𝒑𝒈 𝟏𝟑𝟏
𝒑𝒈 𝟏𝟑𝟐
𝒑𝒈 𝟏𝟑𝟑
𝒑𝒈 𝟏𝟑𝟒
𝒑𝒈 𝟏𝟑𝟒
A dot over a number represents a recurring number.
𝒑𝒈 𝟏𝟑𝟒
𝒑𝒈 𝟏𝟑𝟒
2 = 2
1
2
2 2 = 2 × 2
1
2
1
2
= 2
1
2 × 2
1
4
2 2 2 = 2 2 × 2
1
2
1
2
1
2
= 2
1
2 × 2
1
4 × 2
1
8 = 2
1
2 +
1
4 +
1
8
2 2 2 . . . = 2
1
2 +
1
4 +
1
8 + ...
= 2
1
2 1−
1
2
= 2
𝒑𝒈 𝟏𝟑𝟒
The area of equilateral triangle ABC is S.
Connect the midpoints of its sides
to the midpoints of the triangles.
Get a small triangle, then connect the small triangles,
sum of infinite triangles = ?
𝑎𝑠𝑠𝑢𝑚𝑒 𝐴𝐴𝐵𝐶 = 𝑆 = 1
𝐴𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ∆ =
𝑆
4
=
1
4
𝑟 =
1
4
𝑆∞ =
1
1 −
1
4
=
4
3
𝒑𝒈 𝟏𝟑𝟓
𝒑𝒈 𝟏𝟑𝟓 − 𝟏𝟑𝟔
𝒑𝒈 𝟏𝟑𝟕
𝒑𝒈 𝟏𝟑𝟕
𝒑𝒈 𝟏𝟑𝟕
𝒑𝒈 𝟏𝟑𝟕
𝒑𝒈 𝟏𝟑𝟕
= 4𝑛3
+ 4𝑛 − 6𝑛2
− 𝟏
= 4
1
4
𝑛2 𝑛 + 1 2 + 4
𝑛 𝑛 + 1
2
− 6
1
6
𝑛 𝑛 + 1 2𝑛 + 1 − 𝒏
= 𝑛2
𝑛 + 1 2
+ 2𝑛 𝑛 + 1 − 𝑛 𝑛 + 1 2𝑛 + 1 − 𝑛
= 𝑛2
(𝑛2
+ 2𝑛 + 1) + 2𝑛2
+ 2𝑛 − 𝑛(2𝑛2
+ 3𝑛 + 1 − 𝑛
= 𝑛4 + 2𝑛3 + 𝑛2 + 2𝑛2 + 2𝑛 − 2𝑛3 − 3𝑛2 − 𝑛 − 𝑛
= 𝑛4
= 4
𝑘=1
𝑛
𝑘3
+ 4
𝑘=1
𝑛
𝑘 − 6
𝑘=1
𝑛
𝑘2
− 𝜮 𝟏
𝒑𝒈 𝟏𝟑𝟖

SUEC 高中 Adv Maths (GP Sum to Infinity).pptx

Editor's Notes

  • #11 https://www.geogebra.org/m/pkt5kkbf