76 3. Froelich, Cezar M. Schaller, Michael J. and Klaczek Kristin A., “Investing in Tribal Gaming,” Gaming Law Review 9, no. 1 (2005): 19–25. 4. Khoury Ph.S., Kostiner J.“Tribes and State formation in the Middle East. University of California Press, Berkeley, Los Angeles, Oxford 1990, p. 45 5. Lavine, Sigmund A. The Games the Indians Played, Dodd, Mead and Company, New York, 1974. Underwood, Thomas Bryan, The Story of the Cherokee People, Cherokee Publications, Cherokee, NC, 1961. National Museum of Man, Ottawa, publication “Ora- cle” Cat. #R34-2/14-1979. 6. Luna-Firebaughand E. M, JoTippeconnic Sa Fo Wicazo M., The Sharing Tradition Indian Gaming in Stories and Modern Life. Review, Volume25,Num- ber 1, Spring 2010 pp 75-86 (article) Minnesota Press. 7. National Indian Gaming Commission, June 2009, PR-113, http://www.nigc.gov/Reading- Room/PressReleases/PressReleas- esMain/PR113062009/tabid/918/Default.aspx 8. Pasquaretta Paul, Gambling and Survival in Native North America, Tucson: The University of Ari- zona Press, 2003), 119–20.. 9. Schaap James I. The Growth of the Native American Gaming Industry What Has the Past Pro- vided, and What Does the Future Hold: Source: Amer- ican Indian Quarterly, Vol. 34, No. 3 (Summer 2010), pp. 365-389]: 10. Stewart Culin., Games of the North American Indians, Volume 1 Games of Chance., November 1992., p.402., ISSN 978-0-8032-6355-0.,
  • 16. 16 The scientific heritage No 134 (2024) EARTH SCIENCES IDENTIFICATION OF GRADIENT ZONES ACCORDING TO GRAVITY PROSPECTING DATA Isgаndаrov E., Associate professor, Department of “Geophysics” Azerbaijan State Oil and Industrial University (ASOIU), Baku, Azerbaijan Abbasov K., Master student, Department of "Geophysics" Azerbaijan State Oil and Industrial University (ASOIU), Baku, Azerbaijan Isgandarova L. Senior student, Department of “Computer engineering” Azerbaijan State Oil and Industrial University (ASOIU), Baku, Azerbaijan DOI: 10.5281/zenodo.10939551 Abstract As is known, new digital instruments have now been developed for more reliable measurements of the grav- imetric field, which also provides a more accurate division of the gravitational field into local maxima and minima. There are various methods for transforming and filtering gravimagnetic anomalies, which differ from each other in the sensitivity of field separation. The most sensitive of them are the gradient methods and the methods of higher derivatives, which make it possible to identify small variations in gravitational and magnetic anomalies and line- arly elongated gradient zones. These anomalies may be associated with zones of faults and disturbances, as well as the accumulation of hydrocarbons and the presence of ore deposits. At the Department of Geophysics of ASOIU, algorithms and programs for identifying such anomalies on a computer have been developed. The article analyzes some results on identifying such zones on model profile and area materials. Keywords: anomaly, gradient zones, field transformation, transformation palette, derivative method, local anomaly, observed field, algorithm. Introduction The observed gravimagnetic field is usually com- plex, as it consists of local and regional field compo- nents that correspond to local and regional geological structures. Local structures are geological objects of small size and located at shallow depths in sedimentary strata. Regional objects make up the deep structure of the earth's crust. There are various methods for transforming and filtering gravimagnetic fields, such as a graphical method for identifying anomalies along a profile, a method of averaging over an area or over a profile, the Sachsov-Nygaard gradient method, and the method of higher derivatives. methods of analytical continuation of fields, etc. [9-10]. The initial data are the results of observations of gravitational and magnetic fields along a profile or area. The method of gradients and higher derivative ones, as well as corresponding filtering methods, are the most sensitive methods and are capable of identify- ing gradient zones and areas of change in the potential field. At the Department of Geophysics of ASOIU, al- gorithms and programs for identifying such anomalies on a computer have been developed [2]. Gradient and higher arbitrary methods are very popular nowadays and are used to solve a wide range of geological prob- lems [1,4-8]. Methods for processing the initial gravitational field The Sachsov-Nygaard area gradient method uses a palette with two radii - internal and external (Fig. 1). The gravity field gradient is calculated using the for- mula [10]: Fig.1. Transformation palette with two radii
  • 17. The scientific heritage No 134 (2024) 17 ∆ggrad = g(𝑅1)−g(𝑅2) 𝑅2−𝑅1 (1) Here R1 and R2 are the internal and external aver- aging radii; g(𝑅1) and g(𝑅2) are the average values of the gravity field at the corresponding averaging radii. The radius of the circles depends on the task at hand. The larger the radius, the greater the depth of ex- ploration. The average values of the gravity field at the corresponding averaging radii are calculated as fol- lows: g(𝑅) = ∑ g𝑖 𝑛 𝑖 𝑛 (2) Here n is the number of points on the palette;  i g - the value of gravity at points around the palette. Currently, this transformation method is carried out on a computer. In this case, to enter field values into a computer, the original field is first quantized by inter- polation at the nodes of a square grid (Fig. 2), and then digitally entered into the computer. Fig.2. Field quantization nodes Among the methods of higher derivatives, the method of third derivatives of gravity, the Elkins method, has become widespread. This method uses multiple radii. The third derivative of gravity potential is calculated using the following formula [9]: Wzz𝑧 = ∂2g ∂z2 = 1 64R2 [44g(0) + 16g ̅(R) − 12g ̅(𝑅√2) − 48g ̅(𝑅√5)], (3) where g(0) is the value of the gravity anomaly in the center of a circle of radius R; g ̅(R) , g ̅(𝑅√2), g ̅(𝑅√5) are averaged values of gravity anomalies along the circles R, R√2, R√5. As you can see, a circular palette with three circles with different radii is used here. The Department of Geophysics developed the Forse–Fortran programs SAXOV and WZZZ, which were used to process the gravitational field model [4- 8]. The processing also used various filtering of the gravitational field model using gradient methods of various directions using the SURFER program. Results of processing gravitational field models. To work with the SAXOV, WZZZ and SURFER programs, a model of the gravitational field of the Byandovan area of the Lower Kura depression was used (Fig. 1) Fig.1. Model of the gravitational field of the Byandovan area
  • 18. 18 The scientific heritage No 134 (2024) As can be seen here, an areal gravimetric survey was carried out along 15 profiles and, based on them, an initial gravity map with a cross section of 0.5 mGal was constructed [3]. The field is characterized by negative isoanomaly values. In the northern part of the area, a large gravity minimum with an amplitude of 9 mGal, oriented in the north and northwest direction, is clearly visible. Gravity values decrease from -1 mGal to -10 mGal in a northerly direction. In general, the field is complicated by numerous local anomalies and gradients. For subsequent conversion, the original map was digitized in the “Digit” mode of the SURFER graphic program, and then a grid was created, on the basis of which maps of the original gravitational field model were built in 2D and 3D versions in a modern interface (Fig. 2-3). To identify gradient zones and sections, at the beginning, the gravitational field of the Byandovan area was filtered in 2D and 3D versions using the SURFER program in the “Gradient directional filter, South (3x3)” mode, on the basis of which the corresponding map was built in 2D and 3D versions (Fig. 4-5). As you can see, the map clearly shows positive gradient areas with different intensities (1.3-0.8 )x10-6 мГал/см mGal/cm, oriented in the northeast and east directions, as well as an intense minimum of negative values of gravity gradients (0.4 -0.6 ) x10-6 mGal/cm) in the northern part of the area is oval in shape and somewhat elongated in the eastern direction. The same picture (Fig. 6-7) is observed on the constructed map of the first derivative of the gravitational field of the area in 2D and 3D versions (Order 1 derivative filter, Roberts Row director (3x3)). Next, the gravity field of the study area was quantized in a uniform square grid of (1x1) cm in size on a map scale to prepare the initial data for the developed programs at the Department of Geophysics. Below are the results of processing using the WSZ program for calculating the total horizontal gravity gradient (Fig. 8-10). As can be seen on the map of total gradients, there are two maxima of the total gradient in the northeastern part of the study area, oriented in the eastern and northern directions with a maximum intensity of the order of 1.45 x10-6 mGal/cm. On the map of the second derivatives of gravity obtained using the WZZZ program in the northeastern part, an intense minimum of the second negative derivatives of gravity is clearly visible, and in the rest of the area there are three large maxima with an intensity of (35-25)x10-11 mGal/cm2 of various orientations ( Fig.11-13). And finally, the following shows the results of the transformation of the gravity field of the study area using the SAXOV program, which allows you to calculate residual anomalies using the Saxow-Nygaard method (Fig. 14-16). As you can see, this map reflects the same picture as the WZZZ map, but in less detail. Fig.2. Map of the gravitational field of Byandovan Square in 2D version (in mGal isolines)
  • 19. The scientific heritage No 134 (2024) 19 Fig.3. Map of the gravitational field of Byandovan Square in 3D version (in mGal isolines) Fig.4. Map of the gravitational field gradient of the Byandovan area in 2D version in isolines 10 -6 mGal/cm (Gradient directional filter, South (3x3)) Fig.5. Map of the gravitational field gradient of the Byandovan area in 3D version in isolines 10-6 mGal/cm (Gradient directional filter, South (3x3))
  • 20. 20 The scientific heritage No 134 (2024) Fig.6. Map of the first derivative of the gravitational field of the Byandovan area in 2D version in isolines 10-6 mGal/cm (Order 1 derivative filter, Roberts Row director (3x3)) Fig.7. Map of the first derivative of the gravitational field of the Byandovan area in 3D version in isolines 10-6 mGal/cm (Order 1 derivative filter, Roberts Row director (3x3)) Fig.8. Values of the total gradients of the gravitational field of the Byandovan area in units of measurement 10 -5 mGal/cm (Force-Fortran programm WSZ) 0.3 0.3 0.3 0.3 1.2 0.8 0.6 1 0.7 0.5 0.3 0.3 0.3 0.5 1.4 1.2 0.6 1.2 0.6 0.5 0.5 0.4 0.3 0.3 0.8 0.8 1.4 0.6 0.7 0.6 0.6 0.6 0.6 0.5 0.9 1.4 0.6 0.5 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.5 0.5 0.6 0.8 0.9 0.8 0.8 0.5 0.4 0.5 0.9 1 1 0.9 0.9 0.8 0.6 0.5 0.6 0.8 0.8 0.7 0.7 0.8 0.8 1 0.7 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.6 0.7 0.8 0.9 0.8 0.9 0.9 0.8
  • 21. The scientific heritage No 134 (2024) 21 Fig.9. Map of full gradients of the gravitational field of the Byandovan area in 2D version in isolines 10-6 mGal/cm (Force-Fortran programm WSZ) Fig.10. Map of gravitational field gradients of the Byandovan area in 3D version in isolines 10-6 mGal/cm (Force-Fortran programm Saxsow) Fig. 11. Values of gradients of the gravitational field of the Byandovan area in units of measurement 10-11 mGal/cm2 (Force-Fortran programm WZZZ)
  • 22. 22 The scientific heritage No 134 (2024) Fig. 12. Map of the second derivatives of the gravitational field of the Byandovan area in 2D version in isolines 10-11 mGal/cm2 (Force-Fortran programm WZZZ) Fig. 13. Map of the second derivative of the gravitational field of the Byandovan area in 3D version in isolines 10-11 mGal/cm2 (Force-Fortran programm WZZZ) Fig. 14. Values of gradients of the gravitational field of the Byandovan area in units of measurement 10-6 mGal/cm (Force-Fortran programm SAXOW) 0 0 0 0 -2.7 -1.5 -6.3 -7.7 0.3 0.1 1 0.1 -0.1 -3.1 -5.6 -6.2 0.5 0.3 0 1.2 0.5 -1.6 -6 -4.9 1 0.5 -0.5 -1 -0.8 -1 -4.1 -4.9 1.4 0.1 -0.5 -1.1 -1.1 -0.5 -2.7 -3.7 -0.1 0.1 -1 -0.7 -0.5 -0.8 -2.5 -4 0.3 0.3 0.3 -0.1 0.3 0.3 -2.2 -3.3 0.5 1.5 1.1 1.5 1.1 0.3 -1 -2.6 0.7 1.2 1.1 1.2 0.3 -0.1 -1 -2.2
  • 23. The scientific heritage No 134 (2024) 23 Fig. 15. Sachsow-Nygard gradient map of the gravitational field of the Byandovan area in 2D version in isolines 10-6 mGal/cm (Force-Fortran programm SAXOW) Fig. 16. Sachsow -Nygard gradient map of the gravitational field of the Byandovan area in 3D version in isolines 10-6 mGal/cm (Force-Fortran programm SAXOW) Conclusions: 1. Gradient methods and higher derivative meth- ods make it possible to identify small variations in grav- ity anomalies and linearly elongated gradient zones that may be associated with mineral accumulations. 2. Algorithms for calculating gravity gradients us- ing the Sachsov-Nygard and third vertical derivatives methods are analyzed. gravity. The initial data of the study area have been prepared for working with the Forse-Fortran programs SAXOV, WZZZ and WSZ us- ing the Saxov-Nygaard method, third vertical deriva- tives. gravity and full gravity gradient, developed at the Department of Geophysics of ASOIU, 3. Using the example of the gravitational field model of the Byandovan area, the original field was fil- tered using the gradient method and the first derivative of the gravitational field of the Byandovan area in 2D and 3D versions (Order 1 derivative filter, Roberts Row director (3x3) and Order 1 derivative filter, Roberts Row director (3x3 )) using the SURFER program. 4. Based on the filtering results, gradient maps of the gravitational field model of the Byandovan area were constructed and analyzed in 2D and 3D versions. Positive gradient areas with different intensities (1.3- 0.8 )x10-6 mGal/cm, oriented in the northeastern and eastern directions, as well as an intense minimum of negative values of gravity gradients (0.4 -0.6 )x10-6 mGal/cm) in the northern part of the square is oval in shape and somewhat elongated in the eastern direction. 5. The values of gravity gradients were calculated using the Sachsov-Nygard method, third vertical deriv- atives gravity potensial and the full gravity gradient us- ing the SAXOV, WZZZ and WSZ programs and the corresponding grids of the resulting transformans were prepared for constructing the corresponding maps using the Surfer gravity program. 6. Maps of third vertical derivatives, total gradient and residual gravity anomalies (gradients) of the gravi- tational field model of the Byandovan area in 2D and 3D versions were constructed and analyzed. On the maps of total gradients and gradients of residual anom- alies (Saksova-Nygard), two maximum gradients are noted in the northeastern part of the study area, with an intensity of about 1.45 x10-6 mGal/cm. On the WZZZ map in the northeastern part, an intense minimum of the second negative derivatives of gravity is clearly visible, and in the rest of the area there are three large maxima
  • 24. 24 The scientific heritage No 134 (2024) with an intensity of (35-25)x10-11 mGal/cm2 of various orientations. References 1. Al-Banna A.S., Al-Kaisy S.A. Using of Gradi- ent Techniques for Depth Estimation of Gravity Source Tikrit Journal of Pure Science Vol. 11 No.(1) 2006, p.8. 2. Jafarov Kh.D., Tsimelzon I.O., Amiraslanov T.S. and others. Methodological guidelines for per- forming laboratory work on gravimagnetic prospecting and electrical prospecting on a computer. Baku, Az- INEFTEKHIM, 1981, 28 p. (in Russian). 3. Gadyrov V.G. Application of gravi-magnetic exploration in the search of oil-gas structures in the Kura basin of Azerbaijan. Baku: "Law" publishing house - 2010, 224 p.,12 (in Azerbaijani). 4. Isgandarov Elkhan. Transformation of grave- magnetic anomalies. Proceedings of the International PARCECO scientific conference organized by the Azerbaijan-French University (UFAZ), operating un- der the Azerbaijan State Oil and Industry University, November 30 - December 1, Baku, 2021, p.13. 5. İsgandarov E.H. Digital processing of gravimagnetic data. Proceedings of Azerbaijan interna- tional geophysics conference. Management of Geo- physics, Baku, 2017, 1p. 6. Iskandarov E. H., You Yunlong You Liguo. Transformation of gravitational anomalies by methods derivatives and gradients. Danish Scientific Jornal, № 21,2019, pp.13-16. 7. İsgаndаrov E.H. Digital modeling of gravity gradients for solving structural problems and direct hy- drocarbons search. XII Azerbaijan International Geo- physics Conference "The role of geophysical research in the exploitation of hydrocarbon resources in the cas- pian region and similar geological provinces" Dedi- cated to the 100th Anniversary of the birth of National Leader Heydar Aliyev, April 26-28, 2023, p.2. 8. İsgаndаrov E.H., Isgandarova L.E. Application of computer technology to solve the problem of gra- vimetry. Journal of science. Lyon №48, 2023, pp.6-11. 9. Mudretsova E. A., Veselova K. E. Gravity ex- ploration, Handbook - geophysics, 2-nd edition, revised and additional, M. Nedra, 1990, p.608. (in Russian). 10. Znamensky V.V. General course of field geo- physics, Textbook. manual for universities, M. Nedra, 1989, 520 pp. (in Russian)