𝒑𝒈 𝟗𝟗
𝑡𝑎𝑛𝑔𝑒𝑛𝑡
𝒑𝒈 𝟏𝟎𝟐
𝒑𝒈 𝟏𝟎𝟎
𝑥1 , 𝑦1
−𝑔 , −𝑓
𝑚𝑂𝑃 =
𝑦1 + 𝑓
𝑥1 + 𝑔
𝑚𝐿𝑃 = −
𝑥1 + 𝑔
𝑦1 + 𝑓
𝐿𝑃 ∶ 𝑦 − 𝑦1 = −
𝑥1 + 𝑔
𝑦1 + 𝑓
(𝑥 − 𝑥1)
𝒑𝒈 𝟏𝟎𝟎
𝑥1 , 𝑦1
𝑡𝑎𝑛𝑔𝑒𝑛𝑡
𝑔 = 𝑓 = 0
𝑥1 , 𝑦1
𝒑𝒈 𝟏𝟎𝟐
𝑥1 , 𝑦1
𝑔 =? , 𝑓 = ?
3𝑥 − 4𝑦
= 25
6𝑥 − 3𝑦 + 5 = 0
𝑥 − 2𝑦 + 13 = 0
2𝑥 = 3𝑦
5𝑥 − 12𝑦 + 17 = 0
𝑦 =
1
3
1
3
2 5
5
𝒑𝒈 𝟏𝟎𝟐
(𝑎) 𝐿𝑒𝑡 𝑂 = 𝑐𝑒𝑛𝑡𝑟𝑒 = (0, 0)
𝐿𝑒𝑡 𝑃 = (−2, 5)
𝑚𝑂𝑃 = −
5
2
𝑚𝐿𝑃 =
2
5
=
2 5
5
𝐿𝑒𝑡 𝐿 = 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑙𝑖𝑛𝑒
(𝑎) 𝐿𝑒𝑡 𝑂 = 𝑐𝑒𝑛𝑡𝑟𝑒 = (3, −1)
𝐿𝑒𝑡 𝑃 = (2, 2)
𝑚𝑂𝑃 =
2 + 1
2 − 3
= − 3
𝑚𝐿𝑃 =
1
3
𝐿𝑒𝑡 𝐿 = 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑙𝑖𝑛𝑒
𝒑𝒈 𝟏𝟎𝟏
𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒 𝑙 𝑖𝑠 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑎𝑡 𝑦 𝑎𝑥𝑖𝑠, 𝑓𝑖𝑛𝑑 𝑙
0 , 3
0 , −1
𝑔 = 𝑓 = −1
𝒑𝒈 𝟏𝟎𝟏
𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒 𝑙 𝑖𝑠 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑎𝑡 (−2, 2)
𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑖𝑠 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒 𝑙 𝑖𝑠 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑡𝑜 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑐𝑖𝑟𝑐𝑙𝑒
𝑔 = 0, 𝑓 = 1
𝒑𝒈 𝟏𝟎𝟐
(2, 1), (−2, −1)
25
4
(4, 6)
𝒑𝒈 𝟏𝟎𝟐
𝑘 = 9
𝒑𝒈 𝟏𝟎𝟑
𝒑𝒈 𝟏𝟎𝟑
𝑥1 , 𝑦1
𝑔 = 𝑓 = − 1
𝑥1 , 𝑦1
𝑥 , 𝑦
𝒑𝒈 𝟏𝟎𝟑
(2. 1)
2
5
,
9
5
𝑔 = 𝑓 = − 1
𝑥 = 2
3𝑥 − 4𝑦 + 6 = 0
𝑥 = 2
3𝑥 − 4𝑦 + 6 = 0
𝒑𝒈 𝟏𝟎𝟒
𝑥2 + 𝑦2 − 2𝑥 − 2𝑦 + 1 = 0
𝒑𝒈 𝟏𝟎𝟒 − 𝟏𝟎𝟓
𝑥 = 2
3𝑥 − 4𝑦 + 6 = 0
𝒑𝒈 𝟏𝟎𝟓
𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 2 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑠 & 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒𝑠
𝒑𝒈 𝟏𝟎𝟕
24𝑥 + 7𝑦 − 100 = 0
𝑥 − 𝑦 + 10 = 0
3𝑥 − 4𝑦 − 25 = 0
2𝑥 + 𝑦 − 8 = 0
24𝑥 − 7𝑦 − 20 = 0
𝑦 = 4
𝑥 + 𝑦 − 10 = 0
𝑥 = −5
𝑥 − 2𝑦 + 11 = 0
𝑥 = 2
3𝑥 + 4𝑦 = 0 𝑥 = 0
3 𝑥 − 𝑦 + 2 = 0
4𝑥 − 3𝑦 + 2 = 0
3 𝑥 + 𝑦 − 2 = 0
𝑦 =
2
5
tan 𝜃 =
12
5
𝒑𝒈 𝟏𝟎𝟕
3 𝑥 − 𝑦 + 2 = 0
3 𝑥 + 𝑦 − 2 = 0
𝑐𝑒𝑛𝑡𝑟𝑒 = (0, 0) , 𝑟 = 1
𝐿𝑒𝑡 𝐴 = (0, 2)
𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝐴 ∶ 𝑦 − 2 = 𝑚 (𝑥 − 0)
𝑚𝑥 + 𝑦 − 2 = 0
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝐴 𝑡𝑜 𝑐𝑒𝑛𝑡𝑟𝑒 ∶
−2
𝑚2 + 1
= 1
𝑚2 + 1 = 4
𝑚 = ± 3
𝑤ℎ𝑒𝑛 𝑚 = 3, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝐴 ∶
𝑤ℎ𝑒𝑛 𝑚 = − 3, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝐴 ∶
𝒑𝒈 𝟏𝟎𝟕
𝑐𝑒𝑛𝑡𝑟𝑒 = (2, 3) , 𝑟 = 2
𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑃 ∶ 𝑦 = 𝑚𝑥
𝐿𝑒𝑡 𝑃 = (0, 0)
𝑚𝑥 − 𝑦 = 0
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝐴 𝑡𝑜 𝑐𝑒𝑛𝑡𝑟𝑒 (2, 3) ∶
2𝑚 − 3
𝑚2 + 1
= 2
2𝑚 − 3 2 = 4 (𝑚2 + 1)
4𝑚2
+ 9 − 12𝑚 = 4𝑚2
+ 4
12𝑚 = 5
𝑚 =
5
12
𝐴
12
5
𝑚
𝜃
tan 𝜃 =
12
5
𝒑𝒈 𝟏𝟎𝟔
(𝑥. 𝑦)
𝒑𝒈 𝟏𝟎𝟕
65
19
4 5
5
(1. 0) (−3. 4)
𝑥2 + 𝑦2 + 2𝑥 − 4𝑦 − 20
= 0
𝒑𝒈 𝟏𝟎𝟕
𝑘 = 14 𝑘 = 4
𝑘 = 31 𝑘 = −19
𝒑𝒈 𝟏𝟎𝟕
𝑐𝑒𝑛𝑡𝑟𝑒 = (0, 0) , 𝑟 = 5 𝑃 = (𝑥, 𝑦) = (− 5, 10)
−5𝑥1 + 10𝑦1 − 25 = 0
𝑥1 − 2𝑦1 + 5 = 0
𝑥1
2
− 2𝑦1
2
− 25 = 0
𝒑𝒈 𝟏𝟎𝟖
𝑚𝐿 = −2. 𝐹𝑖𝑛𝑑 𝐿
𝒑𝒈 𝟏𝟎𝟖
𝒑𝒈 𝟏𝟎𝟗
2𝑥 − 𝑦 + 10 = 0 2𝑥 − 𝑦 − 10 = 0
4𝑥 + 3𝑦 + 25 = 0 4𝑥 + 3𝑦 − 25 = 0
3𝑥 − 𝑦 + 2 10 = 0 3𝑥 − 𝑦 − 2 10 = 0
𝑏 = ±2 2
3𝑥 − 4𝑦 + 20 = 0 3𝑥 − 4𝑦 − 20 = 0
2𝑥 − 𝑦 + 7 − 4 5 = 0
2𝑥 − 𝑦 + 7 + 4 5 = 0
𝒑𝒈 𝟏𝟎𝟗
3𝑥 + 4𝑦 − 29 = 0
3 5
5
, −
6 5
5
−
3 5
5
,
6 5
5
𝒑𝒈 𝟏𝟏𝟎
𝒑𝒈 𝟏𝟏𝟎
𝒑𝒈 𝟏𝟏𝟏
𝒑𝒈 𝟏𝟏𝟑
13
7𝑥2 + 7𝑦2 − 24𝑥 − 19 = 0
𝒑𝒈 𝟏𝟏𝟑
∴ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 ∶ 7𝑥2 + 7𝑦2 − 24𝑥 − 19 = 0
𝑔1 = 0, 𝑓1 = 0, 𝑐1 = −1 𝑔1 = 1, 𝑓1 = 0, 𝑐1 = 0
𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑏𝑙𝑢𝑒 & 𝑟𝑒𝑑 𝑐𝑖𝑟𝑐𝑙𝑒, 𝑦 = 0
𝐿𝑒𝑡 𝑐𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑔𝑟𝑒𝑒𝑛 𝑐𝑖𝑟𝑐𝑙𝑒, 𝑂 = (𝑥, 0)
𝑟 𝑓𝑜𝑟 𝑔𝑟𝑒𝑒𝑛 𝑐𝑖𝑟𝑐𝑙𝑒 = 𝑂𝐴 = 𝑂𝐵
𝐿𝑒𝑡 𝐵 = (3, 2)
Let 𝐴 = −
1
2
,
3
2
𝑥 +
1
2
2
+ 0 −
3
2
2
= 𝑥 + 3 2
+ 0 − 2 2
𝑥 =
12
7
, 𝑟 =
277
7
𝒑𝒈 𝟏𝟏𝟏 − 𝟏𝟏𝟐
𝒑𝒈 𝟏𝟏𝟐
𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑜𝑟𝑖𝑔𝑖𝑛 & 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑡ℎ𝑒 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑐𝑖𝑟𝑐𝑙𝑒𝑠.
𝑔1 = −4, 𝑓1 = 1, 𝑐1 = 6 𝑔1 = −
1
2
, 𝑓1 = 2, 𝑐1 = −3
𝒑𝒈 𝟏𝟏𝟑
𝐴 𝑐𝑖𝑐𝑙𝑒 𝑖𝑠 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑡𝑜 2 𝑐𝑖𝑟𝑐𝑙𝑒𝑠. 𝐹𝑖𝑛𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛.
𝑔1 = 3, 𝑓1 = 5, 𝑐1 = 12 𝑔1 = 2, 𝑓1 = 1, 𝑐1 = −2
𝑥2
+ 𝑦2
+ 𝑥 + 4𝑦 − 7 = 0 (𝑔𝑟𝑒𝑒𝑛 𝑐𝑖𝑟𝑐𝑙𝑒)
𝒑𝒈 𝟏𝟏𝟑
𝑔1 = ? , 𝑓1 = ? , 𝑐1 = ?
4𝑥2
+ 4𝑦2
+ 18𝑥 − 8𝑦 − 5 = 0
𝒑𝒈 𝟏𝟏𝟑
𝑔1 = ? , 𝑓1 = ? , 𝑐1 = ?
2𝑥2 + 2𝑦2 + 8𝑥 − 13𝑦 + 11 = 0
𝑥2
+ 𝑦2
− 4𝑥 − 8 = 0

SUEC 高中 Adv Maths (Locus) (Part 2).pptx

Editor's Notes

  • #2 https://www.cuemath.com/questions/prove-that-the-perpendicular-at-the-point-of-contact-to-the-tangent-to-a-circle-passes-through-the-centre/
  • #3 ntre/
  • #7 Knowing the equation of the circle and the coordinates of the tangent point, find the slope of the tangent.
  • #12 https://www.onlinemathlearning.com/circle-tangent-angle.html
  • #24 From a point P (-5, -10) outside the circle, x^2 + y^2 = 25, 2 tangent lines are drawn to the circle and the tangent points are A & B respectively. Find the equation of the line AB and the length of the chord.
  • #34 https://www.onlinemath4all.com/two-circles-are-touching-each-other.html