SlideShare a Scribd company logo
1 of 228
DEVELOPMENT AND VALIDATION OF
NEW ANALYTICAL METHODS
FOR THE ESTIMATION OF
ANTI-DIABETICS AND STATINS
Ph.D. Viva-voce
By
Ms. K. Sravana Kumari, M.Pharm.,
Under the guidance of
Dr. B.Sailaja, M.Pharm., Ph.D.
Professor, IPT, SPMVV
Institute of Pharmaceutical Technology
SRI PADMAVATI MAHILA VISVAVIDYALAYAM
Tirupati, A.P.
17-09-2020
1
CONTENTS
 Introduction
 Review of Literature
 Aim and Objectives
4a. UV Spectroscopic method for Rosuvastatin Calcium
4b. Colorimetric method for Rosuvastatin Calcium
4c. Stability Indicating RP-HPLC method for Rosuvastatin Calcium
4d. UV Spectroscopic method for Pitavastatin Calcium
5a. QbD enabled Stability indicating RP-HPLC method for
Empagliflozin 2
3
5b. UV Spectroscopic method for Canagliflozin
6a. Stability indicating simultaneous RP-HPLC method for
Ertugliflozin Pidolate and Metformin Hydrochloride
6b. Stability indicating simultaneous RP-HPLC method for
Empagliflozin and Linagliptin
 In-vitro Bioanalytical RP-HPLC method for Empagliflozin
 Summary and Conclusion
 References
List of Presentations and Publications
Acknowledgements
4
INTRODUCTION
5
In pharmaceutical industry, there is a need for the invention of suitable novel
analytical methods from time to time for testing the quality of
bulk drugs, excipients and formulations
Method development and validation is an integral part of drug discovery and
drug development
UV-Visible Spectroscopy and HPLC are the most popular techniques used for
the identification and estimation of drugs with good accuracy and precision
Simultaneous method development is useful for analysis of combination of
drugs [Rajashree Mashru et al., 2015]
6
QbD approach helps to develop a more robust and cost-effective analytical
method by studying simultaneous influence of more than one variable on
method optimization [Ahuja and Scypinski, 2013]
Bioanalytical method development is used for the estimation of drugs and their
metabolites in various biological fluids like blood, urine, plasma, serum, saliva
and cerebrospinal fluid
Worldwide, around 463 million people are suffering from type-2 Diabetes
mellitus [International Diabetes Federation, 2019]
 Type-2 Diabetes mellitus patients are at increased risk for Dyslipidemia
associated cardiovascular diseases
7
Globally, about 1/3rd of ischemic heart disease and 1/5th of cerebro-vascular
disease are due to Dyslipidemia and equates to nearly 2.6 million deaths
[WHO global estimates, (2014)]
Statins are used for treating Dyslipidemia associated cardiovascular risk
Rosuvastatin Calcium (10 mg) and Pitavastatin Calcium (4 mg), effectively
reduces LDL cholesterol and triglyceride levels [Sharma and Sharma, 2017]
Empagliflozin, Ertugliflozin and Canagliflozin (SGLT-2 inhibitors), are widely
used for controlling plasma glucose levels with decreased cardio-vascular risk
[Ralston et al., 2018]
8
Combination of Ertugliflozin with Metformin effectively reduces HbA1c levels in
chronic diabetic patients [FDA label, Segluromet, 2017]
Combination of Empagliflozin and Linagliptin [stimulates inactive beta cells]
exerts synergistic effect compared to mono-drug therapy [Katzung et al., 2015]
 There will be always a need for the development and validation of novel
analytical methods for the estimation of drugs in bulk and dosage forms in order
to deliver good quality and affordable medicines to patients
9
The present study was focused on the development and validation of novel
analytical techniques for the estimation of
Rosuvastatin Calcium by UV-Visible Spectroscopic and stability indicating
RP-HPLC methods
Pitavastatin Calcium by UV Spectroscopic method
Empagliflozin by RP-HPLC using QbD approach
Canagliflozin by UV Spectroscopic method
Simultaneous stability indicating RP-HPLC methods for Ertugliflozin and
Metformin and for Empagliflozin and Linagliptin in bulk and tablets
In-vitro bioanalytical method for Empagliflozin in human plasma by RP-HPLC
REVIEW OF LITERATURE
10
11
ESTIMATION OF ROSUVASTATIN CALCIUM IN BULK AND TABLET
FORMULATION BY UV SPECTROSCOPY
Ref Solvent
λ max
[nm]
Linearity
[μg/ml]
LOD
[μg/ml]
LOQ
[μg/ml]
Priyanka Pannure
et al., 2018
ACN:
Methanol
(6:40)
242 4-24 0.75 2.27
Singh
et al., 2018
Methanol 244 2-18 - -
Bokhare
et al., 2018
Phosphate
buffer pH 7.4
246 10-150 - -
Lahare
et al., 2014
Methanol
Absorption max: 252
AUC method : 247-257
First order derivative:
Maxima-238
Minima- 205
5-35 - -
Gupta
et al., 2008
Methanol 244 2-18
Uyar
et al., 2007
Methanol 243 1-60 0.33 1.00
12
ESTIMATION OF ROSUVASTATIN CALCIUM IN BULK AND TABLET
FORMULATION BY COLORIMETRY
Ref Reagent Solvent λ max
Linearity
[μg/ml]
LOD
[μg/ml]
LOQ
[μg/ml]
Lima
et al., 2017
Quinalizarin Methanol 579 6-15 0.9 mg/ml 3.0 mg/ml
Ramadan
et al., 2015
Bromocresol
green
Chloroform 416 0.482-24.077 0.045 0.13
Ramadan
et al., 2014
Iodine ACN 360 2.408-48.154 0.28 0.85
Dwivedi
et al., 2011
Cosneasie
Brilliant Blue R
- 595 100-500
ESTIMATION OF ROSUVASTATIN CALCIUM IN BULK AND
TABLET FORMULATION BY RP-HPLC
13
Ref Chromatographic Conditions Validation Parameters
Hassouna et al., 2017 Column : Eclipse XDB C8
(250mm x 4.6mm, 5μm)
Mobile Phase : pH 4.5 0.05M Sodium
dihydrogen phosphate
buffer : ACN (50:50 % v/v)
Flow rate : 1.2 ml/min
Wavelength : 245 nm
Diluent : Methanol
Elution : Isocratic
Inj. Vol. : 10 μl
Temperature : Ambient
Run time : 5 mins
Rt : 3.684 mins
Linearity : 5-100 µg/ml
LOD : 1.5µg/ml
LOQ : 4.56µg/ml
Sirisha et al., 2017 Column : Agilent zorbax RP C18
(150mm x 4.6mm, 5μm)
Mobile Phase : Methanol: OPA buffer
(pH 3.1) [35:65 % v/v]
Flow rate : 1.0 ml/min
Wavelength : 282 nm
Diluent : Mobile phase
Elution : Isocratic
Inj. Vol. : 50 μl
Temperature : Ambient
Run Time : 5 mins
Rt : 1.323 mins
Linearity : 0.5-16 µg/ml
LOD : 3.5 µg/ml
LOQ : 10.5 µg/ml
14
Ref Chromatographic Conditions Validation Parameters
Suares and
Prabhakar, 2016
Column : Kromasil C18
(250mm x 4.6mm, 5μm)
Mobile phase : Buffer pH 4.8 (0.78 %
NaH2PO4) : ACN (50:50 % v/v)
Flow rate : 1.0 ml/min
Wavelength : 241nm
Diluent : Mobile phase
Elution : Isocratic
Inj. Vol. : 20 µl
Temperature : ambient
Run Time : 8 mins
Rt : 4.72 mins
Linearity : 1.56-50 µg/ml
LOD : 0.17 µg/ml
LOQ : 0.7 µg/ml
Ebru Cubuk
Demiralay et al.,
2016
Column : X-terra -C18
(250mm x 4.6mm, 5µm)
Mobile Phase : ACN : Water (50:50)
Flow rate : 1.0 ml/min
Wavelength : 242 nm
Diluent : ACN, Mobile Phase
Elution : Isocratic
Inj. Vol. : 20 µl
Temperature : 250C
Run time : 10 mins
Rt : 5.502 mins
Linearity : 4-14 µg/ml
LOD : 0.221 µg/ml
LOQ : 0.670 µg/ml
15
Ref Chromatographic Conditions Validation Parameters
Rambabu
et al., 2015
Column : Thermo-hypersil BDS
C18 (150mm x 4.6mm, 5μm)
Mobile phase : Buffer (KH2PO4) : ACN
(40:60 v/v)
Flow rate : 0.8 ml/min
Wavelength : 243 nm
Diluent : Water : ACN (90:10)
Elution : Isocratic
Inj. Vol. : 20 µl
Temperature : 300C
Run Time : 12 mins
Rt : 3.806 mins
Linearity: 5-30 µg/ml
LOD : 0.041 µg/ml
LOQ : 0.1434 µg/ml
Prabhu
Venkatesh
et al., 2015
Column : Chiralpak IB
(250mm x 4.6mm, 5μm)
Mobile Phase : n-Heptane, 2-Propanol :
Trifluoroaceticacid (85:15:01v/v)
Flow rate : 0.2 ml/min
Wavelength : 242 nm
Diluent : HPLC water
Elution : Isocratic
Temperature : 25OC
Inj. Vol. : 10 μl
Run Time : 24 mins
Rt : 12.524 mins
Linearity : 0.2-3 µg/ml
LOD : -
LOQ : -
16
Ref Chromatographic Conditions Validation Parameters
Usha Rani et al., 2014 Column : Eclipse XDB plus C18
(150mm x 4.6mm, 5μm)
Mobile Phase : ACN: Water (60:40)
Flow rate : 1.0 ml/min
Wavelength : 242 nm
Diluent : Mobile Phase
Elution : Isocratic
Temperature : Ambient
Inj. Vol. : 20 μl
Run time : 10 mins
Rt : 1.787 mins
Linearity : 10-50 µg/ml
LOD : 0.08 µg/ml
LOQ : 0.25 µg/ml
Gowrisankar et al., 2013 Column : Luna C18
(250mm × 4.6 mm, 5μm)
Mobile Phase : Triethylamine buffer
pH 4.5: ACN : Methanol
(45:25:35)
Flow rate : 1.0 ml/min
Wavelength : 248 nm
Diluent : Mobile Phase
Elution : Isocratic
Inj. Vol. : 20 μl
Temperature : ambient
Run Time : 11 mins
Rt : 7.18 mins
Linearity : 0.5-30 µg/ml
LOD : 0.2 µg/ml
LOQ : 0.55 µg/ml
17
Ref Chromatographic Conditions Validation Parameters
Anup Kumar
Chakraborty et al.,
2011
Column : Phenomenex-C18
(250mm x 4.6mm, 10µm)
Mobile Phase : Buffer: ACN (55:45)
Buffer : Ammonium acetate pH 5 with
Glacial acetic acid
Flow rate : 1.0 ml/min
Wavelength : 244 nm
Diluent : Mobile Phase
Elution : Isocratic
Inj. Vol. : 20 μl
Temperature : -
Run time : 10 mins
Rt : 6 mins
Linearity : 70-130 %
LOD : -
LOQ : -
Donthula et al.,
2011
Column : Luna C18
(250mm x 4.6mm, 5μm)
Mobile Phase : Buffer (pH 4.5): ACN:
Methanol (45:25:35)
Flow rate : 1.0 ml/min
Wavelength : 248 nm
Diluent : Methanol
Elution : Isocratic
Inj. Vol. : 20 μl
Temperature : -
Run Time : 20 mins
Rt : 9.9 mins
Linearity: 25-75 µg/ml
LOD : 3.5 µg/ml
LOQ : 10.5 µg/ml
18
Ref Chromatographic Conditions Validation Parameters
Pandya et al., 2010 Column : Thermo hypersilC18
(100mm x 4.6mm, 5μm)
Mobile Phase : ACN : KH2PO4 (50:50, pH 3)
Flow rate : 0.5 ml/min
Wavelength : 243 nm
Diluent : Methanol, Mobile Phase
Elution : Isocratic
Run Time : 5 mins
Rt : 3.333 mins
Linearity : 5-30 µg/ml
LOD : 0.14 µg/ml
LOQ : 0.46 µg/ml
Kaila et al., 2010 Column : YMC C8
(150mm × 4.6mm, 5μm)
Mobile Phase : ACN: Water
(40:60, v/v) pH 3.5
Flow rate : 1.5 ml/min
Wavelength : 242 nm
Diluent : Water: ACN (50:50)
Elution : Isocratic
Temperature : ambient
Inj. Vol. : 20 μl
Run time : 10 mins
Rt : 4.86 mins
Linearity : 0.5-80 µg/ml
LOD : 0.1 µg/ml
LOQ : 0.5 µg/ml
19
Ref Chromatographic Conditions Validation Parameters
Lakshmana Rao and
Suneetha, 2010 Column : RP-C18 column
(100mm x 4.6 mm, 3μm)
Mobile Phase : 0.02M phosphate buffer
pH 6.8 : ACN (60:40 v/v)
Flow rate : 0.6 ml/min
Wavelength : 242 nm
Diluent : ACN, Mobile phase
Elution : Isocratic
Inj. Vol. : 20 μl
Run Time : 5 mins
Rt : 3.424 mins
Linearity : 20-100 µg/ml
LOD : 0.017 µg/ml
LOQ : 0.052 µg/ml
Hasumathi et al., 2009 Column : Phenomenex-C18
(250mm x 4.6mm, 5µm)
Mobile Phase : ACN : 0.5% Formic acid
(50:50)
Flow rate : 1.0 ml/min
Wavelength : 248 nm
Diluent : ACN
Elution : Isocratic
Inj. vol. : 20 µl
Temperature : Ambient
Run time : 10 mins
Rt : 6.742mins
Linearity : 5-300 µg/ml
LOD : 0.0905 µg/ml
LOQ : 0.318 µg/ml
20
ESTIMATION OF PITAVASTATIN CALCIUM IN BULK AND
TABLET FORMULATION BY UV SPECTROSCOPY
Ref Solvent
λ max
[nm]
Linearity
[μg/ml]
LOD
[μg/ml]
LOQ
[μg/ml]
Yunoos et al., 2014 0.1 N HCl 249.5 2-12 0.122 0.371
Panchal et al., 2009 Methanol 238 10-60 0.406 1.230
ESTIMATION OF EMPAGLIFLOZIN IN BULK AND TABLET
FORMULATION BY RP-HPLC BY APPLYING QbD APPROACH
21
Ref Chromatographic Conditions Validation Parameters
Kumar
et al., 2019
Column : Enable C18
(250mm x 4.6mm, 5μm)
Mobile Phase : Methanol : Water(70:30)
Flow rate : 1.0 ml/min
Wavelength : 233 nm
Diluent : Mobile Phase
Elution : Isocratic
Temperature : Ambient
Inj. Vol. : 20 μl
Run time : 20 mins
Rt : 6.2 mins
Linearity : 10-90 µg/ml
LOD : 0.42 µg/ml
LOQ : 1.16 µg/ml
Patil et al.,
2016
Column : Phenomenex C18
(250mm x 4.6mm, 5μm)
Mobile Phase : Methanol : Water(70:30)
Flow rate : 1.0 ml/min
Wavelength : 224 nm
Diluent : Methanol, Mobile Phase
Elution : Isocratic
Temperature : 400C
Inj. Vol. : -
Run time : 5 mins
Rt : 4.808 mins
Linearity : 2-14 µg/ml
LOD : 0.3589 µg/ml
LOQ : 1.0876 µg/ml
22
Ref Chromatographic Conditions Validation Parameters
Shyamala et al., 2016 Column : Hypersil BDS
(250mm x 4.6mm, 5μm)
Mobile Phase : 0.1% OPA buffer :ACN
(70:30)
Flow rate : 1.0 ml/min
Wavelength : 233nm
Diluent : -
Elution : Isocratic
Temperature : 300C
Inj. Vol. : -
Run time : 7 mins
Rt : 3.23 mins
Linearity : 25-150 µg/ml
LOD : 0.068 µg/ml
LOQ : 0.207 µg/ml
23
ESTIMATION OF CANAGLIFLOZIN IN BULK AND TABLET
FORMULATION BY UV SPECTROSCOPY
Ref Solvent
λ max
[nm]
Linearity
[μg/ml]
LOD
[μg/ml]
LOQ
[μg/ml]
Singh et al., 2019 Methanol 290 5-50 0.00945 2.8639
Chinta Pooja et al., 2018 Phosphate buffer 289 20-120 - -
Kaur et al., 2015 Methanol 290 5-10 0.084 0.255
24
SIMULTANEOUS ESTIMATION OF ERTUGLIFLOZIN AND
METFORMIN IN BULK AND TABLET FORMULATION BY RP-HPLC
Ref Chromatographic Conditions Validation Parameters
Parameter ERTU MET
Venkateswara Rao
et al., 2019
Column : BDS C8
(150mm x 4.6mm,5μm)
Mobile Phase : KH2PO4 buffer: ACN
(55:45)
Flow rate : 1.0 ml/min
Wavelength : 224 nm
Diluent : Water : ACN
(50:50)
Elution : Isocratic
Temperature : -
Inj. Vol. : 10 μl
Run time : 6 mins
Linearity
(µg/ml)
1.875-11.25 125-750
LOD
(µg/ml)
0.07 1.70
LOQ
(µg/ml)
0.21 5.16
Rt (mins) 3.136 2.383
Nizami et al., 2018 Column : ACE C18
(150mm x 4.6mm,5μm)
Mobile Phase : KH2PO4 buffer : ACN
(70:30)
Flow rate : 1.0 ml/min
Wavelength : PDA at 240 nm
Diluent : ACN : Water (50:50)
Elution : Isocratic
Temperature : 300C
Inj. Vol. : 10 μl
Run time : 6 mins
Linearity
(µg/ml)
3-15 12.5-125
LOD
(µg/ml)
0.43 0.74
LOQ
(µg/ml)
1.30 2.24
Rt (mins) 3.203 2.106
25
SIMULTANEOUS ESTIMATION OF EMPAGLIFLOZIN AND LINAGLIPTIN
IN BULK AND TABLET FORMULATION BY RP-HPLC
Ref Chromatographic Conditions Validation Parameters
Parameter EMPA LINA
Lakshmana Rao
et al., 2019
Column : Kromasil C18
(250mm x 4.6mm, 5μm)
Mobile Phase : 0.1% OPA : ACN
(60:40 % v/v)
Flow rate : 1ml/min
Wavelength : 230 nm
Diluent : -
Elution : Isocratic
Inj. Vol. : -
Temperature : -
Run time : -
Linearity
(µg/ml)
- -
LOD
(µg/ml)
0.44 0.23
LOQ (µg/ml) 1.34 0.70
Rt (mins) 2.139 2.759
Anjali Bakshi
et al., 2018
Column : Thermo C18
(250mm x 4.6mm, 5μm)
Mobile Phase : KH2PO4 buffer pH (3.4)
: Methanol (70:30 % v/v)
Flow rate : 1.0 ml/min
Wavelength : 240 nm
Diluent : Methanol, Mobile Phase
Elution : Isocratic
Inj. Vol. : 10 μl
Temperature : 300C
Run time : 5 mins
Linearity
(µg/ml)
50-150 50-150
LOD (µg/ml) 0.76 0.39
LOQ (µg/ml) 2.32 1.20
Rt (mins) 3.021 3.969
26
Ref Chromatographic Conditions Validation Parameters
Parameter EMPA LINA
Jayalaxmi
et al., 2018
Column : Agilent C18
(150mm x 4.6mm, 5μm)
Mobile Phase : Methanol: Phosphate
buffer pH 3 (70:30)
Flow rate : 1.0 ml/min
Wavelength : 254 nm
Elution : Isocratic
Run time : 8 mins
Linearity
(µg/ml)
10-50 20-100
LOD
(µg/ml)
2.17 0.0372
LOQ
(µg/ml)
6.60 0.1125
Rt (mins) 2.999 2.804
Sirigiri
et al., 2018
Column : Hypersil ODS 3V
(250mm x 4.6mm, 5μm)
Mobile Phase : KH2PO4 (pH 2.20) – A
Water : ACN - (5:95) - B
Flow rate : 1.0 ml/min
Wavelength : 225 nm
Diluent : 1. Water : ACN (70:30)
2. Water : ACN (50:50)
Elution : Gradient
Temperature : 300C
Inj. Vol. : 10 μl
Run time : 25 mins
Linearity
(µg/ml)
100.09-400.37 20.14-80.54
LOD
(µg/ml)
- -
LOQ
(µg/ml)
- -
Rt (mins) 8.390 5.388
27
Ref Chromatographic Conditions Validation Parameters
Parameter EMPA LINA
Srinivasa rao
et al., 2017
Column : Agilent C18
(150mm x 4.6mm, 5μm)
Mobile Phase : Methanol : Phosphate
buffer pH 3 : 70:30
Flow rate : 1.0 ml/min
Wavelength : 254 nm
Diluent : -
Elution : Isocratic
Temperature : Ambient
Inj. Vol. : 10 μl
Run time : 10 mins
Linearity (µg/ml) 10-50 20-100
LOD
(µg/ml)
2.17 0.0372
LOQ (µg/ml) 6.60 0.1125
Rt (mins) 3.907 2.365
Abdel Ghany
et al., 2017
Column : X-Terra
(250mm x 4.6mm, 5μm)
Mobile Phase : 0.1% aq. formic acid
buffer (pH 3.6) :
Methanol : ACN
(40:20:40)
Flow rate : 2.0 ml/min
Wavelength : 226 nm
Diluent : Methanol
Elution : Isocratic
Temperature : 250C
Inj. Vol. : 20μl
Run time : 10 mins
Linearity (µg/ml) 4-100 2-50
LOD
(µg/ml)
0.79 0.49
LOQ (µg/ml) 2.40 1.50
Rt (mins) 3.0 1.5
28
Ref Chromatographic Conditions Validation Parameters
Parameter EMPA LINA
Nazneen and
Sreedevi, 2016
Column : BDS C18
(250mm x 4.6mm, 5μm)
Mobile Phase : 0.1% Perchloric acid :
ACN (60:40)
Flow rate : 1.0 ml/min
Wavelength : 230 nm
Diluent : -
Temperature : 300C
Inj. vol. : -
Elution : Isocratic
Run time : 7 mins
30mins for degradation
Linearity (µg/ml) 25-150 12.5-75
LOD (µg/ml) 0.03 0.43
LOQ (µg/ml) 0.09 1.32
Rt (mins) 2.05 4.10
Jyothirmai et al.,
2016
Column : Inertsil ODS C18
(150mm x 4.6mm, 5μm)
Mobile Phase : Methanol : ACN : 0.1%
: OPA buffer (30:60:10)
Flow rate : 1.0 ml/min
Wavelength : 246 nm
Diluent : Methanol
Temperature : -
Inj. vol. : 20 μl
Elution : Isocratic
Run time : 10.0 mins
Linearity (µg/ml) 5-30 2.5-15
LOD (µg/ml) 0.06 0.03
LOQ (µg/ml) - -
Rt (mins) 4.16 5.73
29
Ref Chromatographic Conditions Validation Parameters
Parameter EMPA LINA
Madhusudhan
et al., 2015
Column : ODS C18
(250mm x 4.6mm, 5μm)
Mobile Phase : 0.1% OPA buffer :
ACN (45:55)
Flow rate : 1.0 ml/min
Wavelength : 245 nm
Diluent : Water : ACN
(50:50)
Elution : Isocratic
Temperature : 300C
Inj. Vol. : 10 μl
Run time : 7 mins
Linearity
(µg/ml)
25-150 12.76- 76.56
LOD (µg/ml) - -
LOQ (µg/ml) - -
Rt (mins) 3.6 2.2
ESTIMATION OF EMPAGLIFLOZIN IN PLASMA BY RP-HPLC
30
Ref Chromatographic Conditions Validation Parameters
Padmaja et al.,
2018
Column : Agilent C18
(250mm x 4.6mm, 5μm)
Mobile Phase : Methanol : ACN (50 : 50)
Extraction : Liquid-liquid extraction with
30% ethyl acetate
Flow rate : 1.2 ml/min
Wavelength : PDA detector at 270 nm
Diluent : Methanol, ACN
Temperature : 350C
Inj. Vol. : 20 μl
Run time : 10.0 mins
Rt : 8.898 mins
Linearity : 50-150 µg/ml
AIM & OBJECTIVES
31
Aim:
To develop and validate new analytical methods for the estimation of selected
anti-diabetics and statins
Objectives:
To select anti-diabetic drugs and statin drugs
To select analytical methods to be developed
UV Spectroscopic method for Rosuvastatin Calcium
Colorimetric method for Rosuvastatin Calcium
 Stability indicating RP-HPLC method for Rosuvastatin Calcium
UV Spectroscopic method for Pitavastatin Calcium
32
33
 QbD enabled stability indicating RP-HPLC method for Empagliflozin
 UV Spectroscopic method for Canagliflozin
 Stability indicating simultaneous RP-HPLC method for Ertugliflozin and
Metformin
 Stability indicating simultaneous RP-HPLC method for Empagliflozin and
Linagliptin
 In-vitro bioanalytical RP-HPLC method for Empagliflozin in human plasma
 To validate the developed methods as per ICH Q2(R1) /USFDA guidelines
34
METHOD DEVELOPMENT
AND
VALIDATION
4a. DEVELOPMENT AND VALIDATION OF
UV SPECTROSCOPIC METHOD
FOR THE DETERMINATION OF
ROSUVASTATIN CALCIUM IN BULK AND TABLETS
 Rosuvastatin Calcium (10mg) - efficiently reduces LDL and triglycerides at
lower doses [Sharma et al., 2017]
 The methods reported for the estimation of Rosuvastatin Calcium by
UV Spectroscopy are expensive as organic solvents are used as diluent
35
36
Structure
Molecular Weight-1001.137
)Ca+2
)Ca+2
Class Statins (HMG Co A reductase inhibitors)
pKa 4.00
Log P 4.19
Solubility slightly soluble in ethanol and
sparingly soluble in water and Methanol
DRUG PROFILE: ROSUVASTATIN CALCIUM
 METHOD DEVELOPMENT [Gorog, 2011]: ROSUVASTATIN CALCIUM:
Diluent: 0.1N NaOH
 Preparation of Standard stock solution-I of Rosuvastatin Calcium
[1000μg/ml]:
37
10 mg
Rosuvastatin
Calcium
+
5ml diluent
Sonicated for
10mins
+
made up to 10ml
1000μg/ml
Rosuvastatin
Calcium
 Preparation of Standard stock solution-II of Rosuvastatin Calcium [100μg/ml]:
1.0ml standard
stock-I
Diluted to 10ml
with diluent
100μg/ml
Rosuvastatin Calcium
 Preparation of working standard solution of Rosuvastatin Calcium [4μg/ml]:
0.4 ml
standard
stock-II
4μg/ml
Rosuvastatin
Calcium
Diluted to 10ml
with diluent
UV Spectrum of Rosuvastatin Calcium [λ max 240nm]
38
RESULTS AND DISCUSSION
39
VALIDATION [ICH Q2 (R1), 2005]: ROSUVASTATIN CALCIUM
% Spiked
Fixed sample
concentration
(μg/ml)
Amount Spiked
(μg/ml)
Total Amount
recovered
(μg/ml)
Mean % recovery
± SD
%RSD
80 2 1.6 3.558 98.82± 0.18 0.18
100 2 2.0 4.101 101.01±0.54 0.54
120 2 2.4 4.332 98.45 ±0.27 0.27
PRECISION
Concentration
(μg/ml)
Intra-day
Precision
Mean ± SD
% RSD
Inter-day
Precision
Mean ± SD
% RSD
1 0.082 ± 0.000577 0.704 0.084 ± 0.0015 1.817
4 0.248 ± 0.001154 0.465 0.249 ± 0.001 0.401
6 0.360 ± 0.000577 0.160 0.358 ± 0.0015 0.418
ACCURACY
40
Concentration [x]
(μg/ml)
Absorbance* [y]
1 0.082
2 0.129
3 0.187
4 0.248
5 0.304
6 0.359
Linear Regression Equation
y = mx + c y = 0.056 x + 0.021
Slope (m) 0.056
Intercept (c) 0.021
Correlation coefficient (R2) 0.999
LOD 0.0201 μg/ml
LOQ 0.0612μg/ml
LINEARITY, LOD AND LOQ OF ROSUVASTATIN CALCIUM
*Mean of three observations
41
LINEARITY PLOT OF ROSUVASTATIN CALCIUM
y = 0.0563x + 0.0211
R² = 0.999
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0 1 2 3 4 5 6 7
Absorbance(AU)
Concentration [µg/ml]
Tablet brand Label claim Amount found ± SD % Assay ± SD % RSD
Roseday 10 mg 9.890 ± 0.138 98.90 ±1.38 1.402
ASSAY OF ROSUVASTATIN CALCIUM
42
λ max 240 nm
Beer’s law limits 1-6 μg/ml
Sandell’s sensitivity
[μg/ cm2- 0.001 absorbance units]
0.012
Regression equation y = 0.056x + 0.021
Slope 0.056
Intercept 0.021
Correlation coefficient (R2) 0.999
% Recovery 98.45-101.01
% RSD
Intra-day Precision 0.160-0.704
Inter-day Precision 0.401-1.817
LOD 0.0201 μg/ml
LOQ 0.0612 μg/ml
Mean % Assay
[IP, 2018 limits- 90-110 %]
98.90 ±1.38
SUMMARY OF VALIDATION OF ROSUVASTATIN CALCIUM
43
The present developed method was more sensitive and
cost-effective
 Diluent: organic solvent → 0.1N NaOH
 Linearity: [2-18 → 1-6 μg/ml]
 LOD: [0.021 μg/ml]
LOQ: [0.0612 μg/ml]
4b. DEVELOPMENT AND VALIDATION OF
COLORIMETRIC METHOD FOR THE DETERMINATION
OF ROSUVASTATIN CALCIUM IN BULK AND TABLETS
The reported methods are
Complex
Time consuming
Expensive - involves extraction of colored complex
44
METHOD DEVELOPMENT [Gorog, 2011]: ROSUVASTATIN CALCIUM
 Diluent: Methanol
 Preparation of 0.1M Ferric chloride [FeCl3] reagent
[IP, 2018]
 Preparation of 0.5% w/v Potassium ferricyanide reagent
 Preparation of Standard stock solution-I of Rosuvastatin Calcium
[1000μg/ml]:
45
10 mg
Rosuvastatin
Calcium
+
5ml diluent
Sonicated for
10mins
+
made up to 10ml
with diluent
1000μg/ml
Rosuvastatin Calcium
46
 Preparation of Standard stock solution-II of Rosuvastatin Calcium [100μg/ml]:
1.0ml standard
stock-I
Kept aside for
10mins
+
Diluted to
10ml
100μg/ml
Rosuvastatin Calcium
Preparation of working standard solution of Rosuvastatin Calcium [4μg/ml]:
0.4ml standard
stock-II
+
1.5 ml 0.1M FeCl3
+
1.0 ml 0.5%
Potassium
ferricyanide
Diluted to 10ml
with diluent
4μg/ml
Rosuvastatin Calcium
47
0
0.1
0.2
0.3
0.4
0.5
0.6
400 800
Absorbance
Wavelength
RESULTS AND DISCUSSION
λ max OF ROSUVASTATIN CALCIUM – COLORIMETRY (635nm)
48
The probable mechanism involved in the green colored
complex formation is
 Reduction of ferric ion to ferrous ion by Rosuvastatin
Calcium
The reduced ferrous ion reacted with potassium ferri cyanide
and formed green colored Ferro-ferricyanide complex
[Vamsi Krishna and Gowrisankar, 2007]
3 Fe2+ + 2[Fe (CN) 6]3- Fe3 [Fe (CN)6]
49
VALIDATION [ICH Q2 (R1), 2005]: ROSUVASTATIN CALCIUM
% Spiked
Fixed sample
concentration
(μg/ml)
Amount
Spiked
(μg/ml)
Total Amount
recovered
(μg/ml)
Mean % Recovery
± SD
%RSD
80 4 3.2 7.21 100.09 ± 0.85 0.85
100 4 4.0 8.03 100.37 ± 0.62 0.62
120 4 4.8 8.73 99.24 ± 0.23 0.23
PRECISION
Concentration
(μg/ml)
Intra-day
Precision
Mean ± SD
% RSD
Inter-day
Precision
Mean ± SD
%RSD
4 0.2325 ± 0.0018 0.774 0.234 ± 0.0023 0.982
ACCURACY
50
Concentration [x]
(μg/ml)
Absorbance* [y]
0 0
1 0.068
2 0.124
3 0.185
4 0.237
5 0.297
6 0.357
Linear Regression Equation
y = mx + c
y = 0.058 x + 0.005
Slope (m) 0.058
Intercept (c) 0.005
Correlation coefficient (R2) 0.999
LOD 0.041 μg/ml
LOQ 0.123 μg/ml
*Mean of three determinations
LINEARITY, LOD AND LOQ OF ROSUVASTATIN CALCIUM
51
Calibration Curve
y = 0.0586x + 0.0052
R² = 0.9993
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0 1 2 3 4 5 6 7
AbsorbanceAU
Concentration [μg/ml]
Tablet brand Label claim Amount found ±SD %Assay ± SD %RSD
Roseday 10 mg 10.05 ± 0.108 100.57 ± 1.08 1.07
ASSAY
LINEARITY PLOT OF ROSUVASTATIN CALCIUM
52
λ max 635 nm
Beer’s law limits 1-6μg/ml
Sandell’s sensitivity
[μg/ cm2- 0.001 absorbance units]
0.0147
Regression equation y = 0.058x + 0.005
Slope 0.058
Intercept 0.005
Correlation coefficient (R2) 0.999
% Recovery 99.24 – 100.34
% RSD
Intra-day Precision 0.774
Inter-day Precision 0.982
Limit of Detection 0.041 μg/ml
Limit of Quantitation 0.123 μg/ml
Mean % Assay
[IP, 2018 Limits: 90-110 %]
100.57 ±1.08
SUMMARY OF VALIDATION OF ROSUVASTATIN CALCIUM
53
The developed method was simple, rapid, sensitive and cost-effective
compared to the best method reported
 Involved no extraction of colored complex
Linearity: [100-500 → 1-6 μg/ml]
 LOD: [0.041 μg/ml]
 LOQ: [0.123 μg/ml]
4c. DEVELOPMENT AND VALIDATION OF
STABILITY INDICATING RP-HPLC METHOD
FOR THE DETERMINATION OF
ROSUVASTATIN CALCIUM IN BULK AND TABLETS
The reported RP-HPLC methods are
Time consuming- Rt was more and phosphate buffer preparation
 More volume of organic solvents
54
55
Structure
Molecular Weight-1001.137
)Ca+2
)Ca+2
Class Statins (HMG Co A reductase inhibitors)
pKa 4.00
Log P 4.19
Solubility slightly soluble in ethanol and sparingly soluble in
water and Methanol
DRUG PROFILE: ROSUVASTATIN CALCIUM
56
10 mg
Rosuvastatin
Calcium
+
5 ml diluent
volume up to 10ml
+
filtered using 0.45µ
PTFE filter
1000µg/ml
 Preparation of Standard stock solution-II of Rosuvastatin Calcium (100µg/ml):
1.0 ml standard
stock - I
Diluted to 10ml
with diluent
100µg/ml
METHOD DEVELOPMENT: [Snyder et al.,1997] ROSUVASTATIN CALCIUM
Diluent: HPLC grade water: ACN (1:1)
 Preparation of Standard stock solution-I of Rosuvastatin Calcium
(1000µg/ml):
Preparation of Working standard solution of Rosuvastatin Calcium (8µg/ml):
0.8ml stock-II
Diluted to 10ml
with diluent
8µg/ml
57
OPTIMIZED CHROMATOGRAPHIC CONDITIONS
Column Symmetry C18 (150mm x 4.6mm, 5m)
Mobile phase 0.1% OPA (pH 2.7) : ACN (55:45 % v/v)
Elution Isocratic
Flow rate 1.0 ml/min
Detector - λ max PDA (241 nm)
Column temperature 300C
Injection volume 10 μl
Diluent HPLC grade water : ACN [1:1]
Retention Time 2.872 mins
Run time 6.0 mins
58
RESULTS AND DISCUSSION
OPTIMIZED CHROMATOGRAM OF ROSUVASTATIN CALCIUM
59
VALIDATION OF ROSUVASTATIN CALCIUM [ICH Q2 (R1), 2005]:
SPECIFICITY: Blank [HPLC grade water: ACN (1:1)]
Standard (2.915mins) Test Sample (2.902mins)
60
Stressor Condition
Acid 0.1N HCl, 24hrs, 30±20C
Alkali 0.1N NaOH, 24hrs, 30±20C
Oxidative 3.0% v/v H2O2, 24hrs, 30±20C
Thermal 50±20C on sand bath for 6 hrs
Photolytic UV Chamber for 6 hrs
Neutral HPLC grade water, 24hrs, 30±20C
FORCED DEGRADATION STUDIES [Ahuja et al., 2001, ICH Q1A (R2), ICH Q1B]
Acid degradation of Rosuvastatin Calcium
61
Alkali degradation of Rosuvastatin Calcium
Oxidative degradation of Rosuvastatin Calcium
62
Thermal degradation of Rosuvastatin Calcium
Photolytic degradation of Rosuvastatin Calcium
63
Neutral degradation of Rosuvastatin Calcium
64
DEGRADATION OF ROSUVASTATIN CALCIUM
Stressor Purity angle - Purity threshold % Assay
% degraded
[should be < 20]
Acid 0.158 < 1.148 90.73 9.27
Alkali 0.941 < 1.125 91.56 8.44
Oxidative 1.070 < 1.984 93.81 6.19
Thermal 0.847 <1.084 97.68 2.32
Photolytic 0.854 < 1.088 98.15 1.85
Neutral 0.912 < 1.094 99.41 0.59
65
80 % level 100% level
120% level
ACCURACY OF ROSUVASTATIN CALCIUM
66
%
Spiked
Fixed sample
concentration
(μg/ml)
Amount
Spiked
(μg/ml)
Total
Amount
recovered
(μg/ml)
%
Recovery
Statistical data
Mean ± SD % RSD
80 8 6.4
14.45 100.34
100.23±0.196 0.19614.40 100.00
14.45 100.34
100 8 8
16.17 101.06
101.16±0.096 0.09616.19 101.18
16.20 101.25
120 8 9.64
17.67 100.41
100.81±0.294 0.35117.76 100.92
17.79 101.10
ACCURACY
67
PRECISION OF ROSUVASTATIN CALCIUM
Injection
Intra-day Precision Inter-day Precision*
Peak area Peak area
1 947892 953130
2 948956 956338
3 932013 956588
4 932654 956115
5 933654 960602
6 943152 961183
Mean 939720.2 957326
SD 7873.8 3039.8
% RSD 0.8 0.3
*mean of two determinations
68
LINEARITY, LOD AND LOQ OF ROSUVASTATIN CALCIUM
Level-1 Level-2
Level-3
69
Level-4 Level-5
Level-6
70
% Level Concentration (x) [μg/ml] Mean Peak area*(y) [AU]
0 0 0
25 2 233476
50 4 478886
75 6 707451
100 8 956490
125 10 1184283
150 12 1407729
Linear Regression Equation y = mx + c y = 117900x + 2358
Slope (m) 117900
Intercept (c) 2358
Correlation coefficient (R2) 0.999
LOD 0.013 μg/ml
LOQ 0.042 μg/ml
*mean of three determinations
LINEARITY, LOD AND LOQ OF ROSUVASTATIN CALCIUM
71
LINEARITY PLOT OF ROSUVASTATIN CALCIUM
y = 117900x + 2358.
R² = 0.999
0
200000
400000
600000
800000
1000000
1200000
1400000
1600000
0 2 4 6 8 10 12 14
PeakareaAU
Concentration [µg/ml]
STABILITY OF WORKING STANDARD SOLUTION: (30 ± 2 0C for 24 hrs)
Time [Hrs] Peak areas* % Assay* Variation
0 957286 99.89 NA
12 947905 98.91 0.98
24 940228 98.11 1.78
* Average of six determinations
72
Parameter Variation
% RSD of Peak
Area
[NMT 2.0 %]
Theoretical
plates*
[N>2000]
Tailing
factor*
<2.0
Flow rate
(1.0±0.1ml/min)
0.9 1.005 4424 1.19
1.0 0.402 4537 1.19
1.1 0.545 3804 1.20
ACN ratio in
mobile phase
[0.1 % OPA buffer :
ACN]
(45±5%)
60:40 0.802 3531 1.19
55 :45 0.402 4537 1.19
50 :50 0.406 4546 1.18
Temperature
(30±5 0C)
25 0.627 4460 1.18
30 0.402 4537 1.19
35 0.456 3695 1.23
* Mean of six determinations
ROBUSTNESS OF ROSUVASTATIN CALCIUM
73
SYSTEM SUITABILITY OF ROSUVASTATIN CALCIUM
Injection Rt [mins] Peak Area
Theoretical
Plates
N >2000
Tailing Factor
<2.0
1 2.902 955731 4423 1.18
2 2.904 956119 4606 1.20
3 2.914 955942 4369 1.21
4 2.915 960636 4310 1.20
5 2.917 949831 4746 1.19
6 2.919 959889 4771 1.20
Mean 2.911 956358 4537 1.19
S.D 3846.9
% RSD
[NMT 2.0]
0.402
74
ASSAY OF ROSUVASTATIN CALCIUM
SD- Standard deviation
Injection Rt [mins] Peak area % Assay
Amount
[mg]
1 2.902 956149 99.78 9.978
2 2.882 955931 99.76 9.976
3 2.881 955431 99.7 9.97
4 2.894 956189 99.78 9.978
5 2.902 956214 99.78 9.978
6 2.881 956018 99.76 9.976
Mean ±SD 99.76±0.39 9.976±0.03
75
Parameter Result ICH Limits
System Suitability Parameters
% RSD of peak area – 0.402 NMT 2.0
Theoretical plates- 4537 MT 2000
Tailing factor-1.19 NMT 2.0
Range [μg/ml] 2-12 -
Correlation coefficient [R2] 0.999 NLT 0.999
% Recovery 100-101.25 98-102
% RSD
Intra-day Precision 0.8 NMT 2.0
Inter-day Precision 0.3 NMT 2.0
LOD [μg/ml] 0.013 -
LOQ [μg/ml] 0.042 -
Solution stability,
% Assay difference at 24 hrs
1.78 NMT 2.0
% Assay 99.76 ± 0.39 IP, 2018: 90-110
SUMMARY OF VALIDATION OF ROSUVASTATIN CALCIUM
76
The developed RP-HPLC method was simple, sensitive and
cost-effective
 Organic ratio in the mobile phase: [60 → 45%]
 Retention time: [3.806 → 2.916 mins]
 Run time: [12.0 → 6.0 mins]
 Linearity range: [5-30 → 2-12 µg/ml]
 LOD: [0.0441 → 0.013 µg/ml]
 LOQ: [0.1434 → 0.042 µg/ml]
4d. DEVELOPMENT AND VALIDATION OF
UV SPECTROSCOPIC METHOD FOR THE
DETERMINATION OF PITAVASTATIN CALCIUM
IN BULK AND TABLETS
Pitavastatin Calcium (4mg) - more efficiently lowers plasma LDL
cholesterol and triglycerides levels at lower doses
[Sharma et al., 2017]
 The reported methods are expensive with use of organic solvents
77
78
Structure
Molecular weight - 880.94 )Ca+2
Class Statins (HMG Co A reductase inhibitors)
pKa 4.13
Log P 6.13
Solubility freely soluble - pyridine, chloroform, dilute HCl,
tetrahydrofuran, soluble - ethylene glycol, sparingly
soluble - octanol, slightly soluble - methanol, water and
ethanol, practically insoluble - ACN and Diethyl ether
DRUG PROFILE: PITAVASTATIN CALCIUM
METHOD DEVELOPMENT [Gorog, 2011]: Diluent: Methanol: Distilled water (1:1)
Preparation of Standard stock solution-I of Pitavastatin Calcium [1000μg/ml]:
79
10 mg
Pitavastatin
Calcium
+
5ml diluent
Sonicated for
10mins
+
made up to 10ml
1000μg/ml
Pitavastatin Calcium
1.0ml standard
stock-I
+
5ml diluent
Diluted to 10ml
with diluent
100μg/ml
Pitavastatin Calcium
Preparation of Standard stock solution-II of Pitavastatin Calcium [100μg/ml]:
 Preparation of working standard solution of Pitavastatin Calcium [8μg/ml]:
0.8ml standard
stock-II
Diluted to 10ml
with diluent
8μg/ml
Pitavastatin Calcium
UV SPECTRUM OF PITAVASTATIN CALCIUM (λ max - 245nm)
80
RESULTS AND DISCUSSION
81
VALIDATION [ICH Q2 (R1), 2005]: PITAVASTATIN CALCIUM
PRECISION
% Spiked
Fixed sample
concentration
(μg/ml)
Amount
Spiked
(μg/ml)
Total Amount
recovered
(μg/ml)
Mean %
Recovery ± SD
% RSD
80 8 6.4 14.38 100.11± 0.278 0.278
100 8 8.0 16.07 100.26± 0.477 0.476
120 8 9.6 17.64 100.22± 0.34 0.34
Concentration
(μg/ml)
Intra-day Precision
Mean ± SD
% RSD
Inter-day Precision
Mean ± SD
% RSD
8 0.390 ± 0.0018 0.46 0.391± 0.0034 0.86
ACCURACY
82
Concentration [x]
(μg/ml)
Absorbance* [y]
2 0.094
4 0.184
6 0.284
8 0.39
10 0.482
12 0.59
Linear Regression Equation
y = mx + c
y = 0.049 x – 0.005
Slope (m) 0.049
Intercept (c) -0.005
Correlation coefficient (R2) 0.999
LOD 0.103 μg/ml
LOQ 0.310 μg/ml
LINEARITY, LOD AND LOQ OF PITAVASTATIN CALCIUM
* mean of three determinations
83
LINEARITY PLOT OF PITAVASTATIN CALCIUM
y = 0.048x - 0.005
R² = 0.999
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 2 4 6 8 10 12 14
AbsorbanceAU
Concentration [μg/ml]
Formulation Label claim Amount found ± SD % Assay ± SD % RSD
Pivasta 4 mg 4.008 ± 0.037 100.24±0.945 0.942
ASSAY
84
λ max (nm) 245
Beer’s law limits (μg/ml) 2-12
Sandell’s sensitivity (μg/ cm2- 0.001 absorbance
units)
0.0212
Regression equation y = 0.048x - 0.005
Slope 0.049
Intercept 0.005
Correlation coefficient (R2) 0.999
% Recovery 100.11-100.26
% RSD
Intra-day Precision 0.46
Inter-day Precision 0.86
LOD (μg/ml) 0.103
LOQ (μg/ml) 0.310
Mean % Assay 100.24±0.945
SUMMARY OF VALIDATION OF PITAVASTATIN CALCIUM
85
The developed method was
 Cost-effective [Methanol → Methanol: Distilled water (1:1)]
 LOD [ 0.4062 μg/ml → 0.103μg/ml]
 LOQ [1.2309 μg/ml → 0.310μg/ml]
5a. QbD ENABLED STABILITY INDICATING
RP-HPLC METHOD DEVELOPMENT AND VALIDATION
FOR THE ESTIMATION OF
EMPAGLIFLOZIN IN BULK AND TABLETS
Empagliflozin – effectively reduces plasma glucose levels with decreased
risk of cardio-vascular deaths and heart failure hospitalizations
[Ralston et al., 2018]
No methods reported using QbD approach for EMPA
86
87
Structure
Molecular Weight - 450.91
Class SGLT-2 inhibitor
pKa 12.57
Log P 1.79
Solubility slightly soluble in ACN, ethanol, soluble in 50 %
ACN/water, sparingly soluble in methanol, very slightly
soluble in water and practically insoluble in toluene
DRUG PROFILE: EMPA
88
10 mg EMPA
+
2ml diluent,
+
Sonicated for
10 mins
volume up to
10ml
+
filtered using
0.45 µ PTFE filter
1000µg/ml
EMPA
Preparation of standard stock solution-II of EMPA [100 µg/ml]:
1ml of standard
stock-I
Diluted to 10ml
with diluent
100µg/ml EMPA
METHOD DEVELOPMENT: [Gorog, 2011]: EMPA
 Diluent: HPLC grade water: ACN (1:1)
Preparation of standard stock solution-I of EMPA [1000µg/ml]:
0.8ml of standard
stock-II 8µg/ml EMPA
Diluted to 10ml
with diluent
Preparation of working standard solution of EMPA [8µg/ml]:
89
OPTIMIZED CHROMATOGRAPHIC CONDITIONS
Column Denali C18 (150mm x 4.6mm, 5m)
Mobile phase 0.1 % OPA [pH 2.7] : ACN (45:55 % v/v)
Elution Isocratic
Flow rate 1.0 ml/min
Detector - λ max PDA (223 nm)
Column temperature 300C
Injection volume 10 μl
Run time 5.0 mins
Diluent HPLC grade water: ACN [1:1]
90
METHOD OPTIMIZATION USING DESIGN EXPERT® SOFTWARE
(Trial Version 10) [Federick and Alireza, 2011]:
Step 1: Analytical target Profile [ATP]:
 ATP - bulk drug and tablet - Technique - RP-HPLC
 Goal - To develop more robust RP-HPLC method with optimum
system suitability parameters and short analysis time
 Target - To study the simultaneous influence of CMPs on CMAs
Step 2: Critical Quality Attributes:
CMPs - Buffer ratio in the mobile phase, Flow rate and Wavelength
CMAs - Retention time, Peak area and Tailing factor
91
CMP -1 level 0 + 1 level
Buffer ratio in mobile phase [% v/v] 35 45 55
Flow rate [ml/min] 0.9 1.0 1.1
Wavelength [nm] 218 223 228
CMPS AND THEIR INPUT LEVELS
Step 3: Design of Experiments using Software:
 Efficient experimental model was designed by
systematic and automated scouting of the three CMPs
For method scouting - software generated 20 trials
92
Std
Run
No.
Buffer ratio
F1/CMP1
Flow rate
[ml/min]
F2/CMP2
Wavelength [nm]
F3/CMP3
Rt [mins]
R1/CMA1
Peak area
R2/CMA2
Tailing factor
R3/CMA3
1 14 35 0.9 218 2.284 1047724 1.3
2 7 55 0.9 218 4.493 1022852 1.2
3 2 35 1.1 218 1.882 826983 1.2
4 5 55 1.1 218 3.720 778771 1.1
5 13 35 0.9 228 2.285 1015749 1.3
6 20 55 0.9 228 4.490 969482 1.2
7 6 35 1.1 228 1.873 818929 1.3
8 10 55 1.1 228 3.761 740485 1.2
9 17 28.1821[min] 1 223 1.913 1056885 1.2
10 9 61.8179[max] 1 223 7.662 992788 1.1
11 19 45 0.831821[min] 223 2.206 802203 1.2
12 12 45 1.16818 [max] 223 3.072 1227680 1.3
13 3 45 1 214.591 [min] 2.567 873994 1.2
14 18 45 1 231.409 [max] 2.564 642180 1.2
15 11 45 1 223 2.572 939959 1.2
16 4 45 1 223 2.587 933968 1.3
17 8 45 1 223 2.564 941365 1.2
18 1 45 1 223 2.568 937667 1.2
19 15 45 1 223 2.572 941063 1.2
20 16 45 1 223 2.566 941481 1.2
[F-factor, R-Response]
TRIALS PROPOSED BY SOFTWARE WITH EXPERIMENTAL RESPONSES/ CMAs
93
FIT STATISTICS FOR SELECTED CMAs/Rs
Coefficients CMA1/R1
[Retention time]
CMA2/R2
[Peak Area]
CMA3/R3
[Tailing Factor]
R2 0.9172 0.3834 0.6358
Adjusted R2 0.8427 -0.1715 0.3081
Predicted R2 0.3715 -3.6829 -0.9814
Adequate Precision 13.1692 3.6907 5.7571
94
CONTOUR PLOT SHOWING EFFECT OF AQUEOUS PHASE [CMP1/F1] AND
FLOW RATE [CMP2/F2] ON RT [CMA1/R1]
95
EFFECT OF AQUEOUS PHASE [CMP1/F 1] AND FLOW RATE [CMP2/F2] ON
PEAK AREA [CMA2/R2]
96
EFFECT OF AQUEOUS PHASE [CMP1/F1] AND FLOW RATE
[CMP2/F2] ON TAILING FACTOR [CMA3/R3]
97
Externally Studentized Residuals
Normal%Probability
Normal Plot of Residuals
-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00
1
5
10
20
30
50
70
80
90
95
99
retention time
Color points by value of
retention time:
1.873 7.662
CMA1/R1 [Rt]
NORMAL PLOT OF RESIDUALS
98
Externally Studentized Residuals
Normal%Probability
Normal Plot of Residuals
-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
1
5
10
20
30
50
70
80
90
95
99
area
Color points by value of
area:
642180 1.22768E+06
CMA2/R2 [Peak Area]
99
Externally Studentized Residuals
Normal%Probability
Normal Plot of Residuals
-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
1
5
10
20
30
50
70
80
90
95
99
tailing factor
Color points by value of
tailing factor:
1.1 1.3
CMA3/R3 [Tailing Factor]
100
Factor Level
A- Aqueous Phase [% v/v] 39.57
B- Flow rate [ml/min] 0.9761
C- Wavelength [nm] 218.51
OPTIMIZED CONDITIONS PROPOSED BY DESIGN EXPERT SOFTWARE
CMA Predicted value Observed value SD
Rt [mins] 2.04095 2.057 0.006
Peak area 938311 953531 10762
Tailing factor 1.22654 1.1 0.089
OBSERVED VALUES OF CMAs
101
OPTIMIZED CHROMATOGRAM OF EMPA [QbD APPROACH]
102
Blank [HPLC grade water: ACN (1:1)]
Standard (2.051 mins) Sample (2.063 mins)
VALIDATION: [ICH Q2 (R1), 2005]: SPECIFICITY OF EMPA
103
FORCED DEGRADATION STUDIES [Ahuja et al., 2001, ICH Q1A (R2), ICH Q1B]:
Stressor Condition
Acid 2N HCl, 30 mins, 60 ± 20C
Alkali 2N NaOH, 30 mins, 60 ± 20C
Oxidative 20 % v/v H2O2, 30 mins, 60 ± 20C
Thermal 80 ± 20C in the oven for 6hrs
Photolytic UV Chamber for 7 days
Neutral HPLC grade water, 30 mins, 60 ± 20C
104
Acid Degradation of EMPA
Alkali degradation of EMPA
105
Oxidative degradation of EMPA
Thermal degradation of EMPA
Photolytic degradation of EMPA
106
Neutral degradation of EMPA
107
DEGRADATION OF EMPA
Stressor Purity angle < Purity threshold % Assay % degraded
[< 20]
Acid 0.716 < 0.981 91.06 8.94
Alkali 0.903 < 1.349 89.31 10.69
Oxidative 0.837 < 1.137 90.46 9.54
Thermal 0.809 < 0.914 97.08 2.92
Photolytic 0.878 < 1.396 98.11 1.89
Neutral 0.658 < 0.925 99.25 0.75
ACCURACY
108
80 % level 100 % level
120 % level
109
%
Spiked
Fixed
sample
conc.
(μg/ml)
Amount
Spiked
(μg/ml)
Amount
recovered
(μg/ml)
%
Recovery
Statistical Data
Mean ± SD % RSD
80 8 6.4
14.46 100.93
100.34 ± 0.52 0.5214.40 100.04
14.40 100.03
100 8 8
15.94 99.25
99.42 ± 0.15 0.1615.96 99.45
15.96 99.55
120 8 9.6
17.57 99.72
99.60 ± 0.11 0.1117.55 99.53
17.56 99.54
ACCURACY OF EMPA
110
PRECISION OF EMPA
*mean of two determinations
Injection
Peak area
Intra-day Precision Inter-day Precision*
1 892185 892994
2 894415 886254
3 896243 885649
4 893882 887612
5 894033 881625
6 896965 880253
Mean 894621 885731.2
SD 1731.7 4548.3
% RSD [NMT 2.0] 0.2 0.513
111
LINEARITY, LOD AND LOQ OF EMPA
Level-1 Level-2
Level-3
112
Level-4
Level-5 Level-6
113
% Level
Concentration (x)
[μg/ml]
Mean peak area* (y)
AU
0 0 0
25 2 224755
50 4 444370
75 6 657387
100 8 896176
125 10 1088259
150 12 1316979
Linear Regression Equation
y = mx + c y=109460x+4373
Slope (m) 109460
Intercept (c) 4373
Correlation coefficient (R2) 0.999
LOD 0.047 μg/ml
LOQ 0.142 μg/ml
LINEARITY OF EMPA
114
y = 109460x + 4373.
R² = 0.999
0
200000
400000
600000
800000
1000000
1200000
1400000
0 2 4 6 8 10 12 14
PeakAreaAU
Concentration [μg/ml]
STABILITY OF STANDARD SOLUTION (30±20C for 24 hrs)
Time [Hrs] Peak areas* % Assay* Variation
0 896756 99.93 -
12 888120 98.96 0.97
24 880700 98.14 1.79
* Average of six determinations
LINEARITY PLOT OF EMPA
115
ROBUSTNESS OF EMPA
Parameter Variation
% RSD of peak
area [NMT 2.0]
Theoretical
plates*
[N>2000]
Tailing
factor*
<2.0
Flow rate
[0.9761 ± 1
ml/min]
0.8761 0.549 5405 1.13
0.9761 0.279 5431 1.16
1.0761 0.740 5239 1.14
ACN ratio in
Mobile phase
Buffer: ACN
[60.43 ± 5% v/v]
44.57 : 55.43 0.841 5775 1.11
39.57 : 60.43 0.279 5431 1.16
34.57 : 65.43 0.583 5365 1.14
Temperature
[30 ± 50C]
25 1.062 6044 1.12
30 0.279 5431 1.16
35 1.802 5666 1.14
*Mean of six determinations
116
SYSTEM SUITABILITY OF EMPA
Injection Rt [mins] Peak Area
Theoretical Plates
N > 2000
Tailing
Factor
< 2.0
1 2.049 892431 5256 1.17
2 2.048 898403 5522 1.15
3 2.038 893051 5532 1.14
4 2.051 896632 5705 1.14
5 2.058 895224 5400 1.16
6 2.055 897993 5169 1.18
Mean 2.05 895622 5431 1.16
SD 2503
% RSD
[< 2.0 %]
0.279
117
ASSAY OF EMPA
Injection Rt [mins] Peak area % Assay
Amount
[mg]
1 2.062 892563 99.46 9.946
2 2.058 891489 99.34 9.934
3 2.058 890210 99.2 9.92
4 2.054 893518 99.57 9.957
5 2.055 894314 99.65 9.965
6 2.062 891210 99.31 9.931
Mean ± SD 99.42±0.17 9.942 ± 0.17
118
Parameter Result ICH Limits
System Suitability Parameters
% RSD of peak area – 0.279 NMT 2.0
Theoretical plates- 5431 MT 2000
Tailing factor-1.16 NMT 2.0
Range [μg/ml] 2-12 -
Correlation coefficient [R2] 0.999 NLT 0.999
% Recovery 99.25-100.93
% RSD
Intra-day precision 0.21 NMT 1.0
Inter-day precision 0.513 NMT 2.0
LOD [μg/ml] 0.047 -
LOQ [μg/ml] 0.142 -
% Assay difference at 24 hrs 1.79 NMT 2.0
% Assay 99.42±0.17 98-102
SUMMARY OF VALIDATION OF EMPA
119
Preliminary trial runs were performed for the identification of CMPs/Fs:
 On initial optimization of the method,
 0.1 % OPA (pH 2.7): ACN [45:55 % v/v] - ideal mobile phase
 Increase in % aqueous ratio [% OPA buffer] in the mobile phase - resulted in
increase in Rt- CMP1/F1, change in flow rate affects the Rt -
CMP2/F2, Wavelength - CMP3/F3
 Multivariate DoE approach using Central composite design - selected to
evaluate the simultaneous effect of selected CMPs/Fs on the selected CMAs/Rs
On the evaluation of the statistical data
 Quadratic model was the best-fit model for the central composite design
120
 The R2 - signifies the percentage of variation for a dependent variable
(response) by independent variables (factors)
 In the present study, the R2 - 0.9172 for CMA1/R1
- 0.3834 for CMA2/R2
- 0.6358 for CMA3/R3
 Difference between the adjusted R2 and predicted R2 - more than 0.2 –
reflects large block effect of CMA1/R1 using the model
 Negative Predicted R² for CMA2/R2 and CMA3/R3 - overall mean is a better
predictor of the response
 The adequate precision for CMA1/R1 (13.16) and CMA2/R2 (5.75) were
greater than 4.0 - adequate signal and the model was suitable for navigating
design space
121
 From the contour plot 1, increase in % Aqueous ratio with constant Flow rate
and Wavelength increased the Rt
 Contour plot 2 , decrease in Flow rate with constant % Aqueous ratio and
Wavelength has effect on Peak area
 Contour plot 3, increase in Wavelength with constant
Peak area didn’t show significant effect on Retention time, Peak area and
Tailing factor
 The normal plot of residuals for the three selected CMAs reflects that the data
points were distributed normally along the straight line and the error was
distributed equally across each individual point
122
The equation used for predictions about the CMAs/Rs for the given levels of each
CMP:
RT = +2.58 + 1.30 x A-0.0629 x B + 0.0018 x C-0.0860 x AB + 0.0058 x AC +
0.0043 x BC + 0.7248 x A2-0.0348 x B2-0.0608 x C2
Area = + 9.402E + 05 – 22376.52 x A - 12819.56 x B - 38189.48 x C - 6939.63 x
AB - 6453.38 x AC + 4875.62 x BC + 24013.40 x A2 + 20514.99 x B2 - 70296.79
x C2
Tailing factor = + 1.22 – 0.0416 x A - 0.0023 x B + 0.00146 x C + 0.0000 x AB +
0.0000 x AC + 0.0001 x BC - 0.0181 x A2 - 0.01738 x B2 - 0.0004 x C2
Where A = Aqueous phase
B = Flow rate
C = Wavelength
123
 Central composite design was used to evaluate the simultaneous effect
of % Aqueous ratio in the mobile phase , Flow rate and Wavelength
(CMPs) on Rt, Peak area and Tailing factor (CMAs)
 Sum of squares (-0.0860): The simultaneous decrease in % Aqueous
ratio in the mobile phase and Flow rate results in better retention time
 Sum of squares: Indicates that the simultaneous change in Flow rate and
Wavelength, there was no change in Rt (+0.000115) and Tailing factor
(-0.0001) and less effect on Peak area (-0.0182)
124
 Sum of squares: Indicates that the simultaneous change in
% Buffer ratio in the mobile phase and Wavelength, there was no
change in Rt (+0.0085), Peak area and Tailing factor
 No significant effect of wavelength on CMAs
 % Buffer ratio in the mobile phase and Flow rate influenced Rt
The interactive effects of CMPs on tailing factor was insignificant
125
COMPARISON AMONG CMPs AND CMAs OF INITIAL OPTIMIZED METHOD,
DOE DATAAND FINAL OPTIMIZED METHOD
CMP/F
CMPs
CMA/R
CMAs
Initial
optimized
method
Final optimized
Method (DOE Data)
Initial
optimized
method
DOE
data*
Final
optimized
method
Mobile
Phase
[% v/v]
0.1% OPA :
ACN
(45:55)
0.1% OPA : ACN
(39.57:60.43)
Rt [Mins] 2.629 2.04 2.05
Flow Rate
[ml/min]
1.0 0.961 Peak area 1028275 938311 953531
Wavelength
[nm]
223 218.5 Tailing factor 1.2 1.22 1.1
Comparison between reported non-QbD best method and present QbD method
 Run time: 6.0 mins → 5.0 mins
 Retention time: 4.81mins → 2.051mins
 LOD : 0.3589 µg/ml → 0.047 µg/ml
 LOQ: 1.0876 µg/ml → 0.142 µg/ml
5b. DEVELOPMENT AND VALIDATION OF
UV SPECTROSCOPIC METHOD
FOR THE ESTIMATION OF CANAGLIFLOZIN
IN BULK AND TABLETS
Canagliflozin- reduced risk of cardio-vascular deaths and heart failure
hospitalizations in addition to the management of increased plasma
glucose levels [Ralston et al., 2018]
 The UV Spectroscopic methods reported - expensive
126
127
Structure
Molecular Weight – 453.53
½ H2O
Class SGLT-2 inhibitor
pKa 12.57
Log P 3.44
Solubility soluble in organic solvents like ethanol, methanol,
acetone and THF and insoluble in water
DRUG PROFILE: CANAGLIFLOZIN
METHOD DEVELOPMENT [Gorog, 2011]: CANAGLIFLOZIN
Diluent : Methanol and distilled water (1:1)
 Preparation of Standard stock solution-I of Canagliflozin [1000μg/ml]:
128
10 mg
Canagliflozin
+
5ml diluent
Sonicated for
10mins
+
made up to
10ml
1000μg/ml
Canagliflozin
 Preparation of Standard stock solution-II of Canagliflozin [100μg/ml]:
1.0ml standard
stock-I
Diluted to 10ml
with diluent
100μg/ml
Canagliflozin
 Preparation of working standard solution of Canagliflozin [40μg/ml]:
4.0ml standard
stock-II
Diluted to 10ml
with diluent
40μg/ml Canagliflozin
129
UV SPECTRUM OF CANAGLIFLOZIN [λ max – 224nm]
RESULTS AND DISCUSSION
130
VALIDATION [ICH Q2 (R1), 2005]: CANAGLIFLOZIN
% Spiked
Fixed sample
concentration
(μg/ml)
Amount
Spiked
(μg/ml)
Mean
Amount
recovered
(μg/ml)
Mean %
Recovery ± SD
% RSD
80 40 32 72.07 100.09 ± 0.55 0.55
100 40 40 79.86 99.82±0.37 0.37
120 40 98 87.91 99.89±0.59 0.60
ACCURACY
Concentration
(μg/ml)
Intra-day
Precision
Mean ± SD
% RSD
Inter-day Precision
Mean ± SD
% RSD
40 0.201±0.0015 0.75 0.2021 ± 0.0017 0.84
PRECISION
131
Concentration (μg/ml) Absorbance*
0 0
10 0.051
20 0.104
30 0.152
40 0.202
50 0.252
60 0.302
Linear Regression Equation
y = mx + c
y = 0.005x + 0.001
Slope (m) 0.005
Intercept (c) 0.001
Correlation coefficient (R2) 0.999
LOD 0.33 μg / ml
LOQ 1.00 μg / ml
LINEARITY, LOD AND LOQ OF CANAGLIFLOZIN
*Average of three determinations
132
y = 0.0051x + 0.0016
R² = 0.9999
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0 10 20 30 40 50 60 70
AbsorbanceAU
Concentration (μg/ml)
LINEARITY PLOT OF CANAGLIFLOZIN
Tablet Brand Label claim Amount found ± SD % Assay ± SD
Invokana 100 mg 99.79 ± 1.17 99.79 ± 1.17
ASSAY OF CANAGLIFLOZIN
133
λ max 224 nm
Beer’s law limits 10-60 μg/ml
Sandell’s sensitivity (μg/ cm2- 0.001
absorbance units)
0.196
Regression equation y = 0.005x + 0.001
Slope 0.005
Intercept 0.001
Correlation coefficient (R2) 0.999
% Recovery 99.82-100.09
% RSD
Intra-day Precision 0.75
Inter-day Precision 0.84
LOD 0.33 μg/ml
LOQ 1.00 μg/ml
Mean % Assay 99.19 ± 1.17
SUMMARY OF VALIDATION OF CANAGLIFLOZIN
134
The developed UV Spectroscopic method was
simple and sensitive
 Linearity : 10-60 μg/ml
 LOD : 0.33 μg/ml
 LOQ : 1.00 μg/ml
6a. DEVELOPMENT AND VALIDATION OF
STABILITY INDICATING RP-HPLC METHOD FOR THE
SIMULTANEOUS DETERMINATION OF
ERTUGLIFLOZIN PIDOLATE AND METFORMIN HYDROCHLORIDE
IN BULK AND TABLETS
 ERTU and MET combination - efficiently reduces elevated HbA1c
levels in type-2 diabetic patients [FDA label, Segluromet, 2017]
The RP-HPLC methods reported were
complex
involved high volumes of organic solvent in the mobile phase
135
136
ERTU MET
Structure
.
HCl
Class SGLT-2 inhibitor Biguanide anti-diabetic
Molecular weight 566 165.62
pKa 11.98 12.33
Log P 2.21 -0.92
Solubility soluble in ethanol, sparingly
soluble in ethyl acetate, ACN
and very slightly soluble in water
freely soluble in water, sparingly
soluble in alcohol, practically
insoluble in acetone and
dichloromethane
DRUG PROFILE:
137
3.75 mg ERTU
+
250 mg MET
+
10ml diluent
volume up to 100ml
+
filtered using 0.45 µ
PTFE filter
37.5µg/ml ERTU
2500 µg/ml MET
Preparation of working standard solution of ERTU [3.75µg/ml] and MET [250µg/ml]:
1ml of standard
stock
volume upto 10ml
with diluent
3.75µg/ml ERTU
250µg/ml MET
METHOD DEVELOPMENT: [Snyder et al., 1997]: ERTU AND MET
Diluent: HPLC grade water: ACN (1:1)
Preparation of standard stock solution of ERTU [37.5µg/ml] and MET
[2500µg/ml]:
OPTIMIZED CHROMATOGRAPHIC CONDITIONS
138
Column Kromasil C18 (150mm x4.6 mm, 5 µm)
Mobile phase 0.1% OPA [pH 2.7]: ACN (65:35 %v/v)
Elution Isocratic
Flow rate 1.0 ml/min
Detector and λ max PDA and 224.0 nm
Column temperature 30 ± 20C
Injection volume 10 µl
Diluent HPLC grade water : ACN [1:1]
Retention time
MET- 2.170 mins
ERTU- 2.929 mins
Run time 6.00 mins
139
RESULTS AND DISCUSSION
OPTIMIZED CHROMATOGRAM OF ERTU AND MET
VALIDATION [ICH Q2 (R1), 2005]: ERTU AND MET: SPECIFICITY
140
Blank [HPLC grade water: ACN (1:1)]
Standard
(MET 2.170mins and ERTU 2.929 mins)
Sample
(MET 2.168mins and ERTU 2.827mins)
FORCED DEGRADATION STUDIES [Ahuja et al., 2001, ICH Q1A (R2), ICH Q1B]:
141
Stressor Condition
Acid 2N HCl, 30 mins, 60±20C
Alkali 2N NaOH, 30 mins, 60±20C
Oxidative 20% v/v H2O2, 30 mins, 60±20C
Thermal In the oven at 105±20C for 6 hrs
Light UV Chamber for 7 days
Neutral HPLC grade water, 6 hrs, 60±20C
142
Acid Degradation of ERTU and MET
143
Alkali Degradation of ERTU and MET
144
Oxidative Degradation of ERTU and MET
145
Thermal degradation of ERTU and MET
146
Photolytic degradation of ERTU and MET
147
Neutral degradation of ERTU and MET
FORCED DEGRADATION OF ERTU AND MET
148
Stressor
ERTU MET
Purity Angle-
Purity Threshold
% Assay
%
Degraded
[<20]
Purity Angle-
Purity Threshold
%
Assay
% Degraded
[<20]
Acid 1.493< 1.966 92.45 7.55 1.448 < 1.801 92.29 7.71
Alkali 1.766< 2.146 94.56 5.44 1.402 < 1.752 93.07 6.93
Oxidative 1.693 < 2.130 95.42 4.58 1.348 < 2.270 94.47 5.53
Thermal 1.936 < 2.341 96.86 3.14 2.753 < 2.927 97.07 2.93
Photolytic 1.659 < 2.009 98.30 1.70 2.489 < 2.786 98.21 1.79
Neutral 1.780 < 2.134 98.98 1.02 2.358 < 2.915 99.10 0.90
149
ACCURACY
80% level 100% level
120% level
150
ACCURACY OF ERTU
% Spiked
Fixed sample
concentration
(μg/ml)
Amount
Spiked
(μg/ml)
Total amount
recovered
(μg/ml)
% Recovery
Statistical Data
Mean ± SD % RSD
80 3.75 3.0
6.73 99.27
100.04 ± 0.306 0.3066.77 100.29
6.76 100.14
100 3.75 3.75
7.51 100.13
99.99 ± 0.135 0.1357.49 99.86
7.50 100.00
120 3.75 4.50
8.22 99.63
99.87 ± 0.64 0.6048.30 100.60
8.20 99.39
151
%
Spiked
Fixed sample
concentration
(μg/ml)
Amount
Spiked
(μg/ml)
Total Amount
recovered
(μg/ml)
% Recovery
Statistical Data
Mean ± SD % RSD
80 250 200
450.31 100.16
99.7 ± 0.54 0.54448.22 99.11
449.76 99.88
100 250 250
499.72 99.89
99.91 ± 0.57 0.57497.04 99.35
501.23 100.49
120 250 300
550.57 100.19
100.65 ± 0.47 0.47
553.38 101.13
551.95 100.65
ACCURACY OF MET
152
PRECISION OF ERTU AND MET
Injection
Intra-day Precision Inter-day Precision
Peak Area Peak Area*
ERTU MET ERTU MET
1 97558 5494807 96427 5519305
2 97857 5513074 97898 5518566
3 98282 5480884 98136 5521823
4 98143 5512058 97249 5547798
5 98046 5483072 98243 5586469
6 97987 5542631 97334 5560570
Mean 97978.8 5504421 97547.8 5539089
SD 251.1 23218 684.56 31980.6
% RSD [<2.0] 0.25 0.42 0.70 0.56
*mean of two determinations
LINEARITY, LOD AND LOQ OF ERTU AND MET
153
Level-1 Level-2
Level-3
154
Level-4
Level-5
Level-6
155
% Level Concentration [x] (μg/ml) Mean Peak area* [y] (AU)
0 0 0
25 0.9375 24802
50 1.875 49541
75 2.8125 74657
100 3.75 99130
125 4.6875 125714
150 5.625 145645
Linear Regression Equation (y = mx + c) y = 26223x + 460.9
Slope (m) 26223
Intercept (c) 460.9
Correlation coefficient (R2) 0.999
LOD 0.025 μg/ml
LOQ 0.076 μg/ml
LINEARITY, LOD AND LOQ OF ERTU
*mean of three determinations
156
% Level Concentration [x] (μg/ml) Mean Peak area* [y] (AU)
0 0 0
25 62.5 1374565
50 125 2780573
75 187.5 4158469
100 250 5566797
125 312.5 6877296
150 375 8152632
Linear Regression Equation (y = mx + c) y = 21857x + 31878
Slope (m) 21857
Intercept (c) 31878
Correlation coefficient (R2) 0.999
LOD 0.87 μg/ml
LOQ 2.63 μg/ml
LINEARITY, LOD AND LOQ OF MET
*mean of three determinations
157
LINEARITY PLOT OF ERTU
y = 26223x + 460.94
R² = 0.9993
0
20000
40000
60000
80000
100000
120000
140000
160000
0 1 2 3 4 5 6
PeakAreaAU
Concentration [μg/ml]
LINEARITY PLOT OF MET
y = 21857x + 31878
R² = 0.9997
0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000
0 50 100 150 200 250 300 350 400
PeakAreaAU
Concentration [μg/ml]
158
STABILITY OF STANDARD SOLUTION: 30 ± 20C for 24 hrs
ERTU
Time
[Hrs]
Peak areas* % Assay* Variation
0 98132 99.62 NA
12 97376 98.86 0.76
24 96418 97.88 1.74
* Average of six determinations
Time
[Hrs]
Peak areas* % Assay* Variation
0 5559487 99.96 NA
12 5509688 99.13 0.83
24 5475626 98.45 1.51
* Average of six determinations
MET
159
Parameter
Modified
condition
% RSD of Peak
area [NMT 2.0 %]
Theoretical
Plates* N
[>2000]
Tailing factor*
[<2.0] Rs*
[>2.0]
ERTU MET ERTU MET ERTU MET
Flow rate
(1.0± 0.1 ml/min)
0.9 0.893 1.209 12959 10911 1.17 1.17 7.96
1.0 0.531 0.382 11679 9947 1.23 1.33 7.21
1.1 0.949 1.113 11564 9463 1.21 1.16 7.63
ACN ratio in
Mobile phase
Buffer: ACN
(35 ± 5 % v/v)
70 : 30 1.377 1.039 11949 11751 1.26 1.15 9.2
65 : 35 0.531 0.382 11679 9947 1.23 1.33 7.21
60 : 40 1.360 1.293 12741 9485 1.22 1.14 6.78
Temperature
(30 ± 50C)
25 0.912 1.278 13396 9470 1.14 1.20 7.03
30 0.531 0.382 11679 9947 1.23 1.33 7.21
35 0.574 0.993 13396 9516 1.21 1.17 7.01
* Mean of six determinations
ROBUSTNESS OF ERTU AND MET
160
SYSTEM SUITABILITY OF ERTU AND MET
Injection
ERTU MET
Rs > 2.0Rt
[mins]
Peak Area
Theoretical
Plates
N > 2000
Tailing
Factor
< 2.0
Rt
[mins]
Peak
Area
Theoretical
Plates
N >2000
Tailing
Factor
< 2.0
1 2.913 97891 10960 1.31 2.170 5524816 11033 1.24 5.9
2 2.926 97643 11512 1.20 2.171 5566109 11319 1.24 6.8
3 2.926 98719 11296 1.34 2.177 5536275 11623 1.15 7.2
4 2.929 98905 11897 1.19 2.186 5564500 8425 1.24 7.8
5 2.929 98824 11716 1.13 2.206 5581534 8208 1.38 7.7
6 2.932 98424 12694 1.23 2.297 5564584 9073 1.25 7.9
Mean ±
SD
2.925
98401±
523.3
11679 1.23 2.201
5556303
±
21265.4
9947 1.25 7.21
% RSD
[<2.0]
0.531 0.382
161
ASSAY OF ERTU AND MET
Injection
ERTU MET
Rt
[Mins]
Peak area % Assay
Amount
[mg]
Rt
[mins]
Peak area % Assay Amount [mg]
1 2.932 98132 99.63 7.47 2.177 5552565 99.83 499.15
2 2.929 97653 99.14 7.43 2.174 5531564 99.46 497.30
3 2.923 97956 99.45 7.46 2.176 5520126 99.25 496.25
4 2.933 97896 99.39 7.45 2.173 5529625 99.42 497.10
5 2.934 97698 99.19 7.44 2.174 5526486 99.36 496.99
6 2.933 97621 99.11 7.43 2.173 5536125 99.54 497.70
Mean ±
SD
99.31±0.21 7.45 ± 0.16 99.48±0.20 497.4 ± 0.97
162
Parameter
Result
ICH Limits
MET ERTU
System
suitability
parameters
% RSD 0.382 0.531 NLT 2.0
Theoretical plates 9947 11679 MT 2000
Tailing Factor 1.25 1.23 NMT 2.0
Range [μg/ml] 62.5-375 0.9375-5.625 -
Linearity [R2] 0.999 0.999 NLT 0.999
% Recovery 99.11-101.13 99.27-100.60 98-102
% RSD
Intra-day Precision 0.42 0.25 NMT 1.0
Inter-day precision 0.56 0.70 NMT 2.0
LOD [μg/ml] 0.87 0.025 -
LOQ [μg/ml] 2.63 0.076 -
% Assay difference at 24 hrs 1.51 1.74 NMT 2.0
% Assay 99.48 99.31 -
SUMMARY OF VALIDATION OF ERTU AND MET
163
The developed stability indicating RP-HPLC method was
 Simple and more sensitive
 Retention time : MET – 2.383 → 2.170mins
ERTU – 3.136 → 2.929mins
 Linearity range : MET – 125-750 → 62.5- 375μg/ml
ERTU – 1.875 - 11.25 → 0.9375 – 5.625μg/ml
 LOD : MET – 1.7 → 0.87μg/ml
ERTU – 0.07 → 0.025μg/ml
LOQ : MET – 5.16 → 2.63μg/ml
ERTU – 0.21 → 0.076μg/ml
6b. DEVELOPMENT AND VALIDATION OF
STABILITY INDICATING ANALYTICAL METHOD
FOR THE SIMULTANEOUS DETERMINATION OF
EMPAGLIFLOZIN AND LINAGLIPTIN IN
BULK AND TABLETS BY RP-HPLC
SGLT-2 and DPP-4 inhibitors combination exerts
 Synergistic effect
Better glycemic control in diabetic patients compared to mono-drug
therapy [Katzung et al., 2015]
The reported RP-HPLC methods
Involve use of high volume of organic solvents
164
165
EMPA LINA
Structure
Class SGLT-2 inhibitor DPP-4 inhibitor
Molecular Weight 450.91 472.54
pKa 12.57 9.86
Log P 1.79 2.8
Solubility slightly soluble in ACN, ethanol,
soluble in 50 % ACN/water,
sparingly soluble in methanol,
very slightly soluble in water and
practically insoluble in toluene
very slightly soluble in water, soluble
in methanol, sparingly soluble in
ethanol, very slightly soluble in
isopropanol, and acetone
DRUG PROFILE: EMPAAND LINA
166
10mg EMPA
+
5 mg LINA
+
5 ml diluent,
sonicated for
10 mins
volume upto 10ml
+
filtered using 0.45 µ
PTFE filter
100µg/ml EMPA
50 µg/ml LINA
Diluted to 10 ml with
diluent
Preparation of standard stock solution-II of EMPA [100µg/ml] and LINA [50µg/ml]:
1ml standard
stock -I
1000µg/ml EMPA
500 µg/ml LINA
METHOD DEVELOPMENT: [Snyder et al., 1997] EMPAAND LINA
Diluent: HPLC grade water and Methanol [1:1]
Preparation of standard stock solution-I of EMPA [1000µg/ml] and LINA
[500µg/ml]:
Preparation of Working standard solution EMPA [10 µg/ml] and LINA [5 µg/ml]
Diluted to 10 ml with
diluent
10 µg/ml EMPA
5 µg/ml LINA
1ml standard
stock -II
167
OPTIMIZED CHROMATOGRAPHIC CONDITIONS
Column Ascentis C18 (150mm x4.6 mm, 5µm)
Mobile phase 0.1 % OPA [pH 2.7] : Methanol (35:65 % v/v)
Elution Isocratic
Flow rate 0.8 ml/min
Detector and λ max PDA and 220.0 nm
Column temperature 30°C
Injection volume 10 μl
Diluent HPLC grade water : Methanol [1:1]
Retention time (mins)
EMPA- 2.218
LINA- 2.531
Run time 5.00 mins
168
OPTIMIZED CHROMATOGRAM OF EMPA AND LINA
VALIDATION [ICH Q2 (R1), 2005]: EMPAAND LINA: SPECIFICITY
169
Blank [HPLC grade water: Methanol (1:1)]
Standard
EMPA [2.218 mins) and LINA (2.531 mins)
Sample
EMPA (2.226 mins) and LINA (2.544 mins)
170
FORCED DEGRADATION STUDIES [Ahuja et al., 2001, ICH Q1A (R2), ICH Q3]:
Stressor Condition
Acid 2N HCl, 30 mins, 60±20C
Alkali 2N NaOH, 30 mins, 60±20C
Oxidative 20 %v/v H2O2, 30 mins, 60±20C
Thermal In oven at 105±20C for 6 hrs
Light UV Chamber for 7 days
Neutral HPLC grade water, 30 mins, 60±20C
171
Acid Degradation of EMPA and LINA
172
Alkali degradation of EMPA and LINA
Oxidative degradation of EMPA and LINA
173
174
Thermal degradation of EMPA and LINA
175
Photolytic degradation of EMPA and LINA
176
Neutral degradation of EMPA and LINA
177
Stressor
EMPA LINA
Purity Angle -
Purity Threshold
%
Assay
%
Degraded
[<20]
Purity Angle -
Purity Threshold
%
Assay
%
Degraded
[<20]
Acid 0.179 < 0.352 93.88 6.12 0.108 < 0.313 95.05 4.95
Alkali 0.179 < 2.648 93.40 6.60 0.988 < 1.142 94.65 5.35
Oxidative 0.199 < 0.743 93.85 6.15 0.278 < 0.357 92.62 7.38
Thermal 0.328 < 0.411 97.56 2.44 0.274< 0.298 96.32 3.68
Photolytic 0.478 < 0.569 98.77 1.23 0.275 < 0.318 98.57 1.43
Neutral 0.395 < 0.410 99.29 0.71 0.289< 0.320 99.42 0.58
FORCED DEGRADATION OF EMPAAND LINA
178
ACCURACY
80% level 100% level
120% level
179
% Spiked
Fixed sample
concentration
(μg/ml)
Amount
Spiked
(μg/ml)
Total Amount
recovered
(μg/ml)
%
Recovery
Statistical Data
Mean ± SD % RSD
80 10 8.0
18.06 100.78
100.59±0.265 0.26318.02 100.29
18.06 100.71
100 10 10
20.18 100.90
100.30±0.556 0.55319.96 99.80
20.04 100.21
120 10 12
22.04 100.20
99.80±0.520 0.5221.83 99.21
21.99 99.98
ACCURACY OF EMPA
180
%
Spiked
Fixed sample
concentration
(μg/ml)
Amount
Spiked
(μg/ml)
Total
Amount
recovered
(μg/ml)
% Recovery
Statistical Data
Mean ± SD % RSD
80 5.0 4.0
8.96 99.07
99.02±0.126 0.1278.95 98.88
8.96 99.12
100 5.0 5.0
9.99 99.82
99.64±0.162 0.1629.97 99.51
9.98 99.58
120 5.0 6.0
10.98 99.64
99.99±0.327 0.32711.00 100.04
11.02 100.29
ACCURACY OF LINA
181
*mean of two determinations
PRECISION OF EMPAAND LINA
Injection
Intra-day Precision Inter-day Precision
Peak area Peak area*
EMPA LINA EMPA LINA
1 664012 371986 662885 375212
2 661089 371272 667110 373903
3 660789 371586 665238 370561
4 662598 371690 661401 374428
5 664236 372963 669054 373830
6 662359 372016 661814 371197
Mean 662514 371919 664584 373189
SD 1431 580.6 3081.6 1866.7
% RSD [< 2.0] 0.216 0.156 0.5 0.5
LINEARITY, LOD AND LOQ OF EMPAAND LINA
182
Level-1 Level-2
Level-3
183
Level-4
Level-5 Level-6
184
% Level Concentration (x) [μg/ml] Mean peak area* (y) [AU]
0 0 0
25 2.5 163870
50 5.0 326856
75 7.5 455834
100 10.0 647690
125 12.5 796507
150 15 957091
Linear Regression Equation y = mx + c y = 63677x + 687.3
Slope (m) 63677
Intercept (c) 687.3
Correlation coefficient (R2) 0.999
LOD 0.04 μg/ml
LOQ 0.13 μg/ml
*mean of three determinations
LINEARITY OF EMPA
185
*mean of three determinations
LINEARITY OF LINA
% Level Concentration (x) [μg/ml] Mean peak area*(y) [AU]
0 0 0
25 1.25 88606
50 2.50 175935
75 3.75 252744
100 5.00 351847
125 6.25 434506
150 7.50 517806
Linear Regression Equation y = mx + c y = 69175x + 799.5
Slope (m) 69175
Intercept (c) 799.5
Correlation coefficient (R2) 0.999
LOD 0.02 μg/ml
LOQ 0.07 μg/ml
186
LINEARITY PLOT OF EMPA
y = 63677x + 687.38
R² = 0.999
0
200000
400000
600000
800000
1000000
1200000
0 2 4 6 8 10 12 14 16
PeakAreaAU
Concentration (μg/ml)
y = 69175x + 799.57
R² = 0.9995
0
100000
200000
300000
400000
500000
600000
0 1 2 3 4 5 6 7 8
PeakAreaAU
Concentration (μg/ml)
LINEARITY PLOT OF LINA
187
STABILITY OF STANDARD SOLUTION: 30 ±20C for 24 hrs
EMPA
Time
[Hrs]
Peak areas* % Assay* Variation
0 666641 100.04 -
12 661647 99.29 0.75
24 657292 98.64 1.4
*Average of six determinations
LINA
Time
[Hrs]
Peak areas % Assay* Variation
0 374719 100.07 -
12 371708 99.27 0.8
24 368030 98.29 1.78
*Average of six determinations
188
Parameter
Modified
condition
% RSD of Peak area N* [>2000]
Tailing Factor*
[<2.0] Rs
[>2.0]
EMPA LINA EMPA LINA EMPA LINA
Flow rate
(0.8 ± 0.1ml/min)
0.7 0.518 0.892 13746 9506 1.35 1.31 3.23
0.8 0.613 0.577 12600 8928 1.29 1.34 3.33
0.9 1.019 1.409 8430 7148 1.28 1.37 2.68
Methanol :
0.1% OPA
buffer
(65 ± 5% v/v)
60 : 40 1.170 0.610 8546 7231 1.26 1.36 3.48
65 : 35 0.613 0.577 12600 8928 1.29 1.34 3.33
70 : 30 0.932 0.778 8931 8124 1.28 1.33 2.11
Temperature
(30±50C)
25 0.913 0.980 9621 8136 1.32 1.32 2.65
30 0.613 0.577 12600 8928 1.29 1.34 3.33
35 0.575 0.686 9098 7586 1.26 1.29 2.61
ROBUSTNESS OF EMPAAND LINA
*Mean of six determinations
189
SYSTEM SUITABILITY OF EMPAAND LINA
Injection
EMPA LINA
Rs [> 2.0]Rt
[mins]
Peak
Area
Theoretical
Plates
N [>2000]
Tailing
Factor
[< 2.0]
Rt [mins] Peak Area
Theoretical
Plates
N [>2000]
Tailing
factor
[< 2.0]
1 2.221 659494 12393 1.34 2.535 373303 9349 1.33 3.3
2 2.221 661554 12085 1.32 2.540 370806 8945 1.32 3.3
3 2.222 670414 12633 1.34 2.542 375348 8216 1.35 3.4
4 2.223 664401 13115 1.34 2.544 376969 9303 1.32 3.3
5 2.224 666030 13282 1.18 2.544 372942 8251 1.36 3.4
6 2.226 668190 12089 1.20 2.545 372811 9507 1.33 3.3
Mean ±
SD
2.222±
0.0019
665014 ±
4076.6
12600 1.29 2.541±0.037
373697±
2158.5
8928 1.33 3.33
% RSD
[< 2.0]
0.613 0.577
190
ASSAY OF EMPAAND LINA
Injection
EMPA LINA
Peak area % Assay Amount
[mg]
Peak area % Assay Amount
[mg]
1 661911 99.33 9.933
371923 99.33 4.96
2 665542 99.88 9.988
372364 99.44 4.972
3 662310 99.39 9.939
371756 99.28 4.964
4 669312 100.45 10.045
372584 99.50 4.975
5 662423 99.41 9.941
371489 99.21 4.960
6 666502 100.02 10.002
372186 99.40 4.97
Mean ± SD 99.74±0.45 9.975 ± 0.045 99.36±0.107 4.97 ± 0.006
191
Parameter
Result
ICH Limits
EMPA LINA
System
suitability
Parameters
% RSD 0.613 0.577 -
Theoretical plates 12600 8928 MT 2000
Tailing factor 1.29 1.33 NMT 2.0
Resolution - 3.33 NLT 2.0
Range [μg/ml] 2.5-15 1.25-7.5 -
Linearity [R2] 0.999 0.999 NLT 0.999
% Recovery 99.21-100.90 98.88-100.29 98-102
% RSD
Intra-day Precision 0.216 0.156 NMT 2.0
Inter-day Precision 0.5 0.5 NMT 2.0
LOD [μg/ml] 0.04 0.02 -
LOQ [μg/ml] 0.13 0.07 -
Solution Stability
% Assay difference at 24 hrs
1.4 1.78 NMT 2.0
% Assay 99.74 99.36 -
SUMMARY OF VALIDATION PARAMETERS
192
The present developed RP-HPLC method was
 More sensitive
 Retention time : EMPA- 3.907 → 2.218mins
 Run time : 10.0 → 5.0 mins
 Linearity : EMPA – 10-50 → 2.5-15μg/ml
LINA – 20-100 → 1.25-7.5μg/ml
 LOD : EMPA - 2.17 → 0.04μg/ml
LINA – 0.0372 → 0.02μg/ml
 LOQ : EMPA – 6.60 → 0.13μg/ml
LINA – 0.112 → 0.07μg/ml
193
7. DEVELOPMENT AND VALIDATION OF
IN-VITRO BIOANALYTICAL RP-HPLC METHOD
FOR THE ESTIMATION OF
EMPAGLIFLOZIN BULK DRUG
The reported in-vitro bioanalytical method by RP-HPLC is
 Expensive – used only organic solvents as mobile phase and
diluent
 More run time
194
EMPA Dapagliflozin
(Internal Standard)
Structure
Molecular Weight 450.91 502.98
Class SGLT-2 inhibitor SGLT-2 inhibitor
pKa 12.57 12.57
Log P 1.79 2.52
Solubility Slightly soluble in ACN, ethanol,
soluble in 50 % ACN/water,
sparingly soluble in methanol, very
slightly soluble in water and
practically insoluble in toluene
soluble in ethanol, DMSO and DMF
DRUG PROFILE: EMPAAND DAPAGLIFLOZIN
195
METHOD DEVELOPMENT:
Diluent: HPLC grade water: ACN (1:1)
Buffer [0.01N KH2PO4]: (IP, 2018)
Mobile phase [Buffer: ACN (65:35 % v/v)]:
Preparation of EMPA stock solution [75μg/ml]:
7.5 mg EMPA
+
20ml diluent
Sonicated for 10mins
+
made up to 100ml
filtered using 0.45μ
PTFE filter
75μg/ml
196
Preparation of Internal Standard (IS) stock solution-I [100μg/ml]:
1.0 ml of stock-I
100μg/ml
filtered through
0.45μ PTFE filter
Sonicated for 10mins
+
made up to 100ml
10 mg IS
+
10ml diluent
Diluted to 10 ml with
diluent 10μg/ml
Preparation of Internal Standard (IS) stock solution-II [10μg/ml]
197
Vol. of stock
[ml]
Final Vol. [ml]
Concentration
[μg/ml]
EMPA
Standard Solutions-
Codes
0.05 10.0 0.375 EMPA S 1
0.1 10.0 0.75 EMPA S 2
0.15 10.0 1.125 EMPA S 3
0.4 10.0 3.0 EMPA S 4
1.0 10.0 7.5 EMPA S 5
1.2 10.0 9.0 EMPA S 6
1.6 10.0 12.0 EMPA S 7
2.0 10.0 15.0 EMPA S 8
PREPARATION OF CALIBRATION CURVE STANDARD EMPA SOLUTIONS:
198
EXTRACTION PROCEDURE:
plasma with
anti-coagulant,
K2EDTA
+
stored at -70°C
vortexed for
2 mins
+
1.0 ml Ethyl
acetate
vortexed for
2 mins
+
0.5 ml IS
stock-II
0.75 ml blank
plasma
+
0.25 ml EMPA
standard stock
thawed on
water bath
at 30±20C
vortexed for
2 mins
+
Left aside for
separation
centrifuged
in Cooling
centrifuge at
8000 rpm for
10 mins
separated
organic layer
evaporated to
dryness
199
PREPARATION OF PLASMA SOLUTIONS OF EMPA [37.5-1500 ng/ml]:
0.25 ml each
standard
solution of
EMPA
+
0.75 ml plasma
0.5ml IS stock-II
+
1.0 ml ethyl
acetate
37.5-1500 ng/ml
Preparation of plasma spiked QC samples of EMPA:
0.25 ml each EMPA
standard solution
+
0.75 ml plasma
0.5 ml IS stock-II
+
1.0 ml ethyl acetate
37.5 ng/ml (LLOQ)
112.5 ng/ml (LQC)
750 ng/ml (MQC)
1200 ng/ml (HQC)
1500 ng/ml (ULOQ)
200
Column Phenomenex C18 (250mm x 4.6 mm, 5m)
Mobile phase 0.01N KH2PO4 buffer (pH 3.0) : ACN (65:35 % v/v)
Elution Isocratic
Flow rate 1.0 ml/min
Detector - λ max PDA (220 nm)
Column temperature 300C
Injection volume 20 μl
Diluent HPLC grade water: ACN [1:1]
Run time 6.0 mins
OPTIMIZED CHROMATOGRAPHIC CONDITIONS FOR EMPA
201
Blank (Plasma)
Optimized Chromatogram of EMPA in Plasma
RESULTS AND DISCUSSION
202
VALIDATION [USFDA 2018]: EMPA
Blank (Plasma)
LINEARITY
Zero Calibrator (Plasma + IS)
Level - 1 [37.5ng/ml] Level – 2 [75ng/ml]
203
Level – 3 [112.5ng/ml] Level – 4 [300ng/ml]
Level – 6 [900ng/ml]Level – 5 [750ng/ml]
204
Level – 8 [1200ng/ml]Level – 7 [1500ng/ml]
Concentration [ng/ml] Peak area of IS Peak area of EMPA
Peak area of
EMPA/IS
37.5 86452 1452 0.0168
75 86543 2904 0.0336
112.5 86259 4457 0.0517
300 86892 12618 0.1452
750 86501 29047 0.3358
900 86432 34856 0.4038
1200 86535 46475 0.5371
1500 86446 58894 0.6813
LINEARITY OF EMPA IN PLASMA
205
y = 0.00045x + 0.00148
R² = 0.99968
0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0 200 400 600 800 1000 1200 1400 1600
PeakarearatioofEMPA/IS
Concentration [ng/ml]
LINEARITY PLOT OF EMPA IN PLASMA
Concentration
[ng/ml]
Concentration
Mean ± SD*
[ng/ml]
Intra-day
Accuracy*
[%]
Intra-day
Precision*
[% CV]
Concentration
Mean ± SD*
[ng/ml]
Inter-day
Accuracy*
[%]
Inter-day
Precision*
[% CV]
LLOQ
37.5
37.23 ± 3.65 99.27 9.82 36.89 ± 2.64 99.90 7.15
LQC
112.5
112.18 ± 4.99 99.72 4.45 112.18 ± 5.40 99.72 4.82
MQC
750
748.54 ± 6.61 99.81 0.88 748.70 ± 4.03 99.83 0.54
HQC
1200
1200.56 ± 5.29 100.05 0.44 1198.74± 5.76 99.90 0.48
*mean of five determinations
ACCURACY AND PRECISION OF EMPA IN PLASMA
206
Concentration
[ng/ml]
Concentration
[ng/ml]
Accuracy
[%]
LLOQ
37.5
37.52 100.053
37.98 101.28
38.2 101.86
38.3 102.13
37.82 100.85
37.89 101.04
Mean ± SD
37.95 ± 0.279 101.20 ± 0.744
% CV
0.735 0.735
SENSITIVITY OF EMPA IN PLASMA
207
S. No
HQC (1200 ng/ml) LQC (112.50 ng/ml)
Fresh solution
(ng/ml)
Stored solution
( ng/ml)
Fresh solution
( ng/ml)
Stored
solution
(ng/ml)
1. 1206.890 1198.930 110.169 108.185
2. 1204.851 1194.860 109.184 109.201
3. 1202.841 1196.841 111.192 106.168
4. 1198.912 1201.913 112.166 111.176
5. 1194.914 1205.911 114.178 115.194
6. 1196.894 1203.964 113.182 114.188
Mean ± SD 1200.88 ± 4.714 1200.40 ± 4.263 111.68 ± 1.870 110.69 ± 3.513
% CV 0.39 0.36 1.67 3.17
% Mean
Accuracy
100.07 100.03 99.27 98.39
STABILITY OF EMPA IN PLASMA [-28 ± 50C]
208
S. No
HQC (1200 ng/ml) LQC (112.50 ng/ml)
Fresh solution Stored solution Fresh solution Stored solution
1. 1198.884 1206.920 108.173 111.167
2. 1199.920 1204.901 110.184 108.182
3. 1201.900 1205.879 109.166 109.176
4. 1200.932 1199.865 113.194 112.199
5. 1204.892 1196.924 114.200 115.191
6. 1203.880 1194.896 115.169 114.188
Mean ± SD 1201.73 ± 2.310 1201.56 ± 5.05 111.68 ± 2.89 111.68 ± 2.74
% CV 0.19 0.42 2.59 2.46
% Mean
Accuracy
100.14 100.13 99.27 99.27
STABILITY OF EMPA IN PLASMA [-80 ± 50C]
209
Analyte EMPA
Internal standard Dapagliflozin
Method RP-HPLC
Biological matrix Human plasma
Anti-coagulant K2 EDTA
Extraction method Liquid-liquid extraction
Linearity range 37.5-1500 ng/ml
Correlation Coefficient [R2] 0.99968
QC concentrations [ng/ml] LLOQ- 37.5
LQC- 112.5
MQC- 750
HQC- 1200
ULOQC- 1500
Accuracy
[% recovery]
Intra-day 99.27-100.05
Inter-day 99.72-99.90
Precision
[% CV]
Intra-day 0.44-9.82
Inter-day 0.48-7.15
Long term stability at -28± 50C HQC- 100.03
LQC- 98.39
Long term stability at -80± 50C HQC- 100.13
LQC- 99.27
Sensitivity
LLOQ
Accuracy 101.2
% CV 0.735
SUMMARY OF VALIDATION
210
The developed in-vitro bioanalytical method for the estimation of
EMPA in human plasma was
 Simple, rapid and cost-effective
 Mobile Phase [ACN: Methanol (50:50 % v/v) →0.01N KH2PO4
buffer (pH 3.0): ACN (65:35 % v/v)]
 Retention time [8.898 → 4.390 mins]
 Run time [10.0 → 6.0 mins]
 Linearity [50-150 → 37.5-1500 ng/ml]
211
SUMMARY
212
 Methods developed – 9: Drugs selected – 7
 Statin drugs – 2 : Rosuvastatin Calcium and Pitavastatin Calcium
 Anti-diabetic drugs – 5: Empagliflozin, Canagliflozin,
Ertugliflozin, Metformin and Linagliptin
UV SPECTROSCOPIC METHODS COLORIMETRY
Diluent/
parameter
ROS-Ca PIT- Ca CANA ROS-Ca
Diluent 0.1 N NaOH
Methanol :
Distilled water
(1:1)
Methanol :
Distilled
water (1:1)
Methanol
Linearity
range, LOD,
LOQ
↓ ↓ ↓ ↓
SUMMARY
213
Mobile Phase/
Parameter
ROS-Ca
Simultaneous estimation
ERTU MET EMPA LINA
Mobile Phase 0.1% OPA (pH 2.7) : ACN
(55:45 % v/v)
0.1% OPA (pH 2.7) :
ACN (65:35 % v/v)
0.1% OPA (pH 2.7) :
Methanol (35:65 % v/v)
Retention time, Run
time, Linearity range,
LOD, LOQ
↓ ↓ ↓
RP-HPLC METHODS
Mobile Phase/
Parameter
EMPA
QbD Approach Bioanalytical
Mobile phase 0.1% OPA (pH 2.7) : ACN (39.57:60.43 % v/v) 0.01N KH2PO4 buffer (pH 3.0) :
ACN (65:35 % v/v)
Retention time, Run
Time, Linearity range
↓ [LOD, LOQ] ↓
214
CONCLUSION
The methods designed and developed being simple, sensitive
and cost-effective may be useful for the estimation of the
selected statins and anti-diabetic drugs in API and tablet
dosage form in academic institutions, research centers, small
scale industries and drug testing labs
215
Ahuja S, and Scypinski S (2013): Handbook of Modern Pharmaceutical Analysis,
Massachusetts, Elsefveir, pp 4-449
Dwivedi J, Singhvi I, Vaya R, Kapadiya N, Mehta A, Jain V, Mahatma OP (2011):
Quantitative estimation of Rosuvastatin Calcium from tablet formulation by colorimetric
method using Cosneasie Brilliant Blue R Dye, Inventi Rapid - Pharm Analysis and Quality
Assurance, 198(11).
FDA Label: Merck & Co. Inc. SEGLUROMET™ (Ertugliflozin and Metformin
hydrochloride) tablets, for oral use Initial US Approval, (2017): Retrieved from
https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209806s000lbl.pdf
Goodman L, Gilman A, Brunton L, and Chabner B, Knollmann B (2011): Goodman and
Gilman's the Pharmacological Basis of Therapeutics, 12th Edn: New York, McGraw-Hill, pp
892-1266
REFERENCES
216
ICH Harmonized Triplicate Guideline (2005): Validation of Analytical Procedures: Text
and Methodology Q2 (R1), ICH Steering Committee, Step 4 of ICH process, Retrieved
form https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf
Indian Pharmacopoeia (2018): Government of India, Ministry of Health and Family
Welfare, The Indian Pharmacopoeia Commission, Ghaziabad: volume-II, pp 2544-3142
International Conference on Harmonisation of Technical Requirements for Registration
of Pharmaceuticals for Human Use (2009): ICH Harmonised Tripartite Guideline,
Pharmaceutical Development Q8 (R2) retrieved from https://database.ich.
org/sites/default/files/Q8_R2_Guideline.pdf
International Conference on Harmonisation of technical requirements for registration of
pharmaceuticals for human use, ICH Harmonised tripartite guideline (2003): Stability
Testing of New Drug Substances and Products Q1A (R2), Retrieved form
https://database.ich.org/sites/default/files/Q1A%28R2%29%20Step4.pdf
217
International Conference on Harmonisation of technical requirements for registration of
pharmaceuticals for human use, ICH Harmonised tripartite guideline (1996): Stability
Testing: Photostability testing of New Drug Substances and Products Q1B, Retrieved form
https://database.ich.org/sites/default/files/ Q1B_Guideline.pdf
International Conference on Harmonization (2003): Note for guidance on stability testing,
stability testing of new drug substances and products: ICH Topic Q1 A (R2) Stability
Testing of new Drug Substances and Products, London, UK, retrieved from
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-1-r2-stability-testing-
new-drug-substances-products-step-5_en.pdf
International Diabetes Federation (2019): Statistics of Diabetes mellitus retrieved from
idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html
Katzung BG, Masters SB and Trevor AJ (2015): Basic and Clinical Pharmacology, 13th
Edn, New York, McGraw Hill Medical, pp 736-742
218
International Conference on Harmonisation of technical requirements for registration of
pharmaceuticals for human use, ICH Harmonised tripartite guideline (1996): Stability
Testing: Photostability testing of New Drug Substances and Products Q1B, Retrieved form
https://database.ich.org/sites/default/files/ Q1B_Guideline.pdf
International Conference on Harmonization (2003): Note for guidance on stability testing,
stability testing of new drug substances and products: ICH Topic Q1 A (R2) Stability
Testing of new Drug Substances and Products, London, UK, retrieved from
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-1-r2-stability-testing-
new-drug-substances-products-step-5_en.pdf
International Diabetes Federation (2019): Statistics of Diabetes mellitus retrieved from
idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html
Katzung BG, Masters SB and Trevor AJ (2015): Basic and Clinical Pharmacology, 13th
Edn, New York, McGraw Hill Medical, pp 736-742
219
Rajashree Mashru, Dharmendra Damor, Karan Mittal, Bhoomi Patel (2015): Method
development and validation of simultaneous estimation of Cilostazol and Telmisartan,
Journal of Pharmaceutical Analysis, 4(3): 41-48
Ralston S, Penman I, Strachan M, Hobson R and Davidson S (2018): Davidson's Principles
and Practice of Medicine, 23rd Edn, Edinburgh, Churchill Livingstone/Elsevier, pp 748
Ramadan AA, Hasna Mandil and Rafif AlsayedAli (2015): Spectrophotometric
determination of Rosuvastatin in pure form and pharmaceutical formulations through ion-
pair complex formation using bromocresol green, Int J Pharm Pharm Sci, 7(11), 191-198
Ramkumar S, Raghunath A and Raghunath S (2016): Statin therapy, Review of safety and
potential side effects, Acta Cardiologica Sinica, 32(6): 631
Rang HP, Dale MM, Ritter JM, Flower RJ and Henderson G (2012): Rang and Dale's
Pharmacology, Edinburgh, Churchill Livingstone, 7th Edn, pp 377-383
220
Sharma HL and Sharma KK (2017): Principles of Pharmacology, 3rd Edn, Hyderabad, Paras
Medical Publisher, pp 334-336
Snyder LR, Kirkland JJ and Glajch JL (1997): Practical HPLC method development. John
Wiley and Sons: 1-438
The Expert Panel, (2002): Third report of the National Cholesterol Education Program
(NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in
Adults (Adult Treatment Panel III), Final Report, Circulation, 106, 3143-3421
USFDA Guidance for Industry (May 2018): U.S. Department of Health and Human
Services, Food and Drug Administration, Food and Drug Administration: Center for Drug
Evaluation and Research (CDER): Center for Veterinary Medicine (CVM):
Biopharmaceutics: pp 1-37
Presentations
1. Presented a poster entitled “Analytical Method Development and Validation
for the Estimation of Rosuvastatin Calcium in Raw Material and Tablet
Formulation by UV spectroscopy and RP-HPLC” in UGC Sponsored
National Conference (IPTCON-2017) on “Current Challenges In Drug
Discovery and Development” at SPMVV, Tirupati on 6th and 7th Feb, 2017
2. Presented a poster entitled “Analytical Method Development and Validation
for the Estimation of Canagliflozin in Bulk and Formulation by UV
Spectroscopic Method”, in DST CURIE Sponsored National Conference
(IPTCON-2018) on “Innovative Research Trends in Drug Discovery” at
SPMVV, Tirupati on 21, 22 March 2018
221
Publications
1. Published a paper entitled “Analytical Method Development and Validation
for Estimation of Dipeptidyl Peptidase-4 Inhibitors: A Review” B.Sailaja and
K.Sravana Kumari. International Journal of Current Research in Chemistry
and Pharmaceutical Sciences, 2(4), 2015, 83–98
2. Published a paper entitled “Analytical Method Development and Validation for
the Estimation of Rosuvastatin Calcium in Raw Material and Tablet
Formulation by UV Spectrometric Method” B.Sailaja and K.Sravana Kumari.
Saudi Journal of Medical and Pharmaceutical Sciences, 2(1), 2016, 7-11
222
223
3. Published a paper entitled “Stability-indicating Method Development and
Validation for the Estimation of Rosuvastatin Calcium in Bulk and Tablet
Formulation by Reverse-phase High-performance Liquid Chromatography”
B.Sailaja and K.Sravana Kumari, Asian Journal of Pharmaceutical and
Clinical Research, 12(8), 2019, 251-256
Paper accepted for Publication:
4. “Development and Validation of Stability Indicating RP-HPLC Method for
the Simultaneous Determination of Ertugliflozin Pidolate and Metformin
Hydrochloride in bulk and tablets”
B.Sailaja and K.Sravana Kumari, Future Journal of Pharmaceutical Sciences
224
I express my sincere thanks to Prof. R. Nagaraju, Dean (In charge), for his kind support
and encouragement
It is my privilege to thank Prof. G. Rajitha, BOS Chairperson, Institute of Pharmaceutical
Technology, SPMVV for her moral support during my Ph.D. work
I express my sincere thanks to Prof. Y. Indira Muzib, Head of the Department, Institute of
Pharmaceutical Technology, SPMVV for her support during the work
I take this opportunity to thank Prof. M. Ajitha, External examiner and other evaluators for
their valuable suggestions
I take this opportunity to express my gratitude to my research supervisor
Prof. B. Sailaja, for her guidance, valuable suggestions, incredible support, patience and
persistent creative encouragement through out my research work
ACKNOWLEDGEMENTS
225
I owe a great debt of gratitude to Prof. K.V.S.R.G. Prasad,
Prof. K.Bharathi, Prof. Santh Rani Thakur,
Prof. B. Jeevana Jyothi, Prof. M. Vidyavathi, Prof. A. Sreedevi, Prof. S. Joshna Rani,
Associate Professors, Dr. K. Madhavi, Dr. B. Ramya Kuber and Dr.K.Swathi, Assistant
Professors, Dr. Shaheen Begum and
Dr. D. Sujatha for their kind support throughout my Ph.D. course
I take this opportunity to thank Laurus labs, Hyderabad, Apotex Pharma, Bangalore,
Micro labs, Bangalore, Hetero drugs, Hyderabad, Natco Pharma, Hyderabad, Ajanta
Pharma, Mumbai for providing me the gift samples of APIs
I express my sincere thanks to Dr. K. S. Murali Krishna, Principal,
Marri Laxman Reddy Institute of Pharmacy, Hyderabad for providing the facilities
required for Ph.D. work and for his support and encouragement
226
I am thankful to Dr. D. Dachinamoorthi, Principal, QIS College of Pharmacy, Ongole
for his support and encouragement
I am grateful and sincerely thankful to Dr. Gummalla Pitchaiah, Head of the
Department, QIS College of Pharmacy, Ongole for providing facilities for Ph.D. work
and encouragement
I am thankful to Dr. P. Sreenivasa Prasanna, Principal, Malineni Lakshmaiah College
of Pharmacy, Singarayakonda for providing the facilities required for Ph.D. work
My special thanks go to my friends Mrs. E. Pushpa Latha,
Mrs. K. Veditha, Mrs. S. Bhargavi for their help during my Ph.D. work
227
I express my heartfelt love and affection to my father, late
Mr. K. Anjaneyulu, mother, Mrs. K. Sujatha and brother, Mr. K. Siva Teja for their
constant encouragement and moral support without which this work would have not been
completed
I take this opportunity to express my profound sense of gratitude and respect to all those
who helped me directly and indirectly in completion of my Ph.D.
228
THANK YOU

More Related Content

What's hot

Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...
Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...
Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...Shimadzu Scientific Instruments
 
Kinetic spectrophotometric determination of V(IV) in the presence of V(V) by ...
Kinetic spectrophotometric determination of V(IV) in the presence of V(V) by ...Kinetic spectrophotometric determination of V(IV) in the presence of V(V) by ...
Kinetic spectrophotometric determination of V(IV) in the presence of V(V) by ...Fatemeh Sedaghatpour
 
Recent advancement in impurity profiling
Recent advancement in impurity profilingRecent advancement in impurity profiling
Recent advancement in impurity profilingPiramal Healthcare
 
Ni3 kanwale sem ii seminar
Ni3 kanwale sem ii seminarNi3 kanwale sem ii seminar
Ni3 kanwale sem ii seminarNITIN KANWALE
 
Indirect Simultaneous Kinetic Determination of Semicarbazide and Hydrazine in...
Indirect Simultaneous Kinetic Determination of Semicarbazide and Hydrazine in...Indirect Simultaneous Kinetic Determination of Semicarbazide and Hydrazine in...
Indirect Simultaneous Kinetic Determination of Semicarbazide and Hydrazine in...Fatemeh Sedaghatpour
 
LC-MS/MS method for the quantification of carbinoxamine in human plasma
LC-MS/MS method for the quantification of carbinoxamine in human plasmaLC-MS/MS method for the quantification of carbinoxamine in human plasma
LC-MS/MS method for the quantification of carbinoxamine in human plasmaIOSR Journals
 
Chemical lab report analysis of food additives by hplc and uv-vis
Chemical lab report analysis of food additives by hplc and uv-visChemical lab report analysis of food additives by hplc and uv-vis
Chemical lab report analysis of food additives by hplc and uv-visAwad Albalwi
 
Development and Validation of Novel RP-HPLC method for the estimation of Nalo...
Development and Validation of Novel RP-HPLC method for the estimation of Nalo...Development and Validation of Novel RP-HPLC method for the estimation of Nalo...
Development and Validation of Novel RP-HPLC method for the estimation of Nalo...Bhavana Gundavarapu
 
Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...
Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...
Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...Shimadzu Scientific Instruments
 
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...Shimadzu Scientific Instruments
 
Chemical lab report:Analysis of anions(in toothpaste Berocca and an unknown s...
Chemical lab report:Analysis of anions(in toothpaste Berocca and an unknown s...Chemical lab report:Analysis of anions(in toothpaste Berocca and an unknown s...
Chemical lab report:Analysis of anions(in toothpaste Berocca and an unknown s...Awad Albalwi
 
Hplc determination of_four_textile_dyes_and_studying_their_degradation_using_...
Hplc determination of_four_textile_dyes_and_studying_their_degradation_using_...Hplc determination of_four_textile_dyes_and_studying_their_degradation_using_...
Hplc determination of_four_textile_dyes_and_studying_their_degradation_using_...Abdallah Yousif
 
method development and validation
method development and validationmethod development and validation
method development and validationNITIN KANWALE
 
Development and validation of hplc method for determination of theophylline a...
Development and validation of hplc method for determination of theophylline a...Development and validation of hplc method for determination of theophylline a...
Development and validation of hplc method for determination of theophylline a...IJSIT Editor
 
Combined spectra problem (ir, nmr & mass) format of organic molecules
Combined spectra problem (ir, nmr & mass) format of organic moleculesCombined spectra problem (ir, nmr & mass) format of organic molecules
Combined spectra problem (ir, nmr & mass) format of organic moleculesDr. Krishna Swamy. G
 

What's hot (20)

Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...
Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...
Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...
 
HPLC Method Development
HPLC Method DevelopmentHPLC Method Development
HPLC Method Development
 
Kinetic spectrophotometric determination of V(IV) in the presence of V(V) by ...
Kinetic spectrophotometric determination of V(IV) in the presence of V(V) by ...Kinetic spectrophotometric determination of V(IV) in the presence of V(V) by ...
Kinetic spectrophotometric determination of V(IV) in the presence of V(V) by ...
 
Devlopment and validation of rp hplc method for simultaneous ex.
Devlopment and validation of rp hplc method for simultaneous ex.Devlopment and validation of rp hplc method for simultaneous ex.
Devlopment and validation of rp hplc method for simultaneous ex.
 
Recent advancement in impurity profiling
Recent advancement in impurity profilingRecent advancement in impurity profiling
Recent advancement in impurity profiling
 
Ni3 kanwale sem ii seminar
Ni3 kanwale sem ii seminarNi3 kanwale sem ii seminar
Ni3 kanwale sem ii seminar
 
Indirect Simultaneous Kinetic Determination of Semicarbazide and Hydrazine in...
Indirect Simultaneous Kinetic Determination of Semicarbazide and Hydrazine in...Indirect Simultaneous Kinetic Determination of Semicarbazide and Hydrazine in...
Indirect Simultaneous Kinetic Determination of Semicarbazide and Hydrazine in...
 
LC-MS/MS method for the quantification of carbinoxamine in human plasma
LC-MS/MS method for the quantification of carbinoxamine in human plasmaLC-MS/MS method for the quantification of carbinoxamine in human plasma
LC-MS/MS method for the quantification of carbinoxamine in human plasma
 
Chemical lab report analysis of food additives by hplc and uv-vis
Chemical lab report analysis of food additives by hplc and uv-visChemical lab report analysis of food additives by hplc and uv-vis
Chemical lab report analysis of food additives by hplc and uv-vis
 
Development and Validation of Novel RP-HPLC method for the estimation of Nalo...
Development and Validation of Novel RP-HPLC method for the estimation of Nalo...Development and Validation of Novel RP-HPLC method for the estimation of Nalo...
Development and Validation of Novel RP-HPLC method for the estimation of Nalo...
 
Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...
Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...
Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...
 
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
 
Chemical lab report:Analysis of anions(in toothpaste Berocca and an unknown s...
Chemical lab report:Analysis of anions(in toothpaste Berocca and an unknown s...Chemical lab report:Analysis of anions(in toothpaste Berocca and an unknown s...
Chemical lab report:Analysis of anions(in toothpaste Berocca and an unknown s...
 
Devlopment and validation of rp hplc method for simultaneous ex.
Devlopment and validation of rp hplc method for simultaneous ex.Devlopment and validation of rp hplc method for simultaneous ex.
Devlopment and validation of rp hplc method for simultaneous ex.
 
Hplc determination of_four_textile_dyes_and_studying_their_degradation_using_...
Hplc determination of_four_textile_dyes_and_studying_their_degradation_using_...Hplc determination of_four_textile_dyes_and_studying_their_degradation_using_...
Hplc determination of_four_textile_dyes_and_studying_their_degradation_using_...
 
method development and validation
method development and validationmethod development and validation
method development and validation
 
Development and validation of hplc method for determination of theophylline a...
Development and validation of hplc method for determination of theophylline a...Development and validation of hplc method for determination of theophylline a...
Development and validation of hplc method for determination of theophylline a...
 
Cnu ppt
Cnu pptCnu ppt
Cnu ppt
 
Combined spectra problem (ir, nmr & mass) format of organic molecules
Combined spectra problem (ir, nmr & mass) format of organic moleculesCombined spectra problem (ir, nmr & mass) format of organic molecules
Combined spectra problem (ir, nmr & mass) format of organic molecules
 
Enhancing Volatile Organic Compounds in Water
Enhancing Volatile Organic Compounds in Water Enhancing Volatile Organic Compounds in Water
Enhancing Volatile Organic Compounds in Water
 

Similar to Ph.D. viva voce presentation on Anti-diabetics and statins

Review on Reversed-phase High-performance Liquid Chromatography Method Develo...
Review on Reversed-phase High-performance Liquid Chromatography Method Develo...Review on Reversed-phase High-performance Liquid Chromatography Method Develo...
Review on Reversed-phase High-performance Liquid Chromatography Method Develo...BRNSS Publication Hub
 
Validation of analytical method for Diabetes Mellitus
 Validation of analytical method  for Diabetes Mellitus  Validation of analytical method  for Diabetes Mellitus
Validation of analytical method for Diabetes Mellitus DhruvkumarPatel25
 
DEVELOPMENT AND VALIDATION OF SPECTROSCOPIC AND CHROMATOGRAPHIC METHOD FOR D...
DEVELOPMENT AND VALIDATION OF SPECTROSCOPIC AND CHROMATOGRAPHIC  METHOD FOR D...DEVELOPMENT AND VALIDATION OF SPECTROSCOPIC AND CHROMATOGRAPHIC  METHOD FOR D...
DEVELOPMENT AND VALIDATION OF SPECTROSCOPIC AND CHROMATOGRAPHIC METHOD FOR D...Dipak Reddy
 
RP-HPLC Method Development and Validation of Ketoconazole in Bulk and Pharmac...
RP-HPLC Method Development and Validation of Ketoconazole in Bulk and Pharmac...RP-HPLC Method Development and Validation of Ketoconazole in Bulk and Pharmac...
RP-HPLC Method Development and Validation of Ketoconazole in Bulk and Pharmac...Sunil Vadithya
 
Shraddha roll no- 7 -m. pharm final presentation ---rbvrr college of pharmacy
 Shraddha roll no- 7 -m. pharm final presentation ---rbvrr college of pharmacy Shraddha roll no- 7 -m. pharm final presentation ---rbvrr college of pharmacy
Shraddha roll no- 7 -m. pharm final presentation ---rbvrr college of pharmacysaathiyaa
 
Development and validation of rp hplc method for
Development and validation of rp hplc method forDevelopment and validation of rp hplc method for
Development and validation of rp hplc method forprudhvichandperikala
 
Estimation of olopatadine hydrochloride by RP–HPLC and U.V spectrophotometry ...
Estimation of olopatadine hydrochloride by RP–HPLC and U.V spectrophotometry ...Estimation of olopatadine hydrochloride by RP–HPLC and U.V spectrophotometry ...
Estimation of olopatadine hydrochloride by RP–HPLC and U.V spectrophotometry ...pharmaindexing
 
Analytical Method Development and Validation for the Estimation of Zolmitript...
Analytical Method Development and Validation for the Estimation of Zolmitript...Analytical Method Development and Validation for the Estimation of Zolmitript...
Analytical Method Development and Validation for the Estimation of Zolmitript...ijtsrd
 
HPLC (RP-HPLC) Method Development for simultaneous estimation of EMP & LNG
HPLC (RP-HPLC) Method Development for simultaneous estimation of EMP & LNGHPLC (RP-HPLC) Method Development for simultaneous estimation of EMP & LNG
HPLC (RP-HPLC) Method Development for simultaneous estimation of EMP & LNGLaxmanBulbule1
 
020203 ps0096
020203 ps0096020203 ps0096
020203 ps0096Jing Zang
 
Method development and validation for the simultaneous estimation of sitaglip...
Method development and validation for the simultaneous estimation of sitaglip...Method development and validation for the simultaneous estimation of sitaglip...
Method development and validation for the simultaneous estimation of sitaglip...pharmaindexing
 
advance phytochemical analysis.pptx
advance phytochemical analysis.pptxadvance phytochemical analysis.pptx
advance phytochemical analysis.pptxPratikKapse8
 
Novel RP-HPLC Method for Simultanious Determination of Sitagliptin and Simvas...
Novel RP-HPLC Method for Simultanious Determination of Sitagliptin and Simvas...Novel RP-HPLC Method for Simultanious Determination of Sitagliptin and Simvas...
Novel RP-HPLC Method for Simultanious Determination of Sitagliptin and Simvas...iosrphr_editor
 
Method development and validation in HPLC
Method development and validation in HPLCMethod development and validation in HPLC
Method development and validation in HPLCcoolprashant33
 
Analytical method development and validation for the estimation of quinapril ...
Analytical method development and validation for the estimation of quinapril ...Analytical method development and validation for the estimation of quinapril ...
Analytical method development and validation for the estimation of quinapril ...SriramNagarajan19
 
Art%3 a10.1007%2fs12161 013-9618-4
Art%3 a10.1007%2fs12161 013-9618-4Art%3 a10.1007%2fs12161 013-9618-4
Art%3 a10.1007%2fs12161 013-9618-4Nádia Paracampo
 
Diclofenac rabeprazole hplc
Diclofenac rabeprazole hplcDiclofenac rabeprazole hplc
Diclofenac rabeprazole hplcDeepak Gadade
 
Development and Validation of Reversed-phase High-performance Liquid Chromato...
Development and Validation of Reversed-phase High-performance Liquid Chromato...Development and Validation of Reversed-phase High-performance Liquid Chromato...
Development and Validation of Reversed-phase High-performance Liquid Chromato...BRNSS Publication Hub
 

Similar to Ph.D. viva voce presentation on Anti-diabetics and statins (20)

01_IJPBA_1739_18[Review]_RA.pdf
01_IJPBA_1739_18[Review]_RA.pdf01_IJPBA_1739_18[Review]_RA.pdf
01_IJPBA_1739_18[Review]_RA.pdf
 
Review on Reversed-phase High-performance Liquid Chromatography Method Develo...
Review on Reversed-phase High-performance Liquid Chromatography Method Develo...Review on Reversed-phase High-performance Liquid Chromatography Method Develo...
Review on Reversed-phase High-performance Liquid Chromatography Method Develo...
 
Validation of analytical method for Diabetes Mellitus
 Validation of analytical method  for Diabetes Mellitus  Validation of analytical method  for Diabetes Mellitus
Validation of analytical method for Diabetes Mellitus
 
DEVELOPMENT AND VALIDATION OF SPECTROSCOPIC AND CHROMATOGRAPHIC METHOD FOR D...
DEVELOPMENT AND VALIDATION OF SPECTROSCOPIC AND CHROMATOGRAPHIC  METHOD FOR D...DEVELOPMENT AND VALIDATION OF SPECTROSCOPIC AND CHROMATOGRAPHIC  METHOD FOR D...
DEVELOPMENT AND VALIDATION OF SPECTROSCOPIC AND CHROMATOGRAPHIC METHOD FOR D...
 
RP-HPLC Method Development and Validation of Ketoconazole in Bulk and Pharmac...
RP-HPLC Method Development and Validation of Ketoconazole in Bulk and Pharmac...RP-HPLC Method Development and Validation of Ketoconazole in Bulk and Pharmac...
RP-HPLC Method Development and Validation of Ketoconazole in Bulk and Pharmac...
 
Shraddha roll no- 7 -m. pharm final presentation ---rbvrr college of pharmacy
 Shraddha roll no- 7 -m. pharm final presentation ---rbvrr college of pharmacy Shraddha roll no- 7 -m. pharm final presentation ---rbvrr college of pharmacy
Shraddha roll no- 7 -m. pharm final presentation ---rbvrr college of pharmacy
 
Development and validation of rp hplc method for
Development and validation of rp hplc method forDevelopment and validation of rp hplc method for
Development and validation of rp hplc method for
 
Project seminar
Project seminarProject seminar
Project seminar
 
Estimation of olopatadine hydrochloride by RP–HPLC and U.V spectrophotometry ...
Estimation of olopatadine hydrochloride by RP–HPLC and U.V spectrophotometry ...Estimation of olopatadine hydrochloride by RP–HPLC and U.V spectrophotometry ...
Estimation of olopatadine hydrochloride by RP–HPLC and U.V spectrophotometry ...
 
Analytical Method Development and Validation for the Estimation of Zolmitript...
Analytical Method Development and Validation for the Estimation of Zolmitript...Analytical Method Development and Validation for the Estimation of Zolmitript...
Analytical Method Development and Validation for the Estimation of Zolmitript...
 
HPLC (RP-HPLC) Method Development for simultaneous estimation of EMP & LNG
HPLC (RP-HPLC) Method Development for simultaneous estimation of EMP & LNGHPLC (RP-HPLC) Method Development for simultaneous estimation of EMP & LNG
HPLC (RP-HPLC) Method Development for simultaneous estimation of EMP & LNG
 
020203 ps0096
020203 ps0096020203 ps0096
020203 ps0096
 
Method development and validation for the simultaneous estimation of sitaglip...
Method development and validation for the simultaneous estimation of sitaglip...Method development and validation for the simultaneous estimation of sitaglip...
Method development and validation for the simultaneous estimation of sitaglip...
 
advance phytochemical analysis.pptx
advance phytochemical analysis.pptxadvance phytochemical analysis.pptx
advance phytochemical analysis.pptx
 
Novel RP-HPLC Method for Simultanious Determination of Sitagliptin and Simvas...
Novel RP-HPLC Method for Simultanious Determination of Sitagliptin and Simvas...Novel RP-HPLC Method for Simultanious Determination of Sitagliptin and Simvas...
Novel RP-HPLC Method for Simultanious Determination of Sitagliptin and Simvas...
 
Method development and validation in HPLC
Method development and validation in HPLCMethod development and validation in HPLC
Method development and validation in HPLC
 
Analytical method development and validation for the estimation of quinapril ...
Analytical method development and validation for the estimation of quinapril ...Analytical method development and validation for the estimation of quinapril ...
Analytical method development and validation for the estimation of quinapril ...
 
Art%3 a10.1007%2fs12161 013-9618-4
Art%3 a10.1007%2fs12161 013-9618-4Art%3 a10.1007%2fs12161 013-9618-4
Art%3 a10.1007%2fs12161 013-9618-4
 
Diclofenac rabeprazole hplc
Diclofenac rabeprazole hplcDiclofenac rabeprazole hplc
Diclofenac rabeprazole hplc
 
Development and Validation of Reversed-phase High-performance Liquid Chromato...
Development and Validation of Reversed-phase High-performance Liquid Chromato...Development and Validation of Reversed-phase High-performance Liquid Chromato...
Development and Validation of Reversed-phase High-performance Liquid Chromato...
 

Recently uploaded

Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...Salam Al-Karadaghi
 
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...NETWAYS
 
Microsoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AIMicrosoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AITatiana Gurgel
 
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdfCTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdfhenrik385807
 
SaaStr Workshop Wednesday w: Jason Lemkin, SaaStr
SaaStr Workshop Wednesday w: Jason Lemkin, SaaStrSaaStr Workshop Wednesday w: Jason Lemkin, SaaStr
SaaStr Workshop Wednesday w: Jason Lemkin, SaaStrsaastr
 
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...Sheetaleventcompany
 
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night Enjoy
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night EnjoyCall Girl Number in Khar Mumbai📲 9892124323 💞 Full Night Enjoy
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night EnjoyPooja Nehwal
 
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...henrik385807
 
WhatsApp 📞 9892124323 ✅Call Girls In Juhu ( Mumbai )
WhatsApp 📞 9892124323 ✅Call Girls In Juhu ( Mumbai )WhatsApp 📞 9892124323 ✅Call Girls In Juhu ( Mumbai )
WhatsApp 📞 9892124323 ✅Call Girls In Juhu ( Mumbai )Pooja Nehwal
 
Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝soniya singh
 
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceDelhi Call girls
 
Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Chameera Dedduwage
 
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptxMohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptxmohammadalnahdi22
 
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...Pooja Nehwal
 
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024eCommerce Institute
 
George Lever - eCommerce Day Chile 2024
George Lever -  eCommerce Day Chile 2024George Lever -  eCommerce Day Chile 2024
George Lever - eCommerce Day Chile 2024eCommerce Institute
 
ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docxANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docxNikitaBankoti2
 
Mathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMoumonDas2
 
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...Kayode Fayemi
 
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls KolkataRussian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkataanamikaraghav4
 

Recently uploaded (20)

Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
 
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
 
Microsoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AIMicrosoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AI
 
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdfCTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
 
SaaStr Workshop Wednesday w: Jason Lemkin, SaaStr
SaaStr Workshop Wednesday w: Jason Lemkin, SaaStrSaaStr Workshop Wednesday w: Jason Lemkin, SaaStr
SaaStr Workshop Wednesday w: Jason Lemkin, SaaStr
 
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
 
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night Enjoy
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night EnjoyCall Girl Number in Khar Mumbai📲 9892124323 💞 Full Night Enjoy
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night Enjoy
 
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
 
WhatsApp 📞 9892124323 ✅Call Girls In Juhu ( Mumbai )
WhatsApp 📞 9892124323 ✅Call Girls In Juhu ( Mumbai )WhatsApp 📞 9892124323 ✅Call Girls In Juhu ( Mumbai )
WhatsApp 📞 9892124323 ✅Call Girls In Juhu ( Mumbai )
 
Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝
 
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
 
Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)
 
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptxMohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
 
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
 
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024
 
George Lever - eCommerce Day Chile 2024
George Lever -  eCommerce Day Chile 2024George Lever -  eCommerce Day Chile 2024
George Lever - eCommerce Day Chile 2024
 
ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docxANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
 
Mathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptx
 
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
 
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls KolkataRussian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkata
 

Ph.D. viva voce presentation on Anti-diabetics and statins

  • 1. DEVELOPMENT AND VALIDATION OF NEW ANALYTICAL METHODS FOR THE ESTIMATION OF ANTI-DIABETICS AND STATINS Ph.D. Viva-voce By Ms. K. Sravana Kumari, M.Pharm., Under the guidance of Dr. B.Sailaja, M.Pharm., Ph.D. Professor, IPT, SPMVV Institute of Pharmaceutical Technology SRI PADMAVATI MAHILA VISVAVIDYALAYAM Tirupati, A.P. 17-09-2020 1
  • 2. CONTENTS  Introduction  Review of Literature  Aim and Objectives 4a. UV Spectroscopic method for Rosuvastatin Calcium 4b. Colorimetric method for Rosuvastatin Calcium 4c. Stability Indicating RP-HPLC method for Rosuvastatin Calcium 4d. UV Spectroscopic method for Pitavastatin Calcium 5a. QbD enabled Stability indicating RP-HPLC method for Empagliflozin 2
  • 3. 3 5b. UV Spectroscopic method for Canagliflozin 6a. Stability indicating simultaneous RP-HPLC method for Ertugliflozin Pidolate and Metformin Hydrochloride 6b. Stability indicating simultaneous RP-HPLC method for Empagliflozin and Linagliptin  In-vitro Bioanalytical RP-HPLC method for Empagliflozin  Summary and Conclusion  References List of Presentations and Publications Acknowledgements
  • 5. 5 In pharmaceutical industry, there is a need for the invention of suitable novel analytical methods from time to time for testing the quality of bulk drugs, excipients and formulations Method development and validation is an integral part of drug discovery and drug development UV-Visible Spectroscopy and HPLC are the most popular techniques used for the identification and estimation of drugs with good accuracy and precision Simultaneous method development is useful for analysis of combination of drugs [Rajashree Mashru et al., 2015]
  • 6. 6 QbD approach helps to develop a more robust and cost-effective analytical method by studying simultaneous influence of more than one variable on method optimization [Ahuja and Scypinski, 2013] Bioanalytical method development is used for the estimation of drugs and their metabolites in various biological fluids like blood, urine, plasma, serum, saliva and cerebrospinal fluid Worldwide, around 463 million people are suffering from type-2 Diabetes mellitus [International Diabetes Federation, 2019]  Type-2 Diabetes mellitus patients are at increased risk for Dyslipidemia associated cardiovascular diseases
  • 7. 7 Globally, about 1/3rd of ischemic heart disease and 1/5th of cerebro-vascular disease are due to Dyslipidemia and equates to nearly 2.6 million deaths [WHO global estimates, (2014)] Statins are used for treating Dyslipidemia associated cardiovascular risk Rosuvastatin Calcium (10 mg) and Pitavastatin Calcium (4 mg), effectively reduces LDL cholesterol and triglyceride levels [Sharma and Sharma, 2017] Empagliflozin, Ertugliflozin and Canagliflozin (SGLT-2 inhibitors), are widely used for controlling plasma glucose levels with decreased cardio-vascular risk [Ralston et al., 2018]
  • 8. 8 Combination of Ertugliflozin with Metformin effectively reduces HbA1c levels in chronic diabetic patients [FDA label, Segluromet, 2017] Combination of Empagliflozin and Linagliptin [stimulates inactive beta cells] exerts synergistic effect compared to mono-drug therapy [Katzung et al., 2015]  There will be always a need for the development and validation of novel analytical methods for the estimation of drugs in bulk and dosage forms in order to deliver good quality and affordable medicines to patients
  • 9. 9 The present study was focused on the development and validation of novel analytical techniques for the estimation of Rosuvastatin Calcium by UV-Visible Spectroscopic and stability indicating RP-HPLC methods Pitavastatin Calcium by UV Spectroscopic method Empagliflozin by RP-HPLC using QbD approach Canagliflozin by UV Spectroscopic method Simultaneous stability indicating RP-HPLC methods for Ertugliflozin and Metformin and for Empagliflozin and Linagliptin in bulk and tablets In-vitro bioanalytical method for Empagliflozin in human plasma by RP-HPLC
  • 11. 11 ESTIMATION OF ROSUVASTATIN CALCIUM IN BULK AND TABLET FORMULATION BY UV SPECTROSCOPY Ref Solvent λ max [nm] Linearity [μg/ml] LOD [μg/ml] LOQ [μg/ml] Priyanka Pannure et al., 2018 ACN: Methanol (6:40) 242 4-24 0.75 2.27 Singh et al., 2018 Methanol 244 2-18 - - Bokhare et al., 2018 Phosphate buffer pH 7.4 246 10-150 - - Lahare et al., 2014 Methanol Absorption max: 252 AUC method : 247-257 First order derivative: Maxima-238 Minima- 205 5-35 - - Gupta et al., 2008 Methanol 244 2-18 Uyar et al., 2007 Methanol 243 1-60 0.33 1.00
  • 12. 12 ESTIMATION OF ROSUVASTATIN CALCIUM IN BULK AND TABLET FORMULATION BY COLORIMETRY Ref Reagent Solvent λ max Linearity [μg/ml] LOD [μg/ml] LOQ [μg/ml] Lima et al., 2017 Quinalizarin Methanol 579 6-15 0.9 mg/ml 3.0 mg/ml Ramadan et al., 2015 Bromocresol green Chloroform 416 0.482-24.077 0.045 0.13 Ramadan et al., 2014 Iodine ACN 360 2.408-48.154 0.28 0.85 Dwivedi et al., 2011 Cosneasie Brilliant Blue R - 595 100-500
  • 13. ESTIMATION OF ROSUVASTATIN CALCIUM IN BULK AND TABLET FORMULATION BY RP-HPLC 13 Ref Chromatographic Conditions Validation Parameters Hassouna et al., 2017 Column : Eclipse XDB C8 (250mm x 4.6mm, 5μm) Mobile Phase : pH 4.5 0.05M Sodium dihydrogen phosphate buffer : ACN (50:50 % v/v) Flow rate : 1.2 ml/min Wavelength : 245 nm Diluent : Methanol Elution : Isocratic Inj. Vol. : 10 μl Temperature : Ambient Run time : 5 mins Rt : 3.684 mins Linearity : 5-100 µg/ml LOD : 1.5µg/ml LOQ : 4.56µg/ml Sirisha et al., 2017 Column : Agilent zorbax RP C18 (150mm x 4.6mm, 5μm) Mobile Phase : Methanol: OPA buffer (pH 3.1) [35:65 % v/v] Flow rate : 1.0 ml/min Wavelength : 282 nm Diluent : Mobile phase Elution : Isocratic Inj. Vol. : 50 μl Temperature : Ambient Run Time : 5 mins Rt : 1.323 mins Linearity : 0.5-16 µg/ml LOD : 3.5 µg/ml LOQ : 10.5 µg/ml
  • 14. 14 Ref Chromatographic Conditions Validation Parameters Suares and Prabhakar, 2016 Column : Kromasil C18 (250mm x 4.6mm, 5μm) Mobile phase : Buffer pH 4.8 (0.78 % NaH2PO4) : ACN (50:50 % v/v) Flow rate : 1.0 ml/min Wavelength : 241nm Diluent : Mobile phase Elution : Isocratic Inj. Vol. : 20 µl Temperature : ambient Run Time : 8 mins Rt : 4.72 mins Linearity : 1.56-50 µg/ml LOD : 0.17 µg/ml LOQ : 0.7 µg/ml Ebru Cubuk Demiralay et al., 2016 Column : X-terra -C18 (250mm x 4.6mm, 5µm) Mobile Phase : ACN : Water (50:50) Flow rate : 1.0 ml/min Wavelength : 242 nm Diluent : ACN, Mobile Phase Elution : Isocratic Inj. Vol. : 20 µl Temperature : 250C Run time : 10 mins Rt : 5.502 mins Linearity : 4-14 µg/ml LOD : 0.221 µg/ml LOQ : 0.670 µg/ml
  • 15. 15 Ref Chromatographic Conditions Validation Parameters Rambabu et al., 2015 Column : Thermo-hypersil BDS C18 (150mm x 4.6mm, 5μm) Mobile phase : Buffer (KH2PO4) : ACN (40:60 v/v) Flow rate : 0.8 ml/min Wavelength : 243 nm Diluent : Water : ACN (90:10) Elution : Isocratic Inj. Vol. : 20 µl Temperature : 300C Run Time : 12 mins Rt : 3.806 mins Linearity: 5-30 µg/ml LOD : 0.041 µg/ml LOQ : 0.1434 µg/ml Prabhu Venkatesh et al., 2015 Column : Chiralpak IB (250mm x 4.6mm, 5μm) Mobile Phase : n-Heptane, 2-Propanol : Trifluoroaceticacid (85:15:01v/v) Flow rate : 0.2 ml/min Wavelength : 242 nm Diluent : HPLC water Elution : Isocratic Temperature : 25OC Inj. Vol. : 10 μl Run Time : 24 mins Rt : 12.524 mins Linearity : 0.2-3 µg/ml LOD : - LOQ : -
  • 16. 16 Ref Chromatographic Conditions Validation Parameters Usha Rani et al., 2014 Column : Eclipse XDB plus C18 (150mm x 4.6mm, 5μm) Mobile Phase : ACN: Water (60:40) Flow rate : 1.0 ml/min Wavelength : 242 nm Diluent : Mobile Phase Elution : Isocratic Temperature : Ambient Inj. Vol. : 20 μl Run time : 10 mins Rt : 1.787 mins Linearity : 10-50 µg/ml LOD : 0.08 µg/ml LOQ : 0.25 µg/ml Gowrisankar et al., 2013 Column : Luna C18 (250mm × 4.6 mm, 5μm) Mobile Phase : Triethylamine buffer pH 4.5: ACN : Methanol (45:25:35) Flow rate : 1.0 ml/min Wavelength : 248 nm Diluent : Mobile Phase Elution : Isocratic Inj. Vol. : 20 μl Temperature : ambient Run Time : 11 mins Rt : 7.18 mins Linearity : 0.5-30 µg/ml LOD : 0.2 µg/ml LOQ : 0.55 µg/ml
  • 17. 17 Ref Chromatographic Conditions Validation Parameters Anup Kumar Chakraborty et al., 2011 Column : Phenomenex-C18 (250mm x 4.6mm, 10µm) Mobile Phase : Buffer: ACN (55:45) Buffer : Ammonium acetate pH 5 with Glacial acetic acid Flow rate : 1.0 ml/min Wavelength : 244 nm Diluent : Mobile Phase Elution : Isocratic Inj. Vol. : 20 μl Temperature : - Run time : 10 mins Rt : 6 mins Linearity : 70-130 % LOD : - LOQ : - Donthula et al., 2011 Column : Luna C18 (250mm x 4.6mm, 5μm) Mobile Phase : Buffer (pH 4.5): ACN: Methanol (45:25:35) Flow rate : 1.0 ml/min Wavelength : 248 nm Diluent : Methanol Elution : Isocratic Inj. Vol. : 20 μl Temperature : - Run Time : 20 mins Rt : 9.9 mins Linearity: 25-75 µg/ml LOD : 3.5 µg/ml LOQ : 10.5 µg/ml
  • 18. 18 Ref Chromatographic Conditions Validation Parameters Pandya et al., 2010 Column : Thermo hypersilC18 (100mm x 4.6mm, 5μm) Mobile Phase : ACN : KH2PO4 (50:50, pH 3) Flow rate : 0.5 ml/min Wavelength : 243 nm Diluent : Methanol, Mobile Phase Elution : Isocratic Run Time : 5 mins Rt : 3.333 mins Linearity : 5-30 µg/ml LOD : 0.14 µg/ml LOQ : 0.46 µg/ml Kaila et al., 2010 Column : YMC C8 (150mm × 4.6mm, 5μm) Mobile Phase : ACN: Water (40:60, v/v) pH 3.5 Flow rate : 1.5 ml/min Wavelength : 242 nm Diluent : Water: ACN (50:50) Elution : Isocratic Temperature : ambient Inj. Vol. : 20 μl Run time : 10 mins Rt : 4.86 mins Linearity : 0.5-80 µg/ml LOD : 0.1 µg/ml LOQ : 0.5 µg/ml
  • 19. 19 Ref Chromatographic Conditions Validation Parameters Lakshmana Rao and Suneetha, 2010 Column : RP-C18 column (100mm x 4.6 mm, 3μm) Mobile Phase : 0.02M phosphate buffer pH 6.8 : ACN (60:40 v/v) Flow rate : 0.6 ml/min Wavelength : 242 nm Diluent : ACN, Mobile phase Elution : Isocratic Inj. Vol. : 20 μl Run Time : 5 mins Rt : 3.424 mins Linearity : 20-100 µg/ml LOD : 0.017 µg/ml LOQ : 0.052 µg/ml Hasumathi et al., 2009 Column : Phenomenex-C18 (250mm x 4.6mm, 5µm) Mobile Phase : ACN : 0.5% Formic acid (50:50) Flow rate : 1.0 ml/min Wavelength : 248 nm Diluent : ACN Elution : Isocratic Inj. vol. : 20 µl Temperature : Ambient Run time : 10 mins Rt : 6.742mins Linearity : 5-300 µg/ml LOD : 0.0905 µg/ml LOQ : 0.318 µg/ml
  • 20. 20 ESTIMATION OF PITAVASTATIN CALCIUM IN BULK AND TABLET FORMULATION BY UV SPECTROSCOPY Ref Solvent λ max [nm] Linearity [μg/ml] LOD [μg/ml] LOQ [μg/ml] Yunoos et al., 2014 0.1 N HCl 249.5 2-12 0.122 0.371 Panchal et al., 2009 Methanol 238 10-60 0.406 1.230
  • 21. ESTIMATION OF EMPAGLIFLOZIN IN BULK AND TABLET FORMULATION BY RP-HPLC BY APPLYING QbD APPROACH 21 Ref Chromatographic Conditions Validation Parameters Kumar et al., 2019 Column : Enable C18 (250mm x 4.6mm, 5μm) Mobile Phase : Methanol : Water(70:30) Flow rate : 1.0 ml/min Wavelength : 233 nm Diluent : Mobile Phase Elution : Isocratic Temperature : Ambient Inj. Vol. : 20 μl Run time : 20 mins Rt : 6.2 mins Linearity : 10-90 µg/ml LOD : 0.42 µg/ml LOQ : 1.16 µg/ml Patil et al., 2016 Column : Phenomenex C18 (250mm x 4.6mm, 5μm) Mobile Phase : Methanol : Water(70:30) Flow rate : 1.0 ml/min Wavelength : 224 nm Diluent : Methanol, Mobile Phase Elution : Isocratic Temperature : 400C Inj. Vol. : - Run time : 5 mins Rt : 4.808 mins Linearity : 2-14 µg/ml LOD : 0.3589 µg/ml LOQ : 1.0876 µg/ml
  • 22. 22 Ref Chromatographic Conditions Validation Parameters Shyamala et al., 2016 Column : Hypersil BDS (250mm x 4.6mm, 5μm) Mobile Phase : 0.1% OPA buffer :ACN (70:30) Flow rate : 1.0 ml/min Wavelength : 233nm Diluent : - Elution : Isocratic Temperature : 300C Inj. Vol. : - Run time : 7 mins Rt : 3.23 mins Linearity : 25-150 µg/ml LOD : 0.068 µg/ml LOQ : 0.207 µg/ml
  • 23. 23 ESTIMATION OF CANAGLIFLOZIN IN BULK AND TABLET FORMULATION BY UV SPECTROSCOPY Ref Solvent λ max [nm] Linearity [μg/ml] LOD [μg/ml] LOQ [μg/ml] Singh et al., 2019 Methanol 290 5-50 0.00945 2.8639 Chinta Pooja et al., 2018 Phosphate buffer 289 20-120 - - Kaur et al., 2015 Methanol 290 5-10 0.084 0.255
  • 24. 24 SIMULTANEOUS ESTIMATION OF ERTUGLIFLOZIN AND METFORMIN IN BULK AND TABLET FORMULATION BY RP-HPLC Ref Chromatographic Conditions Validation Parameters Parameter ERTU MET Venkateswara Rao et al., 2019 Column : BDS C8 (150mm x 4.6mm,5μm) Mobile Phase : KH2PO4 buffer: ACN (55:45) Flow rate : 1.0 ml/min Wavelength : 224 nm Diluent : Water : ACN (50:50) Elution : Isocratic Temperature : - Inj. Vol. : 10 μl Run time : 6 mins Linearity (µg/ml) 1.875-11.25 125-750 LOD (µg/ml) 0.07 1.70 LOQ (µg/ml) 0.21 5.16 Rt (mins) 3.136 2.383 Nizami et al., 2018 Column : ACE C18 (150mm x 4.6mm,5μm) Mobile Phase : KH2PO4 buffer : ACN (70:30) Flow rate : 1.0 ml/min Wavelength : PDA at 240 nm Diluent : ACN : Water (50:50) Elution : Isocratic Temperature : 300C Inj. Vol. : 10 μl Run time : 6 mins Linearity (µg/ml) 3-15 12.5-125 LOD (µg/ml) 0.43 0.74 LOQ (µg/ml) 1.30 2.24 Rt (mins) 3.203 2.106
  • 25. 25 SIMULTANEOUS ESTIMATION OF EMPAGLIFLOZIN AND LINAGLIPTIN IN BULK AND TABLET FORMULATION BY RP-HPLC Ref Chromatographic Conditions Validation Parameters Parameter EMPA LINA Lakshmana Rao et al., 2019 Column : Kromasil C18 (250mm x 4.6mm, 5μm) Mobile Phase : 0.1% OPA : ACN (60:40 % v/v) Flow rate : 1ml/min Wavelength : 230 nm Diluent : - Elution : Isocratic Inj. Vol. : - Temperature : - Run time : - Linearity (µg/ml) - - LOD (µg/ml) 0.44 0.23 LOQ (µg/ml) 1.34 0.70 Rt (mins) 2.139 2.759 Anjali Bakshi et al., 2018 Column : Thermo C18 (250mm x 4.6mm, 5μm) Mobile Phase : KH2PO4 buffer pH (3.4) : Methanol (70:30 % v/v) Flow rate : 1.0 ml/min Wavelength : 240 nm Diluent : Methanol, Mobile Phase Elution : Isocratic Inj. Vol. : 10 μl Temperature : 300C Run time : 5 mins Linearity (µg/ml) 50-150 50-150 LOD (µg/ml) 0.76 0.39 LOQ (µg/ml) 2.32 1.20 Rt (mins) 3.021 3.969
  • 26. 26 Ref Chromatographic Conditions Validation Parameters Parameter EMPA LINA Jayalaxmi et al., 2018 Column : Agilent C18 (150mm x 4.6mm, 5μm) Mobile Phase : Methanol: Phosphate buffer pH 3 (70:30) Flow rate : 1.0 ml/min Wavelength : 254 nm Elution : Isocratic Run time : 8 mins Linearity (µg/ml) 10-50 20-100 LOD (µg/ml) 2.17 0.0372 LOQ (µg/ml) 6.60 0.1125 Rt (mins) 2.999 2.804 Sirigiri et al., 2018 Column : Hypersil ODS 3V (250mm x 4.6mm, 5μm) Mobile Phase : KH2PO4 (pH 2.20) – A Water : ACN - (5:95) - B Flow rate : 1.0 ml/min Wavelength : 225 nm Diluent : 1. Water : ACN (70:30) 2. Water : ACN (50:50) Elution : Gradient Temperature : 300C Inj. Vol. : 10 μl Run time : 25 mins Linearity (µg/ml) 100.09-400.37 20.14-80.54 LOD (µg/ml) - - LOQ (µg/ml) - - Rt (mins) 8.390 5.388
  • 27. 27 Ref Chromatographic Conditions Validation Parameters Parameter EMPA LINA Srinivasa rao et al., 2017 Column : Agilent C18 (150mm x 4.6mm, 5μm) Mobile Phase : Methanol : Phosphate buffer pH 3 : 70:30 Flow rate : 1.0 ml/min Wavelength : 254 nm Diluent : - Elution : Isocratic Temperature : Ambient Inj. Vol. : 10 μl Run time : 10 mins Linearity (µg/ml) 10-50 20-100 LOD (µg/ml) 2.17 0.0372 LOQ (µg/ml) 6.60 0.1125 Rt (mins) 3.907 2.365 Abdel Ghany et al., 2017 Column : X-Terra (250mm x 4.6mm, 5μm) Mobile Phase : 0.1% aq. formic acid buffer (pH 3.6) : Methanol : ACN (40:20:40) Flow rate : 2.0 ml/min Wavelength : 226 nm Diluent : Methanol Elution : Isocratic Temperature : 250C Inj. Vol. : 20μl Run time : 10 mins Linearity (µg/ml) 4-100 2-50 LOD (µg/ml) 0.79 0.49 LOQ (µg/ml) 2.40 1.50 Rt (mins) 3.0 1.5
  • 28. 28 Ref Chromatographic Conditions Validation Parameters Parameter EMPA LINA Nazneen and Sreedevi, 2016 Column : BDS C18 (250mm x 4.6mm, 5μm) Mobile Phase : 0.1% Perchloric acid : ACN (60:40) Flow rate : 1.0 ml/min Wavelength : 230 nm Diluent : - Temperature : 300C Inj. vol. : - Elution : Isocratic Run time : 7 mins 30mins for degradation Linearity (µg/ml) 25-150 12.5-75 LOD (µg/ml) 0.03 0.43 LOQ (µg/ml) 0.09 1.32 Rt (mins) 2.05 4.10 Jyothirmai et al., 2016 Column : Inertsil ODS C18 (150mm x 4.6mm, 5μm) Mobile Phase : Methanol : ACN : 0.1% : OPA buffer (30:60:10) Flow rate : 1.0 ml/min Wavelength : 246 nm Diluent : Methanol Temperature : - Inj. vol. : 20 μl Elution : Isocratic Run time : 10.0 mins Linearity (µg/ml) 5-30 2.5-15 LOD (µg/ml) 0.06 0.03 LOQ (µg/ml) - - Rt (mins) 4.16 5.73
  • 29. 29 Ref Chromatographic Conditions Validation Parameters Parameter EMPA LINA Madhusudhan et al., 2015 Column : ODS C18 (250mm x 4.6mm, 5μm) Mobile Phase : 0.1% OPA buffer : ACN (45:55) Flow rate : 1.0 ml/min Wavelength : 245 nm Diluent : Water : ACN (50:50) Elution : Isocratic Temperature : 300C Inj. Vol. : 10 μl Run time : 7 mins Linearity (µg/ml) 25-150 12.76- 76.56 LOD (µg/ml) - - LOQ (µg/ml) - - Rt (mins) 3.6 2.2
  • 30. ESTIMATION OF EMPAGLIFLOZIN IN PLASMA BY RP-HPLC 30 Ref Chromatographic Conditions Validation Parameters Padmaja et al., 2018 Column : Agilent C18 (250mm x 4.6mm, 5μm) Mobile Phase : Methanol : ACN (50 : 50) Extraction : Liquid-liquid extraction with 30% ethyl acetate Flow rate : 1.2 ml/min Wavelength : PDA detector at 270 nm Diluent : Methanol, ACN Temperature : 350C Inj. Vol. : 20 μl Run time : 10.0 mins Rt : 8.898 mins Linearity : 50-150 µg/ml
  • 32. Aim: To develop and validate new analytical methods for the estimation of selected anti-diabetics and statins Objectives: To select anti-diabetic drugs and statin drugs To select analytical methods to be developed UV Spectroscopic method for Rosuvastatin Calcium Colorimetric method for Rosuvastatin Calcium  Stability indicating RP-HPLC method for Rosuvastatin Calcium UV Spectroscopic method for Pitavastatin Calcium 32
  • 33. 33  QbD enabled stability indicating RP-HPLC method for Empagliflozin  UV Spectroscopic method for Canagliflozin  Stability indicating simultaneous RP-HPLC method for Ertugliflozin and Metformin  Stability indicating simultaneous RP-HPLC method for Empagliflozin and Linagliptin  In-vitro bioanalytical RP-HPLC method for Empagliflozin in human plasma  To validate the developed methods as per ICH Q2(R1) /USFDA guidelines
  • 35. 4a. DEVELOPMENT AND VALIDATION OF UV SPECTROSCOPIC METHOD FOR THE DETERMINATION OF ROSUVASTATIN CALCIUM IN BULK AND TABLETS  Rosuvastatin Calcium (10mg) - efficiently reduces LDL and triglycerides at lower doses [Sharma et al., 2017]  The methods reported for the estimation of Rosuvastatin Calcium by UV Spectroscopy are expensive as organic solvents are used as diluent 35
  • 36. 36 Structure Molecular Weight-1001.137 )Ca+2 )Ca+2 Class Statins (HMG Co A reductase inhibitors) pKa 4.00 Log P 4.19 Solubility slightly soluble in ethanol and sparingly soluble in water and Methanol DRUG PROFILE: ROSUVASTATIN CALCIUM
  • 37.  METHOD DEVELOPMENT [Gorog, 2011]: ROSUVASTATIN CALCIUM: Diluent: 0.1N NaOH  Preparation of Standard stock solution-I of Rosuvastatin Calcium [1000μg/ml]: 37 10 mg Rosuvastatin Calcium + 5ml diluent Sonicated for 10mins + made up to 10ml 1000μg/ml Rosuvastatin Calcium  Preparation of Standard stock solution-II of Rosuvastatin Calcium [100μg/ml]: 1.0ml standard stock-I Diluted to 10ml with diluent 100μg/ml Rosuvastatin Calcium  Preparation of working standard solution of Rosuvastatin Calcium [4μg/ml]: 0.4 ml standard stock-II 4μg/ml Rosuvastatin Calcium Diluted to 10ml with diluent
  • 38. UV Spectrum of Rosuvastatin Calcium [λ max 240nm] 38 RESULTS AND DISCUSSION
  • 39. 39 VALIDATION [ICH Q2 (R1), 2005]: ROSUVASTATIN CALCIUM % Spiked Fixed sample concentration (μg/ml) Amount Spiked (μg/ml) Total Amount recovered (μg/ml) Mean % recovery ± SD %RSD 80 2 1.6 3.558 98.82± 0.18 0.18 100 2 2.0 4.101 101.01±0.54 0.54 120 2 2.4 4.332 98.45 ±0.27 0.27 PRECISION Concentration (μg/ml) Intra-day Precision Mean ± SD % RSD Inter-day Precision Mean ± SD % RSD 1 0.082 ± 0.000577 0.704 0.084 ± 0.0015 1.817 4 0.248 ± 0.001154 0.465 0.249 ± 0.001 0.401 6 0.360 ± 0.000577 0.160 0.358 ± 0.0015 0.418 ACCURACY
  • 40. 40 Concentration [x] (μg/ml) Absorbance* [y] 1 0.082 2 0.129 3 0.187 4 0.248 5 0.304 6 0.359 Linear Regression Equation y = mx + c y = 0.056 x + 0.021 Slope (m) 0.056 Intercept (c) 0.021 Correlation coefficient (R2) 0.999 LOD 0.0201 μg/ml LOQ 0.0612μg/ml LINEARITY, LOD AND LOQ OF ROSUVASTATIN CALCIUM *Mean of three observations
  • 41. 41 LINEARITY PLOT OF ROSUVASTATIN CALCIUM y = 0.0563x + 0.0211 R² = 0.999 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 1 2 3 4 5 6 7 Absorbance(AU) Concentration [µg/ml] Tablet brand Label claim Amount found ± SD % Assay ± SD % RSD Roseday 10 mg 9.890 ± 0.138 98.90 ±1.38 1.402 ASSAY OF ROSUVASTATIN CALCIUM
  • 42. 42 λ max 240 nm Beer’s law limits 1-6 μg/ml Sandell’s sensitivity [μg/ cm2- 0.001 absorbance units] 0.012 Regression equation y = 0.056x + 0.021 Slope 0.056 Intercept 0.021 Correlation coefficient (R2) 0.999 % Recovery 98.45-101.01 % RSD Intra-day Precision 0.160-0.704 Inter-day Precision 0.401-1.817 LOD 0.0201 μg/ml LOQ 0.0612 μg/ml Mean % Assay [IP, 2018 limits- 90-110 %] 98.90 ±1.38 SUMMARY OF VALIDATION OF ROSUVASTATIN CALCIUM
  • 43. 43 The present developed method was more sensitive and cost-effective  Diluent: organic solvent → 0.1N NaOH  Linearity: [2-18 → 1-6 μg/ml]  LOD: [0.021 μg/ml] LOQ: [0.0612 μg/ml]
  • 44. 4b. DEVELOPMENT AND VALIDATION OF COLORIMETRIC METHOD FOR THE DETERMINATION OF ROSUVASTATIN CALCIUM IN BULK AND TABLETS The reported methods are Complex Time consuming Expensive - involves extraction of colored complex 44
  • 45. METHOD DEVELOPMENT [Gorog, 2011]: ROSUVASTATIN CALCIUM  Diluent: Methanol  Preparation of 0.1M Ferric chloride [FeCl3] reagent [IP, 2018]  Preparation of 0.5% w/v Potassium ferricyanide reagent  Preparation of Standard stock solution-I of Rosuvastatin Calcium [1000μg/ml]: 45 10 mg Rosuvastatin Calcium + 5ml diluent Sonicated for 10mins + made up to 10ml with diluent 1000μg/ml Rosuvastatin Calcium
  • 46. 46  Preparation of Standard stock solution-II of Rosuvastatin Calcium [100μg/ml]: 1.0ml standard stock-I Kept aside for 10mins + Diluted to 10ml 100μg/ml Rosuvastatin Calcium Preparation of working standard solution of Rosuvastatin Calcium [4μg/ml]: 0.4ml standard stock-II + 1.5 ml 0.1M FeCl3 + 1.0 ml 0.5% Potassium ferricyanide Diluted to 10ml with diluent 4μg/ml Rosuvastatin Calcium
  • 47. 47 0 0.1 0.2 0.3 0.4 0.5 0.6 400 800 Absorbance Wavelength RESULTS AND DISCUSSION λ max OF ROSUVASTATIN CALCIUM – COLORIMETRY (635nm)
  • 48. 48 The probable mechanism involved in the green colored complex formation is  Reduction of ferric ion to ferrous ion by Rosuvastatin Calcium The reduced ferrous ion reacted with potassium ferri cyanide and formed green colored Ferro-ferricyanide complex [Vamsi Krishna and Gowrisankar, 2007] 3 Fe2+ + 2[Fe (CN) 6]3- Fe3 [Fe (CN)6]
  • 49. 49 VALIDATION [ICH Q2 (R1), 2005]: ROSUVASTATIN CALCIUM % Spiked Fixed sample concentration (μg/ml) Amount Spiked (μg/ml) Total Amount recovered (μg/ml) Mean % Recovery ± SD %RSD 80 4 3.2 7.21 100.09 ± 0.85 0.85 100 4 4.0 8.03 100.37 ± 0.62 0.62 120 4 4.8 8.73 99.24 ± 0.23 0.23 PRECISION Concentration (μg/ml) Intra-day Precision Mean ± SD % RSD Inter-day Precision Mean ± SD %RSD 4 0.2325 ± 0.0018 0.774 0.234 ± 0.0023 0.982 ACCURACY
  • 50. 50 Concentration [x] (μg/ml) Absorbance* [y] 0 0 1 0.068 2 0.124 3 0.185 4 0.237 5 0.297 6 0.357 Linear Regression Equation y = mx + c y = 0.058 x + 0.005 Slope (m) 0.058 Intercept (c) 0.005 Correlation coefficient (R2) 0.999 LOD 0.041 μg/ml LOQ 0.123 μg/ml *Mean of three determinations LINEARITY, LOD AND LOQ OF ROSUVASTATIN CALCIUM
  • 51. 51 Calibration Curve y = 0.0586x + 0.0052 R² = 0.9993 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 1 2 3 4 5 6 7 AbsorbanceAU Concentration [μg/ml] Tablet brand Label claim Amount found ±SD %Assay ± SD %RSD Roseday 10 mg 10.05 ± 0.108 100.57 ± 1.08 1.07 ASSAY LINEARITY PLOT OF ROSUVASTATIN CALCIUM
  • 52. 52 λ max 635 nm Beer’s law limits 1-6μg/ml Sandell’s sensitivity [μg/ cm2- 0.001 absorbance units] 0.0147 Regression equation y = 0.058x + 0.005 Slope 0.058 Intercept 0.005 Correlation coefficient (R2) 0.999 % Recovery 99.24 – 100.34 % RSD Intra-day Precision 0.774 Inter-day Precision 0.982 Limit of Detection 0.041 μg/ml Limit of Quantitation 0.123 μg/ml Mean % Assay [IP, 2018 Limits: 90-110 %] 100.57 ±1.08 SUMMARY OF VALIDATION OF ROSUVASTATIN CALCIUM
  • 53. 53 The developed method was simple, rapid, sensitive and cost-effective compared to the best method reported  Involved no extraction of colored complex Linearity: [100-500 → 1-6 μg/ml]  LOD: [0.041 μg/ml]  LOQ: [0.123 μg/ml]
  • 54. 4c. DEVELOPMENT AND VALIDATION OF STABILITY INDICATING RP-HPLC METHOD FOR THE DETERMINATION OF ROSUVASTATIN CALCIUM IN BULK AND TABLETS The reported RP-HPLC methods are Time consuming- Rt was more and phosphate buffer preparation  More volume of organic solvents 54
  • 55. 55 Structure Molecular Weight-1001.137 )Ca+2 )Ca+2 Class Statins (HMG Co A reductase inhibitors) pKa 4.00 Log P 4.19 Solubility slightly soluble in ethanol and sparingly soluble in water and Methanol DRUG PROFILE: ROSUVASTATIN CALCIUM
  • 56. 56 10 mg Rosuvastatin Calcium + 5 ml diluent volume up to 10ml + filtered using 0.45µ PTFE filter 1000µg/ml  Preparation of Standard stock solution-II of Rosuvastatin Calcium (100µg/ml): 1.0 ml standard stock - I Diluted to 10ml with diluent 100µg/ml METHOD DEVELOPMENT: [Snyder et al.,1997] ROSUVASTATIN CALCIUM Diluent: HPLC grade water: ACN (1:1)  Preparation of Standard stock solution-I of Rosuvastatin Calcium (1000µg/ml): Preparation of Working standard solution of Rosuvastatin Calcium (8µg/ml): 0.8ml stock-II Diluted to 10ml with diluent 8µg/ml
  • 57. 57 OPTIMIZED CHROMATOGRAPHIC CONDITIONS Column Symmetry C18 (150mm x 4.6mm, 5m) Mobile phase 0.1% OPA (pH 2.7) : ACN (55:45 % v/v) Elution Isocratic Flow rate 1.0 ml/min Detector - λ max PDA (241 nm) Column temperature 300C Injection volume 10 μl Diluent HPLC grade water : ACN [1:1] Retention Time 2.872 mins Run time 6.0 mins
  • 58. 58 RESULTS AND DISCUSSION OPTIMIZED CHROMATOGRAM OF ROSUVASTATIN CALCIUM
  • 59. 59 VALIDATION OF ROSUVASTATIN CALCIUM [ICH Q2 (R1), 2005]: SPECIFICITY: Blank [HPLC grade water: ACN (1:1)] Standard (2.915mins) Test Sample (2.902mins)
  • 60. 60 Stressor Condition Acid 0.1N HCl, 24hrs, 30±20C Alkali 0.1N NaOH, 24hrs, 30±20C Oxidative 3.0% v/v H2O2, 24hrs, 30±20C Thermal 50±20C on sand bath for 6 hrs Photolytic UV Chamber for 6 hrs Neutral HPLC grade water, 24hrs, 30±20C FORCED DEGRADATION STUDIES [Ahuja et al., 2001, ICH Q1A (R2), ICH Q1B]
  • 61. Acid degradation of Rosuvastatin Calcium 61 Alkali degradation of Rosuvastatin Calcium
  • 62. Oxidative degradation of Rosuvastatin Calcium 62 Thermal degradation of Rosuvastatin Calcium
  • 63. Photolytic degradation of Rosuvastatin Calcium 63 Neutral degradation of Rosuvastatin Calcium
  • 64. 64 DEGRADATION OF ROSUVASTATIN CALCIUM Stressor Purity angle - Purity threshold % Assay % degraded [should be < 20] Acid 0.158 < 1.148 90.73 9.27 Alkali 0.941 < 1.125 91.56 8.44 Oxidative 1.070 < 1.984 93.81 6.19 Thermal 0.847 <1.084 97.68 2.32 Photolytic 0.854 < 1.088 98.15 1.85 Neutral 0.912 < 1.094 99.41 0.59
  • 65. 65 80 % level 100% level 120% level ACCURACY OF ROSUVASTATIN CALCIUM
  • 66. 66 % Spiked Fixed sample concentration (μg/ml) Amount Spiked (μg/ml) Total Amount recovered (μg/ml) % Recovery Statistical data Mean ± SD % RSD 80 8 6.4 14.45 100.34 100.23±0.196 0.19614.40 100.00 14.45 100.34 100 8 8 16.17 101.06 101.16±0.096 0.09616.19 101.18 16.20 101.25 120 8 9.64 17.67 100.41 100.81±0.294 0.35117.76 100.92 17.79 101.10 ACCURACY
  • 67. 67 PRECISION OF ROSUVASTATIN CALCIUM Injection Intra-day Precision Inter-day Precision* Peak area Peak area 1 947892 953130 2 948956 956338 3 932013 956588 4 932654 956115 5 933654 960602 6 943152 961183 Mean 939720.2 957326 SD 7873.8 3039.8 % RSD 0.8 0.3 *mean of two determinations
  • 68. 68 LINEARITY, LOD AND LOQ OF ROSUVASTATIN CALCIUM Level-1 Level-2 Level-3
  • 70. 70 % Level Concentration (x) [μg/ml] Mean Peak area*(y) [AU] 0 0 0 25 2 233476 50 4 478886 75 6 707451 100 8 956490 125 10 1184283 150 12 1407729 Linear Regression Equation y = mx + c y = 117900x + 2358 Slope (m) 117900 Intercept (c) 2358 Correlation coefficient (R2) 0.999 LOD 0.013 μg/ml LOQ 0.042 μg/ml *mean of three determinations LINEARITY, LOD AND LOQ OF ROSUVASTATIN CALCIUM
  • 71. 71 LINEARITY PLOT OF ROSUVASTATIN CALCIUM y = 117900x + 2358. R² = 0.999 0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 0 2 4 6 8 10 12 14 PeakareaAU Concentration [µg/ml] STABILITY OF WORKING STANDARD SOLUTION: (30 ± 2 0C for 24 hrs) Time [Hrs] Peak areas* % Assay* Variation 0 957286 99.89 NA 12 947905 98.91 0.98 24 940228 98.11 1.78 * Average of six determinations
  • 72. 72 Parameter Variation % RSD of Peak Area [NMT 2.0 %] Theoretical plates* [N>2000] Tailing factor* <2.0 Flow rate (1.0±0.1ml/min) 0.9 1.005 4424 1.19 1.0 0.402 4537 1.19 1.1 0.545 3804 1.20 ACN ratio in mobile phase [0.1 % OPA buffer : ACN] (45±5%) 60:40 0.802 3531 1.19 55 :45 0.402 4537 1.19 50 :50 0.406 4546 1.18 Temperature (30±5 0C) 25 0.627 4460 1.18 30 0.402 4537 1.19 35 0.456 3695 1.23 * Mean of six determinations ROBUSTNESS OF ROSUVASTATIN CALCIUM
  • 73. 73 SYSTEM SUITABILITY OF ROSUVASTATIN CALCIUM Injection Rt [mins] Peak Area Theoretical Plates N >2000 Tailing Factor <2.0 1 2.902 955731 4423 1.18 2 2.904 956119 4606 1.20 3 2.914 955942 4369 1.21 4 2.915 960636 4310 1.20 5 2.917 949831 4746 1.19 6 2.919 959889 4771 1.20 Mean 2.911 956358 4537 1.19 S.D 3846.9 % RSD [NMT 2.0] 0.402
  • 74. 74 ASSAY OF ROSUVASTATIN CALCIUM SD- Standard deviation Injection Rt [mins] Peak area % Assay Amount [mg] 1 2.902 956149 99.78 9.978 2 2.882 955931 99.76 9.976 3 2.881 955431 99.7 9.97 4 2.894 956189 99.78 9.978 5 2.902 956214 99.78 9.978 6 2.881 956018 99.76 9.976 Mean ±SD 99.76±0.39 9.976±0.03
  • 75. 75 Parameter Result ICH Limits System Suitability Parameters % RSD of peak area – 0.402 NMT 2.0 Theoretical plates- 4537 MT 2000 Tailing factor-1.19 NMT 2.0 Range [μg/ml] 2-12 - Correlation coefficient [R2] 0.999 NLT 0.999 % Recovery 100-101.25 98-102 % RSD Intra-day Precision 0.8 NMT 2.0 Inter-day Precision 0.3 NMT 2.0 LOD [μg/ml] 0.013 - LOQ [μg/ml] 0.042 - Solution stability, % Assay difference at 24 hrs 1.78 NMT 2.0 % Assay 99.76 ± 0.39 IP, 2018: 90-110 SUMMARY OF VALIDATION OF ROSUVASTATIN CALCIUM
  • 76. 76 The developed RP-HPLC method was simple, sensitive and cost-effective  Organic ratio in the mobile phase: [60 → 45%]  Retention time: [3.806 → 2.916 mins]  Run time: [12.0 → 6.0 mins]  Linearity range: [5-30 → 2-12 µg/ml]  LOD: [0.0441 → 0.013 µg/ml]  LOQ: [0.1434 → 0.042 µg/ml]
  • 77. 4d. DEVELOPMENT AND VALIDATION OF UV SPECTROSCOPIC METHOD FOR THE DETERMINATION OF PITAVASTATIN CALCIUM IN BULK AND TABLETS Pitavastatin Calcium (4mg) - more efficiently lowers plasma LDL cholesterol and triglycerides levels at lower doses [Sharma et al., 2017]  The reported methods are expensive with use of organic solvents 77
  • 78. 78 Structure Molecular weight - 880.94 )Ca+2 Class Statins (HMG Co A reductase inhibitors) pKa 4.13 Log P 6.13 Solubility freely soluble - pyridine, chloroform, dilute HCl, tetrahydrofuran, soluble - ethylene glycol, sparingly soluble - octanol, slightly soluble - methanol, water and ethanol, practically insoluble - ACN and Diethyl ether DRUG PROFILE: PITAVASTATIN CALCIUM
  • 79. METHOD DEVELOPMENT [Gorog, 2011]: Diluent: Methanol: Distilled water (1:1) Preparation of Standard stock solution-I of Pitavastatin Calcium [1000μg/ml]: 79 10 mg Pitavastatin Calcium + 5ml diluent Sonicated for 10mins + made up to 10ml 1000μg/ml Pitavastatin Calcium 1.0ml standard stock-I + 5ml diluent Diluted to 10ml with diluent 100μg/ml Pitavastatin Calcium Preparation of Standard stock solution-II of Pitavastatin Calcium [100μg/ml]:  Preparation of working standard solution of Pitavastatin Calcium [8μg/ml]: 0.8ml standard stock-II Diluted to 10ml with diluent 8μg/ml Pitavastatin Calcium
  • 80. UV SPECTRUM OF PITAVASTATIN CALCIUM (λ max - 245nm) 80 RESULTS AND DISCUSSION
  • 81. 81 VALIDATION [ICH Q2 (R1), 2005]: PITAVASTATIN CALCIUM PRECISION % Spiked Fixed sample concentration (μg/ml) Amount Spiked (μg/ml) Total Amount recovered (μg/ml) Mean % Recovery ± SD % RSD 80 8 6.4 14.38 100.11± 0.278 0.278 100 8 8.0 16.07 100.26± 0.477 0.476 120 8 9.6 17.64 100.22± 0.34 0.34 Concentration (μg/ml) Intra-day Precision Mean ± SD % RSD Inter-day Precision Mean ± SD % RSD 8 0.390 ± 0.0018 0.46 0.391± 0.0034 0.86 ACCURACY
  • 82. 82 Concentration [x] (μg/ml) Absorbance* [y] 2 0.094 4 0.184 6 0.284 8 0.39 10 0.482 12 0.59 Linear Regression Equation y = mx + c y = 0.049 x – 0.005 Slope (m) 0.049 Intercept (c) -0.005 Correlation coefficient (R2) 0.999 LOD 0.103 μg/ml LOQ 0.310 μg/ml LINEARITY, LOD AND LOQ OF PITAVASTATIN CALCIUM * mean of three determinations
  • 83. 83 LINEARITY PLOT OF PITAVASTATIN CALCIUM y = 0.048x - 0.005 R² = 0.999 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 2 4 6 8 10 12 14 AbsorbanceAU Concentration [μg/ml] Formulation Label claim Amount found ± SD % Assay ± SD % RSD Pivasta 4 mg 4.008 ± 0.037 100.24±0.945 0.942 ASSAY
  • 84. 84 λ max (nm) 245 Beer’s law limits (μg/ml) 2-12 Sandell’s sensitivity (μg/ cm2- 0.001 absorbance units) 0.0212 Regression equation y = 0.048x - 0.005 Slope 0.049 Intercept 0.005 Correlation coefficient (R2) 0.999 % Recovery 100.11-100.26 % RSD Intra-day Precision 0.46 Inter-day Precision 0.86 LOD (μg/ml) 0.103 LOQ (μg/ml) 0.310 Mean % Assay 100.24±0.945 SUMMARY OF VALIDATION OF PITAVASTATIN CALCIUM
  • 85. 85 The developed method was  Cost-effective [Methanol → Methanol: Distilled water (1:1)]  LOD [ 0.4062 μg/ml → 0.103μg/ml]  LOQ [1.2309 μg/ml → 0.310μg/ml]
  • 86. 5a. QbD ENABLED STABILITY INDICATING RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR THE ESTIMATION OF EMPAGLIFLOZIN IN BULK AND TABLETS Empagliflozin – effectively reduces plasma glucose levels with decreased risk of cardio-vascular deaths and heart failure hospitalizations [Ralston et al., 2018] No methods reported using QbD approach for EMPA 86
  • 87. 87 Structure Molecular Weight - 450.91 Class SGLT-2 inhibitor pKa 12.57 Log P 1.79 Solubility slightly soluble in ACN, ethanol, soluble in 50 % ACN/water, sparingly soluble in methanol, very slightly soluble in water and practically insoluble in toluene DRUG PROFILE: EMPA
  • 88. 88 10 mg EMPA + 2ml diluent, + Sonicated for 10 mins volume up to 10ml + filtered using 0.45 µ PTFE filter 1000µg/ml EMPA Preparation of standard stock solution-II of EMPA [100 µg/ml]: 1ml of standard stock-I Diluted to 10ml with diluent 100µg/ml EMPA METHOD DEVELOPMENT: [Gorog, 2011]: EMPA  Diluent: HPLC grade water: ACN (1:1) Preparation of standard stock solution-I of EMPA [1000µg/ml]: 0.8ml of standard stock-II 8µg/ml EMPA Diluted to 10ml with diluent Preparation of working standard solution of EMPA [8µg/ml]:
  • 89. 89 OPTIMIZED CHROMATOGRAPHIC CONDITIONS Column Denali C18 (150mm x 4.6mm, 5m) Mobile phase 0.1 % OPA [pH 2.7] : ACN (45:55 % v/v) Elution Isocratic Flow rate 1.0 ml/min Detector - λ max PDA (223 nm) Column temperature 300C Injection volume 10 μl Run time 5.0 mins Diluent HPLC grade water: ACN [1:1]
  • 90. 90 METHOD OPTIMIZATION USING DESIGN EXPERT® SOFTWARE (Trial Version 10) [Federick and Alireza, 2011]: Step 1: Analytical target Profile [ATP]:  ATP - bulk drug and tablet - Technique - RP-HPLC  Goal - To develop more robust RP-HPLC method with optimum system suitability parameters and short analysis time  Target - To study the simultaneous influence of CMPs on CMAs Step 2: Critical Quality Attributes: CMPs - Buffer ratio in the mobile phase, Flow rate and Wavelength CMAs - Retention time, Peak area and Tailing factor
  • 91. 91 CMP -1 level 0 + 1 level Buffer ratio in mobile phase [% v/v] 35 45 55 Flow rate [ml/min] 0.9 1.0 1.1 Wavelength [nm] 218 223 228 CMPS AND THEIR INPUT LEVELS Step 3: Design of Experiments using Software:  Efficient experimental model was designed by systematic and automated scouting of the three CMPs For method scouting - software generated 20 trials
  • 92. 92 Std Run No. Buffer ratio F1/CMP1 Flow rate [ml/min] F2/CMP2 Wavelength [nm] F3/CMP3 Rt [mins] R1/CMA1 Peak area R2/CMA2 Tailing factor R3/CMA3 1 14 35 0.9 218 2.284 1047724 1.3 2 7 55 0.9 218 4.493 1022852 1.2 3 2 35 1.1 218 1.882 826983 1.2 4 5 55 1.1 218 3.720 778771 1.1 5 13 35 0.9 228 2.285 1015749 1.3 6 20 55 0.9 228 4.490 969482 1.2 7 6 35 1.1 228 1.873 818929 1.3 8 10 55 1.1 228 3.761 740485 1.2 9 17 28.1821[min] 1 223 1.913 1056885 1.2 10 9 61.8179[max] 1 223 7.662 992788 1.1 11 19 45 0.831821[min] 223 2.206 802203 1.2 12 12 45 1.16818 [max] 223 3.072 1227680 1.3 13 3 45 1 214.591 [min] 2.567 873994 1.2 14 18 45 1 231.409 [max] 2.564 642180 1.2 15 11 45 1 223 2.572 939959 1.2 16 4 45 1 223 2.587 933968 1.3 17 8 45 1 223 2.564 941365 1.2 18 1 45 1 223 2.568 937667 1.2 19 15 45 1 223 2.572 941063 1.2 20 16 45 1 223 2.566 941481 1.2 [F-factor, R-Response] TRIALS PROPOSED BY SOFTWARE WITH EXPERIMENTAL RESPONSES/ CMAs
  • 93. 93 FIT STATISTICS FOR SELECTED CMAs/Rs Coefficients CMA1/R1 [Retention time] CMA2/R2 [Peak Area] CMA3/R3 [Tailing Factor] R2 0.9172 0.3834 0.6358 Adjusted R2 0.8427 -0.1715 0.3081 Predicted R2 0.3715 -3.6829 -0.9814 Adequate Precision 13.1692 3.6907 5.7571
  • 94. 94 CONTOUR PLOT SHOWING EFFECT OF AQUEOUS PHASE [CMP1/F1] AND FLOW RATE [CMP2/F2] ON RT [CMA1/R1]
  • 95. 95 EFFECT OF AQUEOUS PHASE [CMP1/F 1] AND FLOW RATE [CMP2/F2] ON PEAK AREA [CMA2/R2]
  • 96. 96 EFFECT OF AQUEOUS PHASE [CMP1/F1] AND FLOW RATE [CMP2/F2] ON TAILING FACTOR [CMA3/R3]
  • 97. 97 Externally Studentized Residuals Normal%Probability Normal Plot of Residuals -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 1 5 10 20 30 50 70 80 90 95 99 retention time Color points by value of retention time: 1.873 7.662 CMA1/R1 [Rt] NORMAL PLOT OF RESIDUALS
  • 98. 98 Externally Studentized Residuals Normal%Probability Normal Plot of Residuals -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 1 5 10 20 30 50 70 80 90 95 99 area Color points by value of area: 642180 1.22768E+06 CMA2/R2 [Peak Area]
  • 99. 99 Externally Studentized Residuals Normal%Probability Normal Plot of Residuals -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 1 5 10 20 30 50 70 80 90 95 99 tailing factor Color points by value of tailing factor: 1.1 1.3 CMA3/R3 [Tailing Factor]
  • 100. 100 Factor Level A- Aqueous Phase [% v/v] 39.57 B- Flow rate [ml/min] 0.9761 C- Wavelength [nm] 218.51 OPTIMIZED CONDITIONS PROPOSED BY DESIGN EXPERT SOFTWARE CMA Predicted value Observed value SD Rt [mins] 2.04095 2.057 0.006 Peak area 938311 953531 10762 Tailing factor 1.22654 1.1 0.089 OBSERVED VALUES OF CMAs
  • 101. 101 OPTIMIZED CHROMATOGRAM OF EMPA [QbD APPROACH]
  • 102. 102 Blank [HPLC grade water: ACN (1:1)] Standard (2.051 mins) Sample (2.063 mins) VALIDATION: [ICH Q2 (R1), 2005]: SPECIFICITY OF EMPA
  • 103. 103 FORCED DEGRADATION STUDIES [Ahuja et al., 2001, ICH Q1A (R2), ICH Q1B]: Stressor Condition Acid 2N HCl, 30 mins, 60 ± 20C Alkali 2N NaOH, 30 mins, 60 ± 20C Oxidative 20 % v/v H2O2, 30 mins, 60 ± 20C Thermal 80 ± 20C in the oven for 6hrs Photolytic UV Chamber for 7 days Neutral HPLC grade water, 30 mins, 60 ± 20C
  • 104. 104 Acid Degradation of EMPA Alkali degradation of EMPA
  • 105. 105 Oxidative degradation of EMPA Thermal degradation of EMPA
  • 106. Photolytic degradation of EMPA 106 Neutral degradation of EMPA
  • 107. 107 DEGRADATION OF EMPA Stressor Purity angle < Purity threshold % Assay % degraded [< 20] Acid 0.716 < 0.981 91.06 8.94 Alkali 0.903 < 1.349 89.31 10.69 Oxidative 0.837 < 1.137 90.46 9.54 Thermal 0.809 < 0.914 97.08 2.92 Photolytic 0.878 < 1.396 98.11 1.89 Neutral 0.658 < 0.925 99.25 0.75
  • 108. ACCURACY 108 80 % level 100 % level 120 % level
  • 109. 109 % Spiked Fixed sample conc. (μg/ml) Amount Spiked (μg/ml) Amount recovered (μg/ml) % Recovery Statistical Data Mean ± SD % RSD 80 8 6.4 14.46 100.93 100.34 ± 0.52 0.5214.40 100.04 14.40 100.03 100 8 8 15.94 99.25 99.42 ± 0.15 0.1615.96 99.45 15.96 99.55 120 8 9.6 17.57 99.72 99.60 ± 0.11 0.1117.55 99.53 17.56 99.54 ACCURACY OF EMPA
  • 110. 110 PRECISION OF EMPA *mean of two determinations Injection Peak area Intra-day Precision Inter-day Precision* 1 892185 892994 2 894415 886254 3 896243 885649 4 893882 887612 5 894033 881625 6 896965 880253 Mean 894621 885731.2 SD 1731.7 4548.3 % RSD [NMT 2.0] 0.2 0.513
  • 111. 111 LINEARITY, LOD AND LOQ OF EMPA Level-1 Level-2 Level-3
  • 113. 113 % Level Concentration (x) [μg/ml] Mean peak area* (y) AU 0 0 0 25 2 224755 50 4 444370 75 6 657387 100 8 896176 125 10 1088259 150 12 1316979 Linear Regression Equation y = mx + c y=109460x+4373 Slope (m) 109460 Intercept (c) 4373 Correlation coefficient (R2) 0.999 LOD 0.047 μg/ml LOQ 0.142 μg/ml LINEARITY OF EMPA
  • 114. 114 y = 109460x + 4373. R² = 0.999 0 200000 400000 600000 800000 1000000 1200000 1400000 0 2 4 6 8 10 12 14 PeakAreaAU Concentration [μg/ml] STABILITY OF STANDARD SOLUTION (30±20C for 24 hrs) Time [Hrs] Peak areas* % Assay* Variation 0 896756 99.93 - 12 888120 98.96 0.97 24 880700 98.14 1.79 * Average of six determinations LINEARITY PLOT OF EMPA
  • 115. 115 ROBUSTNESS OF EMPA Parameter Variation % RSD of peak area [NMT 2.0] Theoretical plates* [N>2000] Tailing factor* <2.0 Flow rate [0.9761 ± 1 ml/min] 0.8761 0.549 5405 1.13 0.9761 0.279 5431 1.16 1.0761 0.740 5239 1.14 ACN ratio in Mobile phase Buffer: ACN [60.43 ± 5% v/v] 44.57 : 55.43 0.841 5775 1.11 39.57 : 60.43 0.279 5431 1.16 34.57 : 65.43 0.583 5365 1.14 Temperature [30 ± 50C] 25 1.062 6044 1.12 30 0.279 5431 1.16 35 1.802 5666 1.14 *Mean of six determinations
  • 116. 116 SYSTEM SUITABILITY OF EMPA Injection Rt [mins] Peak Area Theoretical Plates N > 2000 Tailing Factor < 2.0 1 2.049 892431 5256 1.17 2 2.048 898403 5522 1.15 3 2.038 893051 5532 1.14 4 2.051 896632 5705 1.14 5 2.058 895224 5400 1.16 6 2.055 897993 5169 1.18 Mean 2.05 895622 5431 1.16 SD 2503 % RSD [< 2.0 %] 0.279
  • 117. 117 ASSAY OF EMPA Injection Rt [mins] Peak area % Assay Amount [mg] 1 2.062 892563 99.46 9.946 2 2.058 891489 99.34 9.934 3 2.058 890210 99.2 9.92 4 2.054 893518 99.57 9.957 5 2.055 894314 99.65 9.965 6 2.062 891210 99.31 9.931 Mean ± SD 99.42±0.17 9.942 ± 0.17
  • 118. 118 Parameter Result ICH Limits System Suitability Parameters % RSD of peak area – 0.279 NMT 2.0 Theoretical plates- 5431 MT 2000 Tailing factor-1.16 NMT 2.0 Range [μg/ml] 2-12 - Correlation coefficient [R2] 0.999 NLT 0.999 % Recovery 99.25-100.93 % RSD Intra-day precision 0.21 NMT 1.0 Inter-day precision 0.513 NMT 2.0 LOD [μg/ml] 0.047 - LOQ [μg/ml] 0.142 - % Assay difference at 24 hrs 1.79 NMT 2.0 % Assay 99.42±0.17 98-102 SUMMARY OF VALIDATION OF EMPA
  • 119. 119 Preliminary trial runs were performed for the identification of CMPs/Fs:  On initial optimization of the method,  0.1 % OPA (pH 2.7): ACN [45:55 % v/v] - ideal mobile phase  Increase in % aqueous ratio [% OPA buffer] in the mobile phase - resulted in increase in Rt- CMP1/F1, change in flow rate affects the Rt - CMP2/F2, Wavelength - CMP3/F3  Multivariate DoE approach using Central composite design - selected to evaluate the simultaneous effect of selected CMPs/Fs on the selected CMAs/Rs On the evaluation of the statistical data  Quadratic model was the best-fit model for the central composite design
  • 120. 120  The R2 - signifies the percentage of variation for a dependent variable (response) by independent variables (factors)  In the present study, the R2 - 0.9172 for CMA1/R1 - 0.3834 for CMA2/R2 - 0.6358 for CMA3/R3  Difference between the adjusted R2 and predicted R2 - more than 0.2 – reflects large block effect of CMA1/R1 using the model  Negative Predicted R² for CMA2/R2 and CMA3/R3 - overall mean is a better predictor of the response  The adequate precision for CMA1/R1 (13.16) and CMA2/R2 (5.75) were greater than 4.0 - adequate signal and the model was suitable for navigating design space
  • 121. 121  From the contour plot 1, increase in % Aqueous ratio with constant Flow rate and Wavelength increased the Rt  Contour plot 2 , decrease in Flow rate with constant % Aqueous ratio and Wavelength has effect on Peak area  Contour plot 3, increase in Wavelength with constant Peak area didn’t show significant effect on Retention time, Peak area and Tailing factor  The normal plot of residuals for the three selected CMAs reflects that the data points were distributed normally along the straight line and the error was distributed equally across each individual point
  • 122. 122 The equation used for predictions about the CMAs/Rs for the given levels of each CMP: RT = +2.58 + 1.30 x A-0.0629 x B + 0.0018 x C-0.0860 x AB + 0.0058 x AC + 0.0043 x BC + 0.7248 x A2-0.0348 x B2-0.0608 x C2 Area = + 9.402E + 05 – 22376.52 x A - 12819.56 x B - 38189.48 x C - 6939.63 x AB - 6453.38 x AC + 4875.62 x BC + 24013.40 x A2 + 20514.99 x B2 - 70296.79 x C2 Tailing factor = + 1.22 – 0.0416 x A - 0.0023 x B + 0.00146 x C + 0.0000 x AB + 0.0000 x AC + 0.0001 x BC - 0.0181 x A2 - 0.01738 x B2 - 0.0004 x C2 Where A = Aqueous phase B = Flow rate C = Wavelength
  • 123. 123  Central composite design was used to evaluate the simultaneous effect of % Aqueous ratio in the mobile phase , Flow rate and Wavelength (CMPs) on Rt, Peak area and Tailing factor (CMAs)  Sum of squares (-0.0860): The simultaneous decrease in % Aqueous ratio in the mobile phase and Flow rate results in better retention time  Sum of squares: Indicates that the simultaneous change in Flow rate and Wavelength, there was no change in Rt (+0.000115) and Tailing factor (-0.0001) and less effect on Peak area (-0.0182)
  • 124. 124  Sum of squares: Indicates that the simultaneous change in % Buffer ratio in the mobile phase and Wavelength, there was no change in Rt (+0.0085), Peak area and Tailing factor  No significant effect of wavelength on CMAs  % Buffer ratio in the mobile phase and Flow rate influenced Rt The interactive effects of CMPs on tailing factor was insignificant
  • 125. 125 COMPARISON AMONG CMPs AND CMAs OF INITIAL OPTIMIZED METHOD, DOE DATAAND FINAL OPTIMIZED METHOD CMP/F CMPs CMA/R CMAs Initial optimized method Final optimized Method (DOE Data) Initial optimized method DOE data* Final optimized method Mobile Phase [% v/v] 0.1% OPA : ACN (45:55) 0.1% OPA : ACN (39.57:60.43) Rt [Mins] 2.629 2.04 2.05 Flow Rate [ml/min] 1.0 0.961 Peak area 1028275 938311 953531 Wavelength [nm] 223 218.5 Tailing factor 1.2 1.22 1.1 Comparison between reported non-QbD best method and present QbD method  Run time: 6.0 mins → 5.0 mins  Retention time: 4.81mins → 2.051mins  LOD : 0.3589 µg/ml → 0.047 µg/ml  LOQ: 1.0876 µg/ml → 0.142 µg/ml
  • 126. 5b. DEVELOPMENT AND VALIDATION OF UV SPECTROSCOPIC METHOD FOR THE ESTIMATION OF CANAGLIFLOZIN IN BULK AND TABLETS Canagliflozin- reduced risk of cardio-vascular deaths and heart failure hospitalizations in addition to the management of increased plasma glucose levels [Ralston et al., 2018]  The UV Spectroscopic methods reported - expensive 126
  • 127. 127 Structure Molecular Weight – 453.53 ½ H2O Class SGLT-2 inhibitor pKa 12.57 Log P 3.44 Solubility soluble in organic solvents like ethanol, methanol, acetone and THF and insoluble in water DRUG PROFILE: CANAGLIFLOZIN
  • 128. METHOD DEVELOPMENT [Gorog, 2011]: CANAGLIFLOZIN Diluent : Methanol and distilled water (1:1)  Preparation of Standard stock solution-I of Canagliflozin [1000μg/ml]: 128 10 mg Canagliflozin + 5ml diluent Sonicated for 10mins + made up to 10ml 1000μg/ml Canagliflozin  Preparation of Standard stock solution-II of Canagliflozin [100μg/ml]: 1.0ml standard stock-I Diluted to 10ml with diluent 100μg/ml Canagliflozin  Preparation of working standard solution of Canagliflozin [40μg/ml]: 4.0ml standard stock-II Diluted to 10ml with diluent 40μg/ml Canagliflozin
  • 129. 129 UV SPECTRUM OF CANAGLIFLOZIN [λ max – 224nm] RESULTS AND DISCUSSION
  • 130. 130 VALIDATION [ICH Q2 (R1), 2005]: CANAGLIFLOZIN % Spiked Fixed sample concentration (μg/ml) Amount Spiked (μg/ml) Mean Amount recovered (μg/ml) Mean % Recovery ± SD % RSD 80 40 32 72.07 100.09 ± 0.55 0.55 100 40 40 79.86 99.82±0.37 0.37 120 40 98 87.91 99.89±0.59 0.60 ACCURACY Concentration (μg/ml) Intra-day Precision Mean ± SD % RSD Inter-day Precision Mean ± SD % RSD 40 0.201±0.0015 0.75 0.2021 ± 0.0017 0.84 PRECISION
  • 131. 131 Concentration (μg/ml) Absorbance* 0 0 10 0.051 20 0.104 30 0.152 40 0.202 50 0.252 60 0.302 Linear Regression Equation y = mx + c y = 0.005x + 0.001 Slope (m) 0.005 Intercept (c) 0.001 Correlation coefficient (R2) 0.999 LOD 0.33 μg / ml LOQ 1.00 μg / ml LINEARITY, LOD AND LOQ OF CANAGLIFLOZIN *Average of three determinations
  • 132. 132 y = 0.0051x + 0.0016 R² = 0.9999 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 10 20 30 40 50 60 70 AbsorbanceAU Concentration (μg/ml) LINEARITY PLOT OF CANAGLIFLOZIN Tablet Brand Label claim Amount found ± SD % Assay ± SD Invokana 100 mg 99.79 ± 1.17 99.79 ± 1.17 ASSAY OF CANAGLIFLOZIN
  • 133. 133 λ max 224 nm Beer’s law limits 10-60 μg/ml Sandell’s sensitivity (μg/ cm2- 0.001 absorbance units) 0.196 Regression equation y = 0.005x + 0.001 Slope 0.005 Intercept 0.001 Correlation coefficient (R2) 0.999 % Recovery 99.82-100.09 % RSD Intra-day Precision 0.75 Inter-day Precision 0.84 LOD 0.33 μg/ml LOQ 1.00 μg/ml Mean % Assay 99.19 ± 1.17 SUMMARY OF VALIDATION OF CANAGLIFLOZIN
  • 134. 134 The developed UV Spectroscopic method was simple and sensitive  Linearity : 10-60 μg/ml  LOD : 0.33 μg/ml  LOQ : 1.00 μg/ml
  • 135. 6a. DEVELOPMENT AND VALIDATION OF STABILITY INDICATING RP-HPLC METHOD FOR THE SIMULTANEOUS DETERMINATION OF ERTUGLIFLOZIN PIDOLATE AND METFORMIN HYDROCHLORIDE IN BULK AND TABLETS  ERTU and MET combination - efficiently reduces elevated HbA1c levels in type-2 diabetic patients [FDA label, Segluromet, 2017] The RP-HPLC methods reported were complex involved high volumes of organic solvent in the mobile phase 135
  • 136. 136 ERTU MET Structure . HCl Class SGLT-2 inhibitor Biguanide anti-diabetic Molecular weight 566 165.62 pKa 11.98 12.33 Log P 2.21 -0.92 Solubility soluble in ethanol, sparingly soluble in ethyl acetate, ACN and very slightly soluble in water freely soluble in water, sparingly soluble in alcohol, practically insoluble in acetone and dichloromethane DRUG PROFILE:
  • 137. 137 3.75 mg ERTU + 250 mg MET + 10ml diluent volume up to 100ml + filtered using 0.45 µ PTFE filter 37.5µg/ml ERTU 2500 µg/ml MET Preparation of working standard solution of ERTU [3.75µg/ml] and MET [250µg/ml]: 1ml of standard stock volume upto 10ml with diluent 3.75µg/ml ERTU 250µg/ml MET METHOD DEVELOPMENT: [Snyder et al., 1997]: ERTU AND MET Diluent: HPLC grade water: ACN (1:1) Preparation of standard stock solution of ERTU [37.5µg/ml] and MET [2500µg/ml]:
  • 138. OPTIMIZED CHROMATOGRAPHIC CONDITIONS 138 Column Kromasil C18 (150mm x4.6 mm, 5 µm) Mobile phase 0.1% OPA [pH 2.7]: ACN (65:35 %v/v) Elution Isocratic Flow rate 1.0 ml/min Detector and λ max PDA and 224.0 nm Column temperature 30 ± 20C Injection volume 10 µl Diluent HPLC grade water : ACN [1:1] Retention time MET- 2.170 mins ERTU- 2.929 mins Run time 6.00 mins
  • 139. 139 RESULTS AND DISCUSSION OPTIMIZED CHROMATOGRAM OF ERTU AND MET
  • 140. VALIDATION [ICH Q2 (R1), 2005]: ERTU AND MET: SPECIFICITY 140 Blank [HPLC grade water: ACN (1:1)] Standard (MET 2.170mins and ERTU 2.929 mins) Sample (MET 2.168mins and ERTU 2.827mins)
  • 141. FORCED DEGRADATION STUDIES [Ahuja et al., 2001, ICH Q1A (R2), ICH Q1B]: 141 Stressor Condition Acid 2N HCl, 30 mins, 60±20C Alkali 2N NaOH, 30 mins, 60±20C Oxidative 20% v/v H2O2, 30 mins, 60±20C Thermal In the oven at 105±20C for 6 hrs Light UV Chamber for 7 days Neutral HPLC grade water, 6 hrs, 60±20C
  • 142. 142 Acid Degradation of ERTU and MET
  • 143. 143 Alkali Degradation of ERTU and MET
  • 145. 145 Thermal degradation of ERTU and MET
  • 147. 147 Neutral degradation of ERTU and MET
  • 148. FORCED DEGRADATION OF ERTU AND MET 148 Stressor ERTU MET Purity Angle- Purity Threshold % Assay % Degraded [<20] Purity Angle- Purity Threshold % Assay % Degraded [<20] Acid 1.493< 1.966 92.45 7.55 1.448 < 1.801 92.29 7.71 Alkali 1.766< 2.146 94.56 5.44 1.402 < 1.752 93.07 6.93 Oxidative 1.693 < 2.130 95.42 4.58 1.348 < 2.270 94.47 5.53 Thermal 1.936 < 2.341 96.86 3.14 2.753 < 2.927 97.07 2.93 Photolytic 1.659 < 2.009 98.30 1.70 2.489 < 2.786 98.21 1.79 Neutral 1.780 < 2.134 98.98 1.02 2.358 < 2.915 99.10 0.90
  • 149. 149 ACCURACY 80% level 100% level 120% level
  • 150. 150 ACCURACY OF ERTU % Spiked Fixed sample concentration (μg/ml) Amount Spiked (μg/ml) Total amount recovered (μg/ml) % Recovery Statistical Data Mean ± SD % RSD 80 3.75 3.0 6.73 99.27 100.04 ± 0.306 0.3066.77 100.29 6.76 100.14 100 3.75 3.75 7.51 100.13 99.99 ± 0.135 0.1357.49 99.86 7.50 100.00 120 3.75 4.50 8.22 99.63 99.87 ± 0.64 0.6048.30 100.60 8.20 99.39
  • 151. 151 % Spiked Fixed sample concentration (μg/ml) Amount Spiked (μg/ml) Total Amount recovered (μg/ml) % Recovery Statistical Data Mean ± SD % RSD 80 250 200 450.31 100.16 99.7 ± 0.54 0.54448.22 99.11 449.76 99.88 100 250 250 499.72 99.89 99.91 ± 0.57 0.57497.04 99.35 501.23 100.49 120 250 300 550.57 100.19 100.65 ± 0.47 0.47 553.38 101.13 551.95 100.65 ACCURACY OF MET
  • 152. 152 PRECISION OF ERTU AND MET Injection Intra-day Precision Inter-day Precision Peak Area Peak Area* ERTU MET ERTU MET 1 97558 5494807 96427 5519305 2 97857 5513074 97898 5518566 3 98282 5480884 98136 5521823 4 98143 5512058 97249 5547798 5 98046 5483072 98243 5586469 6 97987 5542631 97334 5560570 Mean 97978.8 5504421 97547.8 5539089 SD 251.1 23218 684.56 31980.6 % RSD [<2.0] 0.25 0.42 0.70 0.56 *mean of two determinations
  • 153. LINEARITY, LOD AND LOQ OF ERTU AND MET 153 Level-1 Level-2 Level-3
  • 155. 155 % Level Concentration [x] (μg/ml) Mean Peak area* [y] (AU) 0 0 0 25 0.9375 24802 50 1.875 49541 75 2.8125 74657 100 3.75 99130 125 4.6875 125714 150 5.625 145645 Linear Regression Equation (y = mx + c) y = 26223x + 460.9 Slope (m) 26223 Intercept (c) 460.9 Correlation coefficient (R2) 0.999 LOD 0.025 μg/ml LOQ 0.076 μg/ml LINEARITY, LOD AND LOQ OF ERTU *mean of three determinations
  • 156. 156 % Level Concentration [x] (μg/ml) Mean Peak area* [y] (AU) 0 0 0 25 62.5 1374565 50 125 2780573 75 187.5 4158469 100 250 5566797 125 312.5 6877296 150 375 8152632 Linear Regression Equation (y = mx + c) y = 21857x + 31878 Slope (m) 21857 Intercept (c) 31878 Correlation coefficient (R2) 0.999 LOD 0.87 μg/ml LOQ 2.63 μg/ml LINEARITY, LOD AND LOQ OF MET *mean of three determinations
  • 157. 157 LINEARITY PLOT OF ERTU y = 26223x + 460.94 R² = 0.9993 0 20000 40000 60000 80000 100000 120000 140000 160000 0 1 2 3 4 5 6 PeakAreaAU Concentration [μg/ml] LINEARITY PLOT OF MET y = 21857x + 31878 R² = 0.9997 0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000 0 50 100 150 200 250 300 350 400 PeakAreaAU Concentration [μg/ml]
  • 158. 158 STABILITY OF STANDARD SOLUTION: 30 ± 20C for 24 hrs ERTU Time [Hrs] Peak areas* % Assay* Variation 0 98132 99.62 NA 12 97376 98.86 0.76 24 96418 97.88 1.74 * Average of six determinations Time [Hrs] Peak areas* % Assay* Variation 0 5559487 99.96 NA 12 5509688 99.13 0.83 24 5475626 98.45 1.51 * Average of six determinations MET
  • 159. 159 Parameter Modified condition % RSD of Peak area [NMT 2.0 %] Theoretical Plates* N [>2000] Tailing factor* [<2.0] Rs* [>2.0] ERTU MET ERTU MET ERTU MET Flow rate (1.0± 0.1 ml/min) 0.9 0.893 1.209 12959 10911 1.17 1.17 7.96 1.0 0.531 0.382 11679 9947 1.23 1.33 7.21 1.1 0.949 1.113 11564 9463 1.21 1.16 7.63 ACN ratio in Mobile phase Buffer: ACN (35 ± 5 % v/v) 70 : 30 1.377 1.039 11949 11751 1.26 1.15 9.2 65 : 35 0.531 0.382 11679 9947 1.23 1.33 7.21 60 : 40 1.360 1.293 12741 9485 1.22 1.14 6.78 Temperature (30 ± 50C) 25 0.912 1.278 13396 9470 1.14 1.20 7.03 30 0.531 0.382 11679 9947 1.23 1.33 7.21 35 0.574 0.993 13396 9516 1.21 1.17 7.01 * Mean of six determinations ROBUSTNESS OF ERTU AND MET
  • 160. 160 SYSTEM SUITABILITY OF ERTU AND MET Injection ERTU MET Rs > 2.0Rt [mins] Peak Area Theoretical Plates N > 2000 Tailing Factor < 2.0 Rt [mins] Peak Area Theoretical Plates N >2000 Tailing Factor < 2.0 1 2.913 97891 10960 1.31 2.170 5524816 11033 1.24 5.9 2 2.926 97643 11512 1.20 2.171 5566109 11319 1.24 6.8 3 2.926 98719 11296 1.34 2.177 5536275 11623 1.15 7.2 4 2.929 98905 11897 1.19 2.186 5564500 8425 1.24 7.8 5 2.929 98824 11716 1.13 2.206 5581534 8208 1.38 7.7 6 2.932 98424 12694 1.23 2.297 5564584 9073 1.25 7.9 Mean ± SD 2.925 98401± 523.3 11679 1.23 2.201 5556303 ± 21265.4 9947 1.25 7.21 % RSD [<2.0] 0.531 0.382
  • 161. 161 ASSAY OF ERTU AND MET Injection ERTU MET Rt [Mins] Peak area % Assay Amount [mg] Rt [mins] Peak area % Assay Amount [mg] 1 2.932 98132 99.63 7.47 2.177 5552565 99.83 499.15 2 2.929 97653 99.14 7.43 2.174 5531564 99.46 497.30 3 2.923 97956 99.45 7.46 2.176 5520126 99.25 496.25 4 2.933 97896 99.39 7.45 2.173 5529625 99.42 497.10 5 2.934 97698 99.19 7.44 2.174 5526486 99.36 496.99 6 2.933 97621 99.11 7.43 2.173 5536125 99.54 497.70 Mean ± SD 99.31±0.21 7.45 ± 0.16 99.48±0.20 497.4 ± 0.97
  • 162. 162 Parameter Result ICH Limits MET ERTU System suitability parameters % RSD 0.382 0.531 NLT 2.0 Theoretical plates 9947 11679 MT 2000 Tailing Factor 1.25 1.23 NMT 2.0 Range [μg/ml] 62.5-375 0.9375-5.625 - Linearity [R2] 0.999 0.999 NLT 0.999 % Recovery 99.11-101.13 99.27-100.60 98-102 % RSD Intra-day Precision 0.42 0.25 NMT 1.0 Inter-day precision 0.56 0.70 NMT 2.0 LOD [μg/ml] 0.87 0.025 - LOQ [μg/ml] 2.63 0.076 - % Assay difference at 24 hrs 1.51 1.74 NMT 2.0 % Assay 99.48 99.31 - SUMMARY OF VALIDATION OF ERTU AND MET
  • 163. 163 The developed stability indicating RP-HPLC method was  Simple and more sensitive  Retention time : MET – 2.383 → 2.170mins ERTU – 3.136 → 2.929mins  Linearity range : MET – 125-750 → 62.5- 375μg/ml ERTU – 1.875 - 11.25 → 0.9375 – 5.625μg/ml  LOD : MET – 1.7 → 0.87μg/ml ERTU – 0.07 → 0.025μg/ml LOQ : MET – 5.16 → 2.63μg/ml ERTU – 0.21 → 0.076μg/ml
  • 164. 6b. DEVELOPMENT AND VALIDATION OF STABILITY INDICATING ANALYTICAL METHOD FOR THE SIMULTANEOUS DETERMINATION OF EMPAGLIFLOZIN AND LINAGLIPTIN IN BULK AND TABLETS BY RP-HPLC SGLT-2 and DPP-4 inhibitors combination exerts  Synergistic effect Better glycemic control in diabetic patients compared to mono-drug therapy [Katzung et al., 2015] The reported RP-HPLC methods Involve use of high volume of organic solvents 164
  • 165. 165 EMPA LINA Structure Class SGLT-2 inhibitor DPP-4 inhibitor Molecular Weight 450.91 472.54 pKa 12.57 9.86 Log P 1.79 2.8 Solubility slightly soluble in ACN, ethanol, soluble in 50 % ACN/water, sparingly soluble in methanol, very slightly soluble in water and practically insoluble in toluene very slightly soluble in water, soluble in methanol, sparingly soluble in ethanol, very slightly soluble in isopropanol, and acetone DRUG PROFILE: EMPAAND LINA
  • 166. 166 10mg EMPA + 5 mg LINA + 5 ml diluent, sonicated for 10 mins volume upto 10ml + filtered using 0.45 µ PTFE filter 100µg/ml EMPA 50 µg/ml LINA Diluted to 10 ml with diluent Preparation of standard stock solution-II of EMPA [100µg/ml] and LINA [50µg/ml]: 1ml standard stock -I 1000µg/ml EMPA 500 µg/ml LINA METHOD DEVELOPMENT: [Snyder et al., 1997] EMPAAND LINA Diluent: HPLC grade water and Methanol [1:1] Preparation of standard stock solution-I of EMPA [1000µg/ml] and LINA [500µg/ml]: Preparation of Working standard solution EMPA [10 µg/ml] and LINA [5 µg/ml] Diluted to 10 ml with diluent 10 µg/ml EMPA 5 µg/ml LINA 1ml standard stock -II
  • 167. 167 OPTIMIZED CHROMATOGRAPHIC CONDITIONS Column Ascentis C18 (150mm x4.6 mm, 5µm) Mobile phase 0.1 % OPA [pH 2.7] : Methanol (35:65 % v/v) Elution Isocratic Flow rate 0.8 ml/min Detector and λ max PDA and 220.0 nm Column temperature 30°C Injection volume 10 μl Diluent HPLC grade water : Methanol [1:1] Retention time (mins) EMPA- 2.218 LINA- 2.531 Run time 5.00 mins
  • 169. VALIDATION [ICH Q2 (R1), 2005]: EMPAAND LINA: SPECIFICITY 169 Blank [HPLC grade water: Methanol (1:1)] Standard EMPA [2.218 mins) and LINA (2.531 mins) Sample EMPA (2.226 mins) and LINA (2.544 mins)
  • 170. 170 FORCED DEGRADATION STUDIES [Ahuja et al., 2001, ICH Q1A (R2), ICH Q3]: Stressor Condition Acid 2N HCl, 30 mins, 60±20C Alkali 2N NaOH, 30 mins, 60±20C Oxidative 20 %v/v H2O2, 30 mins, 60±20C Thermal In oven at 105±20C for 6 hrs Light UV Chamber for 7 days Neutral HPLC grade water, 30 mins, 60±20C
  • 171. 171 Acid Degradation of EMPA and LINA
  • 172. 172 Alkali degradation of EMPA and LINA
  • 173. Oxidative degradation of EMPA and LINA 173
  • 174. 174 Thermal degradation of EMPA and LINA
  • 176. 176 Neutral degradation of EMPA and LINA
  • 177. 177 Stressor EMPA LINA Purity Angle - Purity Threshold % Assay % Degraded [<20] Purity Angle - Purity Threshold % Assay % Degraded [<20] Acid 0.179 < 0.352 93.88 6.12 0.108 < 0.313 95.05 4.95 Alkali 0.179 < 2.648 93.40 6.60 0.988 < 1.142 94.65 5.35 Oxidative 0.199 < 0.743 93.85 6.15 0.278 < 0.357 92.62 7.38 Thermal 0.328 < 0.411 97.56 2.44 0.274< 0.298 96.32 3.68 Photolytic 0.478 < 0.569 98.77 1.23 0.275 < 0.318 98.57 1.43 Neutral 0.395 < 0.410 99.29 0.71 0.289< 0.320 99.42 0.58 FORCED DEGRADATION OF EMPAAND LINA
  • 178. 178 ACCURACY 80% level 100% level 120% level
  • 179. 179 % Spiked Fixed sample concentration (μg/ml) Amount Spiked (μg/ml) Total Amount recovered (μg/ml) % Recovery Statistical Data Mean ± SD % RSD 80 10 8.0 18.06 100.78 100.59±0.265 0.26318.02 100.29 18.06 100.71 100 10 10 20.18 100.90 100.30±0.556 0.55319.96 99.80 20.04 100.21 120 10 12 22.04 100.20 99.80±0.520 0.5221.83 99.21 21.99 99.98 ACCURACY OF EMPA
  • 180. 180 % Spiked Fixed sample concentration (μg/ml) Amount Spiked (μg/ml) Total Amount recovered (μg/ml) % Recovery Statistical Data Mean ± SD % RSD 80 5.0 4.0 8.96 99.07 99.02±0.126 0.1278.95 98.88 8.96 99.12 100 5.0 5.0 9.99 99.82 99.64±0.162 0.1629.97 99.51 9.98 99.58 120 5.0 6.0 10.98 99.64 99.99±0.327 0.32711.00 100.04 11.02 100.29 ACCURACY OF LINA
  • 181. 181 *mean of two determinations PRECISION OF EMPAAND LINA Injection Intra-day Precision Inter-day Precision Peak area Peak area* EMPA LINA EMPA LINA 1 664012 371986 662885 375212 2 661089 371272 667110 373903 3 660789 371586 665238 370561 4 662598 371690 661401 374428 5 664236 372963 669054 373830 6 662359 372016 661814 371197 Mean 662514 371919 664584 373189 SD 1431 580.6 3081.6 1866.7 % RSD [< 2.0] 0.216 0.156 0.5 0.5
  • 182. LINEARITY, LOD AND LOQ OF EMPAAND LINA 182 Level-1 Level-2 Level-3
  • 184. 184 % Level Concentration (x) [μg/ml] Mean peak area* (y) [AU] 0 0 0 25 2.5 163870 50 5.0 326856 75 7.5 455834 100 10.0 647690 125 12.5 796507 150 15 957091 Linear Regression Equation y = mx + c y = 63677x + 687.3 Slope (m) 63677 Intercept (c) 687.3 Correlation coefficient (R2) 0.999 LOD 0.04 μg/ml LOQ 0.13 μg/ml *mean of three determinations LINEARITY OF EMPA
  • 185. 185 *mean of three determinations LINEARITY OF LINA % Level Concentration (x) [μg/ml] Mean peak area*(y) [AU] 0 0 0 25 1.25 88606 50 2.50 175935 75 3.75 252744 100 5.00 351847 125 6.25 434506 150 7.50 517806 Linear Regression Equation y = mx + c y = 69175x + 799.5 Slope (m) 69175 Intercept (c) 799.5 Correlation coefficient (R2) 0.999 LOD 0.02 μg/ml LOQ 0.07 μg/ml
  • 186. 186 LINEARITY PLOT OF EMPA y = 63677x + 687.38 R² = 0.999 0 200000 400000 600000 800000 1000000 1200000 0 2 4 6 8 10 12 14 16 PeakAreaAU Concentration (μg/ml) y = 69175x + 799.57 R² = 0.9995 0 100000 200000 300000 400000 500000 600000 0 1 2 3 4 5 6 7 8 PeakAreaAU Concentration (μg/ml) LINEARITY PLOT OF LINA
  • 187. 187 STABILITY OF STANDARD SOLUTION: 30 ±20C for 24 hrs EMPA Time [Hrs] Peak areas* % Assay* Variation 0 666641 100.04 - 12 661647 99.29 0.75 24 657292 98.64 1.4 *Average of six determinations LINA Time [Hrs] Peak areas % Assay* Variation 0 374719 100.07 - 12 371708 99.27 0.8 24 368030 98.29 1.78 *Average of six determinations
  • 188. 188 Parameter Modified condition % RSD of Peak area N* [>2000] Tailing Factor* [<2.0] Rs [>2.0] EMPA LINA EMPA LINA EMPA LINA Flow rate (0.8 ± 0.1ml/min) 0.7 0.518 0.892 13746 9506 1.35 1.31 3.23 0.8 0.613 0.577 12600 8928 1.29 1.34 3.33 0.9 1.019 1.409 8430 7148 1.28 1.37 2.68 Methanol : 0.1% OPA buffer (65 ± 5% v/v) 60 : 40 1.170 0.610 8546 7231 1.26 1.36 3.48 65 : 35 0.613 0.577 12600 8928 1.29 1.34 3.33 70 : 30 0.932 0.778 8931 8124 1.28 1.33 2.11 Temperature (30±50C) 25 0.913 0.980 9621 8136 1.32 1.32 2.65 30 0.613 0.577 12600 8928 1.29 1.34 3.33 35 0.575 0.686 9098 7586 1.26 1.29 2.61 ROBUSTNESS OF EMPAAND LINA *Mean of six determinations
  • 189. 189 SYSTEM SUITABILITY OF EMPAAND LINA Injection EMPA LINA Rs [> 2.0]Rt [mins] Peak Area Theoretical Plates N [>2000] Tailing Factor [< 2.0] Rt [mins] Peak Area Theoretical Plates N [>2000] Tailing factor [< 2.0] 1 2.221 659494 12393 1.34 2.535 373303 9349 1.33 3.3 2 2.221 661554 12085 1.32 2.540 370806 8945 1.32 3.3 3 2.222 670414 12633 1.34 2.542 375348 8216 1.35 3.4 4 2.223 664401 13115 1.34 2.544 376969 9303 1.32 3.3 5 2.224 666030 13282 1.18 2.544 372942 8251 1.36 3.4 6 2.226 668190 12089 1.20 2.545 372811 9507 1.33 3.3 Mean ± SD 2.222± 0.0019 665014 ± 4076.6 12600 1.29 2.541±0.037 373697± 2158.5 8928 1.33 3.33 % RSD [< 2.0] 0.613 0.577
  • 190. 190 ASSAY OF EMPAAND LINA Injection EMPA LINA Peak area % Assay Amount [mg] Peak area % Assay Amount [mg] 1 661911 99.33 9.933 371923 99.33 4.96 2 665542 99.88 9.988 372364 99.44 4.972 3 662310 99.39 9.939 371756 99.28 4.964 4 669312 100.45 10.045 372584 99.50 4.975 5 662423 99.41 9.941 371489 99.21 4.960 6 666502 100.02 10.002 372186 99.40 4.97 Mean ± SD 99.74±0.45 9.975 ± 0.045 99.36±0.107 4.97 ± 0.006
  • 191. 191 Parameter Result ICH Limits EMPA LINA System suitability Parameters % RSD 0.613 0.577 - Theoretical plates 12600 8928 MT 2000 Tailing factor 1.29 1.33 NMT 2.0 Resolution - 3.33 NLT 2.0 Range [μg/ml] 2.5-15 1.25-7.5 - Linearity [R2] 0.999 0.999 NLT 0.999 % Recovery 99.21-100.90 98.88-100.29 98-102 % RSD Intra-day Precision 0.216 0.156 NMT 2.0 Inter-day Precision 0.5 0.5 NMT 2.0 LOD [μg/ml] 0.04 0.02 - LOQ [μg/ml] 0.13 0.07 - Solution Stability % Assay difference at 24 hrs 1.4 1.78 NMT 2.0 % Assay 99.74 99.36 - SUMMARY OF VALIDATION PARAMETERS
  • 192. 192 The present developed RP-HPLC method was  More sensitive  Retention time : EMPA- 3.907 → 2.218mins  Run time : 10.0 → 5.0 mins  Linearity : EMPA – 10-50 → 2.5-15μg/ml LINA – 20-100 → 1.25-7.5μg/ml  LOD : EMPA - 2.17 → 0.04μg/ml LINA – 0.0372 → 0.02μg/ml  LOQ : EMPA – 6.60 → 0.13μg/ml LINA – 0.112 → 0.07μg/ml
  • 193. 193 7. DEVELOPMENT AND VALIDATION OF IN-VITRO BIOANALYTICAL RP-HPLC METHOD FOR THE ESTIMATION OF EMPAGLIFLOZIN BULK DRUG The reported in-vitro bioanalytical method by RP-HPLC is  Expensive – used only organic solvents as mobile phase and diluent  More run time
  • 194. 194 EMPA Dapagliflozin (Internal Standard) Structure Molecular Weight 450.91 502.98 Class SGLT-2 inhibitor SGLT-2 inhibitor pKa 12.57 12.57 Log P 1.79 2.52 Solubility Slightly soluble in ACN, ethanol, soluble in 50 % ACN/water, sparingly soluble in methanol, very slightly soluble in water and practically insoluble in toluene soluble in ethanol, DMSO and DMF DRUG PROFILE: EMPAAND DAPAGLIFLOZIN
  • 195. 195 METHOD DEVELOPMENT: Diluent: HPLC grade water: ACN (1:1) Buffer [0.01N KH2PO4]: (IP, 2018) Mobile phase [Buffer: ACN (65:35 % v/v)]: Preparation of EMPA stock solution [75μg/ml]: 7.5 mg EMPA + 20ml diluent Sonicated for 10mins + made up to 100ml filtered using 0.45μ PTFE filter 75μg/ml
  • 196. 196 Preparation of Internal Standard (IS) stock solution-I [100μg/ml]: 1.0 ml of stock-I 100μg/ml filtered through 0.45μ PTFE filter Sonicated for 10mins + made up to 100ml 10 mg IS + 10ml diluent Diluted to 10 ml with diluent 10μg/ml Preparation of Internal Standard (IS) stock solution-II [10μg/ml]
  • 197. 197 Vol. of stock [ml] Final Vol. [ml] Concentration [μg/ml] EMPA Standard Solutions- Codes 0.05 10.0 0.375 EMPA S 1 0.1 10.0 0.75 EMPA S 2 0.15 10.0 1.125 EMPA S 3 0.4 10.0 3.0 EMPA S 4 1.0 10.0 7.5 EMPA S 5 1.2 10.0 9.0 EMPA S 6 1.6 10.0 12.0 EMPA S 7 2.0 10.0 15.0 EMPA S 8 PREPARATION OF CALIBRATION CURVE STANDARD EMPA SOLUTIONS:
  • 198. 198 EXTRACTION PROCEDURE: plasma with anti-coagulant, K2EDTA + stored at -70°C vortexed for 2 mins + 1.0 ml Ethyl acetate vortexed for 2 mins + 0.5 ml IS stock-II 0.75 ml blank plasma + 0.25 ml EMPA standard stock thawed on water bath at 30±20C vortexed for 2 mins + Left aside for separation centrifuged in Cooling centrifuge at 8000 rpm for 10 mins separated organic layer evaporated to dryness
  • 199. 199 PREPARATION OF PLASMA SOLUTIONS OF EMPA [37.5-1500 ng/ml]: 0.25 ml each standard solution of EMPA + 0.75 ml plasma 0.5ml IS stock-II + 1.0 ml ethyl acetate 37.5-1500 ng/ml Preparation of plasma spiked QC samples of EMPA: 0.25 ml each EMPA standard solution + 0.75 ml plasma 0.5 ml IS stock-II + 1.0 ml ethyl acetate 37.5 ng/ml (LLOQ) 112.5 ng/ml (LQC) 750 ng/ml (MQC) 1200 ng/ml (HQC) 1500 ng/ml (ULOQ)
  • 200. 200 Column Phenomenex C18 (250mm x 4.6 mm, 5m) Mobile phase 0.01N KH2PO4 buffer (pH 3.0) : ACN (65:35 % v/v) Elution Isocratic Flow rate 1.0 ml/min Detector - λ max PDA (220 nm) Column temperature 300C Injection volume 20 μl Diluent HPLC grade water: ACN [1:1] Run time 6.0 mins OPTIMIZED CHROMATOGRAPHIC CONDITIONS FOR EMPA
  • 201. 201 Blank (Plasma) Optimized Chromatogram of EMPA in Plasma RESULTS AND DISCUSSION
  • 202. 202 VALIDATION [USFDA 2018]: EMPA Blank (Plasma) LINEARITY Zero Calibrator (Plasma + IS) Level - 1 [37.5ng/ml] Level – 2 [75ng/ml]
  • 203. 203 Level – 3 [112.5ng/ml] Level – 4 [300ng/ml] Level – 6 [900ng/ml]Level – 5 [750ng/ml]
  • 204. 204 Level – 8 [1200ng/ml]Level – 7 [1500ng/ml] Concentration [ng/ml] Peak area of IS Peak area of EMPA Peak area of EMPA/IS 37.5 86452 1452 0.0168 75 86543 2904 0.0336 112.5 86259 4457 0.0517 300 86892 12618 0.1452 750 86501 29047 0.3358 900 86432 34856 0.4038 1200 86535 46475 0.5371 1500 86446 58894 0.6813 LINEARITY OF EMPA IN PLASMA
  • 205. 205 y = 0.00045x + 0.00148 R² = 0.99968 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0 200 400 600 800 1000 1200 1400 1600 PeakarearatioofEMPA/IS Concentration [ng/ml] LINEARITY PLOT OF EMPA IN PLASMA Concentration [ng/ml] Concentration Mean ± SD* [ng/ml] Intra-day Accuracy* [%] Intra-day Precision* [% CV] Concentration Mean ± SD* [ng/ml] Inter-day Accuracy* [%] Inter-day Precision* [% CV] LLOQ 37.5 37.23 ± 3.65 99.27 9.82 36.89 ± 2.64 99.90 7.15 LQC 112.5 112.18 ± 4.99 99.72 4.45 112.18 ± 5.40 99.72 4.82 MQC 750 748.54 ± 6.61 99.81 0.88 748.70 ± 4.03 99.83 0.54 HQC 1200 1200.56 ± 5.29 100.05 0.44 1198.74± 5.76 99.90 0.48 *mean of five determinations ACCURACY AND PRECISION OF EMPA IN PLASMA
  • 206. 206 Concentration [ng/ml] Concentration [ng/ml] Accuracy [%] LLOQ 37.5 37.52 100.053 37.98 101.28 38.2 101.86 38.3 102.13 37.82 100.85 37.89 101.04 Mean ± SD 37.95 ± 0.279 101.20 ± 0.744 % CV 0.735 0.735 SENSITIVITY OF EMPA IN PLASMA
  • 207. 207 S. No HQC (1200 ng/ml) LQC (112.50 ng/ml) Fresh solution (ng/ml) Stored solution ( ng/ml) Fresh solution ( ng/ml) Stored solution (ng/ml) 1. 1206.890 1198.930 110.169 108.185 2. 1204.851 1194.860 109.184 109.201 3. 1202.841 1196.841 111.192 106.168 4. 1198.912 1201.913 112.166 111.176 5. 1194.914 1205.911 114.178 115.194 6. 1196.894 1203.964 113.182 114.188 Mean ± SD 1200.88 ± 4.714 1200.40 ± 4.263 111.68 ± 1.870 110.69 ± 3.513 % CV 0.39 0.36 1.67 3.17 % Mean Accuracy 100.07 100.03 99.27 98.39 STABILITY OF EMPA IN PLASMA [-28 ± 50C]
  • 208. 208 S. No HQC (1200 ng/ml) LQC (112.50 ng/ml) Fresh solution Stored solution Fresh solution Stored solution 1. 1198.884 1206.920 108.173 111.167 2. 1199.920 1204.901 110.184 108.182 3. 1201.900 1205.879 109.166 109.176 4. 1200.932 1199.865 113.194 112.199 5. 1204.892 1196.924 114.200 115.191 6. 1203.880 1194.896 115.169 114.188 Mean ± SD 1201.73 ± 2.310 1201.56 ± 5.05 111.68 ± 2.89 111.68 ± 2.74 % CV 0.19 0.42 2.59 2.46 % Mean Accuracy 100.14 100.13 99.27 99.27 STABILITY OF EMPA IN PLASMA [-80 ± 50C]
  • 209. 209 Analyte EMPA Internal standard Dapagliflozin Method RP-HPLC Biological matrix Human plasma Anti-coagulant K2 EDTA Extraction method Liquid-liquid extraction Linearity range 37.5-1500 ng/ml Correlation Coefficient [R2] 0.99968 QC concentrations [ng/ml] LLOQ- 37.5 LQC- 112.5 MQC- 750 HQC- 1200 ULOQC- 1500 Accuracy [% recovery] Intra-day 99.27-100.05 Inter-day 99.72-99.90 Precision [% CV] Intra-day 0.44-9.82 Inter-day 0.48-7.15 Long term stability at -28± 50C HQC- 100.03 LQC- 98.39 Long term stability at -80± 50C HQC- 100.13 LQC- 99.27 Sensitivity LLOQ Accuracy 101.2 % CV 0.735 SUMMARY OF VALIDATION
  • 210. 210 The developed in-vitro bioanalytical method for the estimation of EMPA in human plasma was  Simple, rapid and cost-effective  Mobile Phase [ACN: Methanol (50:50 % v/v) →0.01N KH2PO4 buffer (pH 3.0): ACN (65:35 % v/v)]  Retention time [8.898 → 4.390 mins]  Run time [10.0 → 6.0 mins]  Linearity [50-150 → 37.5-1500 ng/ml]
  • 212. 212  Methods developed – 9: Drugs selected – 7  Statin drugs – 2 : Rosuvastatin Calcium and Pitavastatin Calcium  Anti-diabetic drugs – 5: Empagliflozin, Canagliflozin, Ertugliflozin, Metformin and Linagliptin UV SPECTROSCOPIC METHODS COLORIMETRY Diluent/ parameter ROS-Ca PIT- Ca CANA ROS-Ca Diluent 0.1 N NaOH Methanol : Distilled water (1:1) Methanol : Distilled water (1:1) Methanol Linearity range, LOD, LOQ ↓ ↓ ↓ ↓ SUMMARY
  • 213. 213 Mobile Phase/ Parameter ROS-Ca Simultaneous estimation ERTU MET EMPA LINA Mobile Phase 0.1% OPA (pH 2.7) : ACN (55:45 % v/v) 0.1% OPA (pH 2.7) : ACN (65:35 % v/v) 0.1% OPA (pH 2.7) : Methanol (35:65 % v/v) Retention time, Run time, Linearity range, LOD, LOQ ↓ ↓ ↓ RP-HPLC METHODS Mobile Phase/ Parameter EMPA QbD Approach Bioanalytical Mobile phase 0.1% OPA (pH 2.7) : ACN (39.57:60.43 % v/v) 0.01N KH2PO4 buffer (pH 3.0) : ACN (65:35 % v/v) Retention time, Run Time, Linearity range ↓ [LOD, LOQ] ↓
  • 214. 214 CONCLUSION The methods designed and developed being simple, sensitive and cost-effective may be useful for the estimation of the selected statins and anti-diabetic drugs in API and tablet dosage form in academic institutions, research centers, small scale industries and drug testing labs
  • 215. 215 Ahuja S, and Scypinski S (2013): Handbook of Modern Pharmaceutical Analysis, Massachusetts, Elsefveir, pp 4-449 Dwivedi J, Singhvi I, Vaya R, Kapadiya N, Mehta A, Jain V, Mahatma OP (2011): Quantitative estimation of Rosuvastatin Calcium from tablet formulation by colorimetric method using Cosneasie Brilliant Blue R Dye, Inventi Rapid - Pharm Analysis and Quality Assurance, 198(11). FDA Label: Merck & Co. Inc. SEGLUROMET™ (Ertugliflozin and Metformin hydrochloride) tablets, for oral use Initial US Approval, (2017): Retrieved from https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209806s000lbl.pdf Goodman L, Gilman A, Brunton L, and Chabner B, Knollmann B (2011): Goodman and Gilman's the Pharmacological Basis of Therapeutics, 12th Edn: New York, McGraw-Hill, pp 892-1266 REFERENCES
  • 216. 216 ICH Harmonized Triplicate Guideline (2005): Validation of Analytical Procedures: Text and Methodology Q2 (R1), ICH Steering Committee, Step 4 of ICH process, Retrieved form https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf Indian Pharmacopoeia (2018): Government of India, Ministry of Health and Family Welfare, The Indian Pharmacopoeia Commission, Ghaziabad: volume-II, pp 2544-3142 International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2009): ICH Harmonised Tripartite Guideline, Pharmaceutical Development Q8 (R2) retrieved from https://database.ich. org/sites/default/files/Q8_R2_Guideline.pdf International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use, ICH Harmonised tripartite guideline (2003): Stability Testing of New Drug Substances and Products Q1A (R2), Retrieved form https://database.ich.org/sites/default/files/Q1A%28R2%29%20Step4.pdf
  • 217. 217 International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use, ICH Harmonised tripartite guideline (1996): Stability Testing: Photostability testing of New Drug Substances and Products Q1B, Retrieved form https://database.ich.org/sites/default/files/ Q1B_Guideline.pdf International Conference on Harmonization (2003): Note for guidance on stability testing, stability testing of new drug substances and products: ICH Topic Q1 A (R2) Stability Testing of new Drug Substances and Products, London, UK, retrieved from https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-1-r2-stability-testing- new-drug-substances-products-step-5_en.pdf International Diabetes Federation (2019): Statistics of Diabetes mellitus retrieved from idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html Katzung BG, Masters SB and Trevor AJ (2015): Basic and Clinical Pharmacology, 13th Edn, New York, McGraw Hill Medical, pp 736-742
  • 218. 218 International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use, ICH Harmonised tripartite guideline (1996): Stability Testing: Photostability testing of New Drug Substances and Products Q1B, Retrieved form https://database.ich.org/sites/default/files/ Q1B_Guideline.pdf International Conference on Harmonization (2003): Note for guidance on stability testing, stability testing of new drug substances and products: ICH Topic Q1 A (R2) Stability Testing of new Drug Substances and Products, London, UK, retrieved from https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-1-r2-stability-testing- new-drug-substances-products-step-5_en.pdf International Diabetes Federation (2019): Statistics of Diabetes mellitus retrieved from idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html Katzung BG, Masters SB and Trevor AJ (2015): Basic and Clinical Pharmacology, 13th Edn, New York, McGraw Hill Medical, pp 736-742
  • 219. 219 Rajashree Mashru, Dharmendra Damor, Karan Mittal, Bhoomi Patel (2015): Method development and validation of simultaneous estimation of Cilostazol and Telmisartan, Journal of Pharmaceutical Analysis, 4(3): 41-48 Ralston S, Penman I, Strachan M, Hobson R and Davidson S (2018): Davidson's Principles and Practice of Medicine, 23rd Edn, Edinburgh, Churchill Livingstone/Elsevier, pp 748 Ramadan AA, Hasna Mandil and Rafif AlsayedAli (2015): Spectrophotometric determination of Rosuvastatin in pure form and pharmaceutical formulations through ion- pair complex formation using bromocresol green, Int J Pharm Pharm Sci, 7(11), 191-198 Ramkumar S, Raghunath A and Raghunath S (2016): Statin therapy, Review of safety and potential side effects, Acta Cardiologica Sinica, 32(6): 631 Rang HP, Dale MM, Ritter JM, Flower RJ and Henderson G (2012): Rang and Dale's Pharmacology, Edinburgh, Churchill Livingstone, 7th Edn, pp 377-383
  • 220. 220 Sharma HL and Sharma KK (2017): Principles of Pharmacology, 3rd Edn, Hyderabad, Paras Medical Publisher, pp 334-336 Snyder LR, Kirkland JJ and Glajch JL (1997): Practical HPLC method development. John Wiley and Sons: 1-438 The Expert Panel, (2002): Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III), Final Report, Circulation, 106, 3143-3421 USFDA Guidance for Industry (May 2018): U.S. Department of Health and Human Services, Food and Drug Administration, Food and Drug Administration: Center for Drug Evaluation and Research (CDER): Center for Veterinary Medicine (CVM): Biopharmaceutics: pp 1-37
  • 221. Presentations 1. Presented a poster entitled “Analytical Method Development and Validation for the Estimation of Rosuvastatin Calcium in Raw Material and Tablet Formulation by UV spectroscopy and RP-HPLC” in UGC Sponsored National Conference (IPTCON-2017) on “Current Challenges In Drug Discovery and Development” at SPMVV, Tirupati on 6th and 7th Feb, 2017 2. Presented a poster entitled “Analytical Method Development and Validation for the Estimation of Canagliflozin in Bulk and Formulation by UV Spectroscopic Method”, in DST CURIE Sponsored National Conference (IPTCON-2018) on “Innovative Research Trends in Drug Discovery” at SPMVV, Tirupati on 21, 22 March 2018 221
  • 222. Publications 1. Published a paper entitled “Analytical Method Development and Validation for Estimation of Dipeptidyl Peptidase-4 Inhibitors: A Review” B.Sailaja and K.Sravana Kumari. International Journal of Current Research in Chemistry and Pharmaceutical Sciences, 2(4), 2015, 83–98 2. Published a paper entitled “Analytical Method Development and Validation for the Estimation of Rosuvastatin Calcium in Raw Material and Tablet Formulation by UV Spectrometric Method” B.Sailaja and K.Sravana Kumari. Saudi Journal of Medical and Pharmaceutical Sciences, 2(1), 2016, 7-11 222
  • 223. 223 3. Published a paper entitled “Stability-indicating Method Development and Validation for the Estimation of Rosuvastatin Calcium in Bulk and Tablet Formulation by Reverse-phase High-performance Liquid Chromatography” B.Sailaja and K.Sravana Kumari, Asian Journal of Pharmaceutical and Clinical Research, 12(8), 2019, 251-256 Paper accepted for Publication: 4. “Development and Validation of Stability Indicating RP-HPLC Method for the Simultaneous Determination of Ertugliflozin Pidolate and Metformin Hydrochloride in bulk and tablets” B.Sailaja and K.Sravana Kumari, Future Journal of Pharmaceutical Sciences
  • 224. 224 I express my sincere thanks to Prof. R. Nagaraju, Dean (In charge), for his kind support and encouragement It is my privilege to thank Prof. G. Rajitha, BOS Chairperson, Institute of Pharmaceutical Technology, SPMVV for her moral support during my Ph.D. work I express my sincere thanks to Prof. Y. Indira Muzib, Head of the Department, Institute of Pharmaceutical Technology, SPMVV for her support during the work I take this opportunity to thank Prof. M. Ajitha, External examiner and other evaluators for their valuable suggestions I take this opportunity to express my gratitude to my research supervisor Prof. B. Sailaja, for her guidance, valuable suggestions, incredible support, patience and persistent creative encouragement through out my research work ACKNOWLEDGEMENTS
  • 225. 225 I owe a great debt of gratitude to Prof. K.V.S.R.G. Prasad, Prof. K.Bharathi, Prof. Santh Rani Thakur, Prof. B. Jeevana Jyothi, Prof. M. Vidyavathi, Prof. A. Sreedevi, Prof. S. Joshna Rani, Associate Professors, Dr. K. Madhavi, Dr. B. Ramya Kuber and Dr.K.Swathi, Assistant Professors, Dr. Shaheen Begum and Dr. D. Sujatha for their kind support throughout my Ph.D. course I take this opportunity to thank Laurus labs, Hyderabad, Apotex Pharma, Bangalore, Micro labs, Bangalore, Hetero drugs, Hyderabad, Natco Pharma, Hyderabad, Ajanta Pharma, Mumbai for providing me the gift samples of APIs I express my sincere thanks to Dr. K. S. Murali Krishna, Principal, Marri Laxman Reddy Institute of Pharmacy, Hyderabad for providing the facilities required for Ph.D. work and for his support and encouragement
  • 226. 226 I am thankful to Dr. D. Dachinamoorthi, Principal, QIS College of Pharmacy, Ongole for his support and encouragement I am grateful and sincerely thankful to Dr. Gummalla Pitchaiah, Head of the Department, QIS College of Pharmacy, Ongole for providing facilities for Ph.D. work and encouragement I am thankful to Dr. P. Sreenivasa Prasanna, Principal, Malineni Lakshmaiah College of Pharmacy, Singarayakonda for providing the facilities required for Ph.D. work My special thanks go to my friends Mrs. E. Pushpa Latha, Mrs. K. Veditha, Mrs. S. Bhargavi for their help during my Ph.D. work
  • 227. 227 I express my heartfelt love and affection to my father, late Mr. K. Anjaneyulu, mother, Mrs. K. Sujatha and brother, Mr. K. Siva Teja for their constant encouragement and moral support without which this work would have not been completed I take this opportunity to express my profound sense of gratitude and respect to all those who helped me directly and indirectly in completion of my Ph.D.