SlideShare a Scribd company logo
1 of 113
Signal Processing Algorithms for
MIMO Radar
Chun-Yang Chen and P. P. Vaidyanathan
California Institute of Technology
Electrical Engineering/DSP Lab
Candidacy
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Outline
 Review of the background
– MIMO radar
– Space-Time Adaptive Processing (STAP)
 The proposed MIMO-STAP method
– Formulation of the MIMO-STAP
– Prolate spheroidal representation of the clutter signals
– Deriving the proposed method
– Simulations
 Conclusion and future work.
MIMO Radar and Beamforming
MIMO Radar
f2(t)
f1(t)
f0(t)
The radar systems which emits orthogonal (or noncoherent)
waveforms in each transmitting antennas are called MIMO radar.
w2f(t)
w1f(t)
w0f(t)
Chun-Yang Chen, Caltech DSP Lab | Candidacy
MIMO radar SIMO radar (Traditional)
MIMO Radar
MIMO radar
f2(t)
f1(t)
f0(t)
SIMO radar (Traditional)
w2f(t)
w1f(t)
w0f(t)
The radar systems which emits orthogonal (or noncoherent)
waveforms in each transmitting antennas are called MIMO radar.
[D. J. Rabideau and P. Parker, 03]
[D. Bliss and K. Forsythe, 03]
[E. Fishler et al. 04]
[F. C. Robey, 04]
[D. R. Fuhrmann and G. S. Antonio, 05]
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Radar Systems
Chun-Yang Chen, Caltech DSP Lab | Candidacy
t
Radar
target
R
Received Signal
Matched filter output
threshold
R=ct/2
Detection
Ranging
Time
Radar was an acronym for Radio Detection and Ranging.
Beampattern of Antennas
Chun-Yang Chen, Caltech DSP Lab | Candidacy
target
Beampattern is the antenna gain as a function of angle of arrival.
Beampattern of Antennas
Chun-Yang Chen, Caltech DSP Lab | Candidacy
d/2
-d/2


2
/
2
/
sin
2
0
)
(
d
d
y
j
dy
e
A
E





sin
y
target
Plane
wave-front

)
(
E
Beampattern is the antenna gain as a function of angle of arrival.
)
sin
sinc(
sin
2
2
/
2
/
0






 d
dy
e
A y
d
d
j





Beampattern of Antennas
Chun-Yang Chen, Caltech DSP Lab | Candidacy
d/2
-d/2


2
/
2
/
sin
2
0
)
(
d
d
y
j
dy
e
A
E





sin
y
target
Plane
wave-front

)
(
E
Beampattern is the antenna gain as a function of angle of arrival.
Beampattern of Antennas
Chun-Yang Chen, Caltech DSP Lab | Candidacy
d/2
-d/2


2
/
2
/
sin
2
0
)
(
d
d
y
j
dy
e
A
E





sin
y
target
Fourier transform
Plane
wave-front

)
(
E
Beampattern is the antenna gain as a function of angle of arrival.
)
sin
sinc(
sin
2
2
/
2
/
0






 d
dy
e
A y
d
d
j





Antenna Array
Chun-Yang Chen, Caltech DSP Lab | Candidacy
N-1
I/Q Down-
Convert
and ADC
w*
N-1
1
I/Q Down-
Convert
and ADC
w*
1
0
I/Q Down-
Convert
and ADC
w*
0
+
…
y
wH
By linearly combining the output
of a group of antennas, we can
control the beampattern digitally.
Antenna Array
Chun-Yang Chen, Caltech DSP Lab | Candidacy
)
2
( x
kT
ft
j
e 

N-1
I/Q Down-
Convert
and ADC
w*
N-1
1
I/Q Down-
Convert
and ADC
w*
1
0
I/Q Down-
Convert
and ADC
w*
0
+
…
Plane
wave-front 

sin
d

sin
)
1
( d
N 
y
wH









sin
2
1
0
*
1
0
sin
2
*
)
(
d
M
n
jn
n
M
n
n
d
j
n
e
w
e
w
E











By linearly combining the output
of a group of antennas, we can
control the beampattern digitally.
Antenna Array
Chun-Yang Chen, Caltech DSP Lab | Candidacy
)
2
( x
kT
ft
j
e 

N-1
I/Q Down-
Convert
and ADC
w*
N-1
1
I/Q Down-
Convert
and ADC
w*
1
0
I/Q Down-
Convert
and ADC
w*
0
+
…
Plane
wave-front 

sin
d

sin
)
1
( d
N 
y
wH









sin
2
1
0
*
1
0
sin
2
*
)
(
d
M
n
jn
n
M
n
n
d
j
n
e
w
e
w
E











Discrete time
Fourier transform
By linearly combining the output
of a group of antennas, we can
control the beampattern digitally.
Antenna Array (2)
Chun-Yang Chen, Caltech DSP Lab | Candidacy





1
0
*
)
(
M
n
jn
ne
w
E 

 Advantages of antenna array:
…
target
Beampattern can be steered digitally.
Antenna Array (2)
Chun-Yang Chen, Caltech DSP Lab | Candidacy





1
0
*
)
(
M
n
jn
ne
w
E 

 Advantages of antenna array:
…
target
interferences
Beampattern can be steered digitally.
Beampattern can be adapted to the interferences.
Antenna Array (2)
Chun-Yang Chen, Caltech DSP Lab | Candidacy





1
0
*
)
(
M
n
jn
ne
w
E 

 Advantages of antenna array:
…
target
interferences
Beampattern can be steered digitally.
Beampattern can be adapted to the interferences.
The signal processing techniques to control the beampattern
is called beamforming.
Phased Array Beamforming
Chun-Yang Chen, Caltech DSP Lab | Candidacy
)
2
( x
kT
ft
j
e 

N-1
I/Q Down-
Convert
and ADC
w*
N-1
1
I/Q Down-
Convert
and ADC
w*
1
0
I/Q Down-
Convert
and ADC
w*
0
+
…
Plane
wave-front 

sin
d

sin
)
1
( d
N 
y
wH
The response of a desired angle
of arrival q can be maximized
by adjust wi.
Phased Array Beamforming
Chun-Yang Chen, Caltech DSP Lab | Candidacy
)
2
( x
kT
ft
j
e 

N-1
I/Q Down-
Convert
and ADC
w*
N-1
1
I/Q Down-
Convert
and ADC
w*
1
0
I/Q Down-
Convert
and ADC
w*
0
+
…
Plane
wave-front 

sin
d

sin
)
1
( d
N 
y
wH
T
N
d
j
d
j
e
e 








 )
1
(
sin
2
sin
2
1







s
1
subject to
max
2

w
s
w
w
H
The response of a desired angle
of arrival q can be maximized
by adjust wi.
Phased Array Beamforming
Chun-Yang Chen, Caltech DSP Lab | Candidacy
)
2
( x
kT
ft
j
e 

N-1
I/Q Down-
Convert
and ADC
w*
N-1
1
I/Q Down-
Convert
and ADC
w*
1
0
I/Q Down-
Convert
and ADC
w*
0
+
…
Plane
wave-front 

sin
d

sin
)
1
( d
N 
y
wH
T
N
d
j
d
j
e
e 








 )
1
(
sin
2
sin
2
1







s
1
subject to
max
2

w
s
w
w
H
s
w 

The response of a desired angle
of arrival q can be maximized
by adjust wi.
Adaptive Beamforming
Chun-Yang Chen, Caltech DSP Lab | Candidacy








 2
2
v
w
s
w
v
s
y
H
H
E
SINR
The beamformer can be further designed to maximize the SINR
using second order statistics of received signals.
Adaptive Beamforming
Chun-Yang Chen, Caltech DSP Lab | Candidacy








 2
2
v
w
s
w
v
s
y
H
H
E
SINR
 
H
H
H
E yy
R
s
w
Rw
w
w

1
subject to
min
The beamformer can be further designed to maximize the SINR
using second order statistics of received signals.
The SINR can be maximized by minimizing the total variance
while maintaining unity signal response.
Adaptive Beamforming
Chun-Yang Chen, Caltech DSP Lab | Candidacy








 2
2
v
w
s
w
v
s
y
H
H
E
SINR
 
H
H
H
E yy
R
s
w
Rw
w
w

1
subject to
min
s
1

 R
w  [Capon 1969]
MVDR beamformer
(Minimum Variance Distortionless Response)
The beamformer can be further designed to maximize the SINR
using second order statistics of received signals.
The SINR can be maximized by minimizing the total variance
while maintaining unity signal response.
An Example of Adaptive Beamforming
Chun-Yang Chen, Caltech DSP Lab | Candidacy
0 10 20 30 40 50 60 70 80 90
-60
-50
-40
-30
-20
-10
0
10
20
Angle
Beam
pattern
(dB)
 Parameters
 Noise: 0dB
 Signal: 10dB, 43 degree
 Jammer1: 40dB, 30 degree
 Jammer2: 20dB, 75 degree
 SINR
 Phased array: -20.13dB
 Adaptive: 9.70dB
However, the MVDR beamformer is very sensitive to target
DoA (Direction of Arrival) mismatch.
Adaptive beamforming can be very effective when there exists
strong interferences.
Beamforming under Direction-of-Arrival Mismatch
Chun-Yang Chen, Caltech DSP Lab | Candidacy
[2] Chun-Yang Chen and P. P. Vaidyanathan, “Quadratically Constrained Beamforming Robust
Against Direction-of-Arrival Mismatch,” IEEE Trans. on Signal Processing, July 2007.
 SINR
 Matched DoA: 9.70dB
 Mismatched DoA: -8.80dB
 Parameters
 Noise: 0dB
 Signal: 10dB, 43 degree
 Jammer1: 40dB, 30 degree
 Jammer2: 20dB, 75 degree
0 10 20 30 40 50 60 70 80 90
-60
-50
-40
-30
-20
-10
0
10
20
Angle
Beam
pattern
(dB)
Transmit Beamforming
Chun-Yang Chen, Caltech DSP Lab | Candidacy
N-1
I/Q Down-
Convert
and ADC
w*
N-1
1
I/Q Down-
Convert
and ADC
w*
1
0
I/Q Down-
Convert
and ADC
w*
0
…
By weighting the input of a group
of antennas, we can also control
the transmit beampattern
digitally.
transmitted waveform
Transmit Beamforming
Chun-Yang Chen, Caltech DSP Lab | Candidacy
)
2
( x
kT
ft
j
e 

N-1
I/Q Down-
Convert
and ADC
w*
N-1
1
I/Q Down-
Convert
and ADC
w*
1
0
I/Q Down-
Convert
and ADC
w*
0
…
Plane
wave-front 

sin
d

sin
)
1
( d
N 









sin
2
1
0
*
1
0
sin
2
*
)
(
d
M
n
jn
n
M
n
n
d
j
n
e
w
e
w
E











By weighting the input of a group
of antennas, we can also control
the transmit beampattern
digitally.
transmitted waveform
Transmit Beamforming
Chun-Yang Chen, Caltech DSP Lab | Candidacy
)
2
( x
kT
ft
j
e 

N-1
I/Q Down-
Convert
and ADC
w*
N-1
1
I/Q Down-
Convert
and ADC
w*
1
0
I/Q Down-
Convert
and ADC
w*
0
…
Plane
wave-front 

sin
d

sin
)
1
( d
N 









sin
2
1
0
*
1
0
sin
2
*
)
(
d
M
n
jn
n
M
n
n
d
j
n
e
w
e
w
E











Discrete time
Fourier transform
By weighting the input of a group
of antennas, we can also control
the transmit beampattern
digitally.
transmitted waveform
SIMO Radar (Traditional)
Transmitter: M antenna elements
dT
ej2(ft-x/)
w2f(t) w1f(t) w0f(t)
Transmitter emits
coherent waveforms.
(transmit beamforming)
Receiver: N antenna elements
dR
ej2(ft-x/)
Number of received signals:
N
Chun-Yang Chen, Caltech DSP Lab | Candidacy
MIMO Radar
dT
ej2(ft-x/)
f2(t) f1(t) f0(t)
Transmitter emits
orthogonal waveforms.
(No transmit beamforming)
Transmitter: M antenna elements
dR
ej2(ft-x/)
MF MF
…
…
Matched filters extract
the M orthogonal waveforms.
Overall number of signals:
NM
Receiver: N antenna elements
Chun-Yang Chen, Caltech DSP Lab | Candidacy
MIMO Radar – Virtual Array
Transmitter: M antenna elements
Virtual array: NM elements

dT=NdR
ej2(ft-x/)
f2(t) f1(t) f0(t)

Receiver: N antenna elements
dR
ej2(ft-x/)
MF MF
…
…

Chun-Yang Chen, Caltech DSP Lab | Candidacy
MIMO Radar – Virtual Array (2)
Receiver: N elements
Virtual array: NM elements
Transmitter: M elements
+ =
[D. W. Bliss and K. W. Forsythe, 03]
The spatial resolution for clutter is the same as a receiving array
with NM physical array elements.
NM degrees of freedom can be created using only N+M physical
array elements.
Chun-Yang Chen, Caltech DSP Lab | Candidacy
However, a processing gain of M is lost because of the broad
transmitting beam.
MIMO Transmitter vs. SIMO Transmitter
Chun-Yang Chen, Caltech DSP Lab | Candidacy
dT
w2f(t) w1f(t) w0f(t)
dT=NdR
f2(t) f1(t) f0(t)
…
In the application of scanning or imaging, global illumination is required. In
this case the SIMO system needs to steer the transmit beam. This cancels
the processing gain obtained by the focused beam in SIMO system.
Space-Time Adaptive Processing
Space-Time Adaptive Processing
v
vsini
airborne
radar
jammer
target
i-th clutter
vt
i
The adaptive techniques for processing the data from airborne
antenna arrays are called space-time adaptive processing (STAP).
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The goal in STAP is to detect
the moving target on the
ground and estimate its
position and velocity.
Doppler Processing
Radar
target
v
ft
j
e 
2
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Doppler Processing
f
c
v
fd
2

 Doppler
effect:
Radar
target
v
ft
j
e 
2
t
f
f
j d
e )
(
2 

Radar
target
v
The phenomenon can be used to estimate
velocity.
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Adaptive Temporal Processing
Chun-Yang Chen, Caltech DSP Lab | Candidacy
t
f
j d
e 
2
I/Q
Down-
Convert
and ADC
w*
0 w*
1 w*
L-1
T T
…
+
y
wH
The same idea in adaptive
beamforming can be applied
in Doppler processing.
Adaptive Temporal Processing
Chun-Yang Chen, Caltech DSP Lab | Candidacy
t
f
j d
e 
2
I/Q
Down-
Convert
and ADC
w*
0 w*
1 w*
L-1
T T
…
+
y
wH
s
1

 R
w 
The same idea in adaptive
beamforming can be applied
in Doppler processing.
 
H
H
H
E yy
R
s
w
Rw
w
w

1
subject to
min
Separable Space-Time Processing
Chun-Yang Chen, Caltech DSP Lab | Candidacy
N-1
I/Q
Down-
Convert
and ADC
w*
N-1
1
I/Q
Down-
Convert
and ADC
w*
1
0
I/Q
Down-
Convert
and ADC
+
…
w*
0 w*
1 w*
L-1
T T
…
+
w*
0
Filtered out
the unwanted angles
Filtered out
the unwanted frequencies
When the Doppler frequencies
and looking-directions are independent,
the spatial and temporal filtering
can be implemented separately.
Example of Separable Space-Time Processing
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Normalized Spatial Frequency
Normalized
Doppler
Frequency
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
-70
-60
-50
-40
-30
-20
-10
 Parameters
 Noise: 0dB
 Signal: 10dB, (0.11, 0.15)
 Jammer1: 40dB, (-0.22, x )
 Jammer2: 20dB, (0.33, x )
 Clutter: 40dB, (x , 0 )
However, the beampattern is not always separable.
Space-time beampattern is the antenna gain as a function of
angle of arrival and Doppler frequency.
Space-Time Adaptive Processing
v
vsini
airborne
radar
jammer
target
i-th clutter
vt
i
The adaptive techniques for processing the data from airborne
antenna arrays are called space-time adaptive processing (STAP).
f
c
v
f i
Di

sin
2

Chun-Yang Chen, Caltech DSP Lab | Candidacy
Space-Time Adaptive Processing
v
vsini
airborne
radar
jammer
target
i-th clutter
vt
i
The clutter Doppler frequencies
depend on angles. So, the
problem is non-separable in
space-time.
The adaptive techniques for processing the data from airborne
antenna arrays are called space-time adaptive processing (STAP).
f
c
v
f i
Di

sin
2

Chun-Yang Chen, Caltech DSP Lab | Candidacy
Example of a Non-Separable Beampattern
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Normalized Spatial Frequency
Normalized
Doppler
Frequency
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
Normalized Spatial Frequency
Normalized
Doppler
Frequency
-0.5 0 0.5
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
-70
-60
-50
-40
-30
-20
-10
Non-Separable Separable
In a stationary radar,
clutter Doppler frequency is
zero for all angle of arrival.
In airborne radar, clutter
Doppler frequency is proportional to
the angle of arrival. Consequently,
the beampattern becomes non-separable.
Space-Time Adaptive Processing (2)
Separable: N+L taps
Non separable: NL taps
Jointly process
Doppler frequencies and angles
Independently process
Doppler frequencies and angles
Angle
processing
Doppler
processing
Space-time
processing
L: # of radar pulses N: # of antennas
L
Chun-Yang Chen, Caltech DSP Lab | Candidacy
NL signals
As in beamforming and Doppler
processing, the maximum SINR can be
obtained by minimizing the
total variance while maintaining
unity signal response.
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Optimal Space-Time Adaptive Processing
Optimal Space-Time Adaptive Processing
NL signals
As in beamforming and Doppler
processing, the maximum SINR can be
obtained by minimizing the
total variance while maintaining
unity signal response.
Chun-Yang Chen, Caltech DSP Lab | Candidacy
 
H
H
H
E yy
R
s
w
Rw
w
w

1
subject to
min
s
1

 R
w 
NL signals
As in beamforming and Doppler
processing, the maximum SINR can be
obtained by minimizing the
total variance while maintaining
unity signal response.
Chun-Yang Chen, Caltech DSP Lab | Candidacy
 
H
H
H
E yy
R
s
w
Rw
w
w

1
subject to
min
Optimal Space-Time Adaptive Processing
An Efficient Space-Time Adaptive Processing Algorithm
for MIMO Radar
MIMO Radar STAP
STAP MIMO Radar
NL signals
MIMO
STAP
M waveforms
NML signals
N: # of receiving antennas
M: # of transmitting antennas
L: # of pulses
[D. Bliss and
K. Forsythe 03]
+
NM signals
Chun-Yang Chen, Caltech DSP Lab | Candidacy
MIMO Radar STAP (2)
1
)
,
(
subject to
min

D
H
H
f

s
w
Rw
w
w
NML signals
MVDR (Capon) beamformer:
Chun-Yang Chen, Caltech DSP Lab | Candidacy
MIMO Radar STAP (2)
1
)
,
(
subject to
min

D
H
H
f

s
w
Rw
w
w
NML signals
MVDR (Capon) beamformer:
)
,
(
1
D
f

s
R
w 


Very good spatial resolution
Pros Cons
High complexity
Slow convergence
NMLxNML
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method
)
,
(
1
D
f

s
R
w 

NML
J
c I
R
R
R 2




We first observe each of the matrices Rc and RJ has
some special structures.
clutter jammer noise
We show how to exploit the structures of these
matrices to compute R
-1
more accurately and efficiently.
Chun-Yang Chen, Caltech DSP Lab | Candidacy
[Chun-Yang Chen and
P. P. Vaidyanathan,
ICASSP 07]
The MIMO STAP Signals
Chun-Yang Chen, Caltech DSP Lab | Candidacy
 Received signal: yn,m,l
 n: receiving antenna index
 m: transmitting antenna index
 l: pulse trains index
 The signals contain four
components:
 Target
 Noise
 Jammer
 Clutter
v
vsinqi
airborne
radar
jammer
vt
target
i
i-th clutter
Target Noise Jammer Clutter
Formulation of the Clutter Signals
Matched
filters
Pulse 2
Pulse 1
Pulse 0
Matched
filters
Matched
filters
c002 c012 c102
c001 c011 c101
c000 c010 c100
c112 c202 c212
c111 c201 c211
c110 c200 c210
cnml: clutter signals
…
Clutter
points
Chun-Yang Chen, Caltech DSP Lab | Candidacy
n-th antenna
m-th matched filter output
l-th radar pulse







c i
i
T
i
R
N
i
v
T
l
j
d
m
j
d
n
j
i
l
m
n e
e
e
c
1
sin
2
2
sin
2
sin
2
,
,










Formulation of the Clutter Signals
Matched
filters
Pulse 2
Pulse 1
Pulse 0
Matched
filters
Matched
filters
…
Clutter
points
n-th antenna
m-th matched filter output
l-th radar pulse
 Nc: # of clutter points
 ri: i-th clutter signal amplitude
 Receiving antenna
 Transmitting antenna
 Doppler effect
c002 c012 c102
c001 c011 c101
c000 c010 c100
c112 c202 c212
c111 c201 c211
c110 c200 c210
cnml: clutter signals
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Simplification of the Clutter Expression
Chun-Yang Chen, Caltech DSP Lab | Candidacy







c i
i
T
i
R
N
i
v
T
l
j
d
m
j
d
n
j
i
l
m
n e
e
e
c
1
sin
2
2
sin
2
sin
2
,
,










R
T
d
d


R
d
vT
2


, sin
R
s i i
d
f 


Simplification of the Clutter Expression
Chun-Yang Chen, Caltech DSP Lab | Candidacy
5
.
0
5
.
0
)
1
(
)
1
(
1
, 








i
s
f
L
M
N
X 



 


otherwise
,
0
0
),
2
exp(
)
;
( ,
,
X
x
x
f
f
x
c i
s
i
s








c i
i
T
i
R
N
i
v
T
l
j
d
m
j
d
n
j
i
l
m
n e
e
e
c
1
sin
2
2
sin
2
sin
2
,
,










R
T
d
d


R
d
vT
2


, sin
R
s i i
d
f 


Simplification of the Clutter Expression
Chun-Yang Chen, Caltech DSP Lab | Candidacy
5
.
0
5
.
0
)
1
(
)
1
(
1
, 








i
s
f
L
M
N
X 



 


otherwise
,
0
0
),
2
exp(
)
;
( ,
,
X
x
x
f
f
x
c i
s
i
s








c i
i
T
i
R
N
i
v
T
l
j
d
m
j
d
n
j
i
l
m
n e
e
e
c
1
sin
2
2
sin
2
sin
2
,
,










R
T
d
d


R
d
vT
2


, sin
R
s i i
d
f 









c
N
i
l
m
n
i
s
i f
x
c
1
, )
;
( 


Simplification of the Clutter Expression
Chun-Yang Chen, Caltech DSP Lab | Candidacy
5
.
0
5
.
0
)
1
(
)
1
(
1
, 








i
s
f
L
M
N
X 



 


otherwise
,
0
0
),
2
exp(
)
;
( ,
,
X
x
x
f
f
x
c i
s
i
s








c i
i
T
i
R
N
i
v
T
l
j
d
m
j
d
n
j
i
l
m
n e
e
e
c
1
sin
2
2
sin
2
sin
2
,
,










R
T
d
d


R
d
vT
2


, sin
R
s i i
d
f 









c
N
i
l
m
n
i
s
i f
x
c
1
, )
;
( 


Trick: We can view the three dimensional signal as
non-uniformly sampled one dimensional signal.
Simplification of the Clutter Expression (2)
Chun-Yang Chen, Caltech DSP Lab | Candidacy







c i
i
T
i
R
N
i
v
T
l
j
d
m
j
d
n
j
i
l
m
n e
e
e
c
1
sin
2
2
sin
2
sin
2
,
,

















c
N
i
l
m
n
i
s
i f
x
c
1
, )
;
( 


-2 0 2 4 6 8 10 12
-1.5
-1
-0.5
0
0.5
1
1.5
x
Re{c(x;fs,i)}
Re{c(n+m+l;fs,i)}


 


otherwise
,
0
0
),
2
exp(
)
;
( ,
,
X
x
x
f
f
x
c i
s
i
s

-50 0 50 100 150
-1
0
1
-1 -0.5 0 0.5 1
0
20
40
60
80
100
“Time-and-Band” Limited Signals


 


otherwise
,
0
0
),
2
exp(
)
;
( ,
,
X
x
x
f
f
x
c i
s
i
s

5
.
0
5
.
0
)
1
(
)
1
(
1
, 








i
s
f
L
M
N
X 

[0 X]
[-0.5 0.5]
Time
domain
Freq.
domain
The signals are well-localized in
a time-frequency region.
To concisely represent these
signals, we can use a basis which
concentrates most of its energy
in this time-frequency region.
Chun-Yang Chen, Caltech DSP Lab | Candidacy
is called PSWF.
Prolate Spheroidal Wave Functions
(PSWF)





 d
x k
X
k
k )
(
))
-
sinc((x
)
(
0

 ( )
k x

in [0,X]
Frequency window
-0.5 0.5
Time window
X
0
( )
k x
 ( )
k x

k

Chun-Yang Chen, Caltech DSP Lab | Candidacy
is called PSWF.
Prolate Spheroidal Wave Functions
(PSWF)
, ,
0
( ; )
X
s i i k
k
c x f 

 





 d
x k
X
k
k )
(
))
-
sinc((x
)
(
0


[D. Slepian, 62]
( )
k x

in [0,X]
Only X+1 basis functions are required to well represent the
“time-and-band limited” signal
Frequency window
-0.5 0.5
Time window
X
0
( )
k x
 ( )
k x

k

( )
k x

Chun-Yang Chen, Caltech DSP Lab | Candidacy



X
k
k
k
i
i
s x
f
x
c
0
,
, )
(
)
;
( 








c
N
i
l
m
n
i
s
i f
x
c
1
,
l
m,
n, )
;
(
c 


[D. Slepian, 62]
Concise Representation of the Clutter Signals
Chun-Yang Chen, Caltech DSP Lab | Candidacy



X
k
k
k
i
i
s x
f
x
c
0
,
, )
(
)
;
( 








c
N
i
l
m
n
i
s
i f
x
c
1
,
l
m,
n, )
;
(
c 

 
 





X
k
k
k
i
N
i
i l
m
n
c
0
,
1
)
( 











X
k
k
k l
m
n
0
)
( 


 )
1
(
)
1
(
1 




 L
M
N
X 

[D. Slepian, 62]
Concise Representation of the Clutter Signals
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Chun-Yang Chen, Caltech DSP Lab | Candidacy



X
k
k
k
i
i
s x
f
x
c
0
,
, )
(
)
;
( 








c
N
i
l
m
n
i
s
i f
x
c
1
,
l
m,
n, )
;
(
c 

 
 





X
k
k
k
i
N
i
i l
m
n
c
0
,
1
)
( 











X
k
k
k l
m
n
0
)
( 


 )
1
(
)
1
(
1 




 L
M
N
X 

H
c Ψ
ΨR
R 

Ψ )
( l
m
n
k 


 


consists of

c Ψξ
NML X+1
[D. Slepian, 62]
Concise Representation of the Clutter Signals
)
1
(
)
1
(
1
,
,
1
,
0 




 L
M
N
k 


Concise Representation of the Clutter Signals (2)
H
c Ψ
ΨR
R 
 Ψ )
( l
m
n
k 


 


consists of
NML
N+(M-1)+(L-1)
Chun-Yang Chen, Caltech DSP Lab | Candidacy
)
1
(
)
1
(
1
,
,
1
,
0 




 L
M
N
k 


H
c Ψ
ΨR
R 
 Ψ )
( l
m
n
k 


 


consists of
can be obtained by sampling from . The PSWF
can be computed off-line
Ψ k

NML
N+(M-1)+(L-1)
k

Chun-Yang Chen, Caltech DSP Lab | Candidacy
Concise Representation of the Clutter
Signals (2)
)
1
(
)
1
(
1
,
,
1
,
0 




 L
M
N
k 


H
c Ψ
ΨR
R 
 Ψ )
( l
m
n
k 


 


consists of
can be obtained by sampling from . The PSWF
can be computed off-line
Ψ k

NML
N+(M-1)+(L-1)
k

The NMLxNML clutter covariance matrix has
only N+(M-1)+(L-1) significant eigenvalues. This is
the MIMO extension of Brennan’s rule (1994).
c
R
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Concise Representation of the Clutter Signals (2)
[Chun-Yang Chen and P. P. Vaidyanathan, IEEE Trans SP, to appear]
Jammer Covariance Matrix
Matched
filters
jammer
Pulse 2
Pulse 1
Pulse 0
Matched
filters
Matched
filters
j002 j012 j102
j001 j011 j101
j000 j010 j100
j112 j202 j212
j111 j201 j211
j110 j200 j210
jnml: jammer signals
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Jammer Covariance Matrix
Matched
filters
jammer
Pulse 2
Pulse 1
Pulse 0
Jammer signals in different pulses are
independent.
Matched
filters
Matched
filters
j002 j012 j102
j001 j011 j101
j000 j010 j100
j112 j202 j212
j111 j201 j211
j110 j200 j210
jnml: jammer signals
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Jammer Covariance Matrix
Matched
filters
jammer
Pulse 2
Pulse 1
Pulse 0
Jammer signals in different pulses are
independent.
Jammer signals in different matched
filter outputs are independent.
Matched
filters
Matched
filters
j002 j012 j102
j001 j011 j101
j000 j010 j100
j112 j202 j212
j111 j201 j211
j110 j200 j210
jnml: jammer signals
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Jammer Covariance Matrix
Matched
filters
jammer
Pulse 2
Pulse 1
Pulse 0
Jammer signals in different pulses are
independent.
Jammer signals in different matched
filter outputs are independent.













Js
Js
Js
J
R
0
0
0
R
0
0
0
R
R







Matched
filters
Matched
filters
Block diagonal
j002 j012 j102
j001 j011 j101
j000 j010 j100
j112 j202 j212
j111 j201 j211
j110 j200 j210
jnml: jammer signals
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method
low rank
block diagonal
NML
J
c I
R
R
R 2



 H
v

 
ΨR Ψ R
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method
low rank
block diagonal
NML
J
c I
R
R
R 2



 H
v

 
ΨR Ψ R
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
By Matrix Inversion Lemma
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method
low rank
block diagonal
NML
J
c I
R
R
R 2



 H
v

 
ΨR Ψ R
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
 The proposed method
– Compute Y by sampling the prolate spheroidal wave functions.
By Matrix Inversion Lemma
Chun-Yang Chen, Caltech DSP Lab | Candidacy
 The proposed method
– Compute Y by sampling the prolate spheroidal wave functions.
– Instead of estimating R, we estimate Rv and Rx. The matrix Rv can
be estimated using a small number of clutter free samples.k
The Proposed Method
low rank
block diagonal
NML
J
c I
R
R
R 2



 H
v

 
ΨR Ψ R
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
By Matrix Inversion Lemma
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method
low rank
block diagonal
NML
J
c I
R
R
R 2



 H
v

 
ΨR Ψ R
 The proposed method
– Compute Y by sampling the prolate spheroidal wave functions.
– Instead of estimating R, we estimate Rv and Rx. The matrix Rv can
be estimated using a small number of clutter free samples.
– Use the above equation to compute R-1
.
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
By Matrix Inversion Lemma
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method – Advantages
v
R

R
:block diagonal
:small size
Inversions are
easy to compute
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method – Advantages
v
R

R
:block diagonal
:small size
Inversions are
easy to compute
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
Low
complexity
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method – Advantages
v
R

R
:block diagonal
:small size
Inversions are
easy to compute
Fewer parameters
need to be estimated
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
Low
complexity
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method – Advantages
v
R

R
:block diagonal
:small size
Inversions are
easy to compute
Fewer parameters
need to be estimated
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
Low
complexity
Fast
convergence
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method – Complexity
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
Complexity:
1 3
: (( ( 1) ( 1)) )
O N M L
  

   
R
)
(
: 3
1
N
O
v

R
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method – Complexity
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
Complexity:
1 3
: (( ( 1) ( 1)) )
O N M L
  

   
R
)
(
: 3
1
N
O
v

R
Direct method The proposed method
)
,
(
1
D
f

s
R
)
( 3
3
3
L
M
N
O
1

R )
( 3
3
3
L
M
N
O
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Proposed Method – Complexity
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
Complexity:
1 3
: (( ( 1) ( 1)) )
O N M L
  

   
R
)
(
: 3
1
N
O
v

R
Direct method The proposed method
)
,
(
1
D
f

s
R
)
( 3
3
3
L
M
N
O )
))
1
(
)
1
(
(( 3



 L
M
N
O 

1

R )
))
1
(
)
1
(
(( 2
2
2
L
M
N
L
M
N
O 


 

)
( 3
3
3
L
M
N
O
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Zero-Forcing Method
 Typically we can assume that the clutter is very
strong and all eigenvalues of Rx are very large.
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
1
0


 
R
Chun-Yang Chen, Caltech DSP Lab | Candidacy
The Zero-Forcing Method
 Typically we can assume that the clutter is very
strong and all eigenvalues of Rx are very large.
1 1 1 1 1 1
( )
H H
v v v v
     
 
R R R Ψ Ψ R Ψ Ψ R
 Zero-forcing method
– The entire clutter space is nulled out without estimation
1
1
1
1
1
1
1
)
( 








 v
H
v
H
v
v R
Ψ
Ψ
R
Ψ
R
Ψ
R
R
R 
1
0


 
R
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Proposed method K=300,Kv=20
Simulations – SINR
MVDR known R (unrealizable)
Proposed ZF method Kv=20
Sample matrix inversion K=1000
Diagonal loading K=300
Principal component K=300
SINR of a target at angle zero and
Doppler frequencies [-0.5, 0.5]
Parameters:
N=10, M=5, L=16
CNR=50dB
2 jammers, JNR=40dB
K: number of samples
Kv: number of clutter free samples
collected in passive mode
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-16
-14
-12
-10
-8
-6
-4
-2
0
Normalized Doppler frequency
SINR
(dB)
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Parameters:
N=10, M=5, L=16, CNR=50dB
2 jammers, JNR=40dB
Target: (0,0.25)
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Simulations – Beampattern
Proposed ZF Method
Normalized Spatial Frequency
Normalized
Doppler
Frequency
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
Target
Jammer
Clutter
Jammer
Conclusion and Future Work
 Conclusion
– The clutter subspace is derived using the geometry of the problem.
(data independent)
– A new STAP method for MIMO radar is developed.
– The new method is both efficient and accurate.
 Future work
– This method is entirely based on the ideal model.
– Find algorithms which are robust against clutter subspace mismatch.
– Develop clutter subspace estimation methods using a combination of
both the geometry and the received data.
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Research Topics
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Research Topics
Robust Beamforming
Algorithm against
DoA Mismatch [2]
An Efficient STAP
Algorithm for
MIMO Radar [3]
Precoded V-BLAST
Transceiver for MIMO
Communication [1]
Beamforming techniques for Radar systems
An Efficient STAP
Algorithm for
MIMO Radar [3]
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Publications
Chun-Yang Chen, Caltech DSP Lab | Candidacy
[1] Chun-Yang Chen and P. P. Vaidyanathan, “Precoded FIR and Redundant V-
BLAST Systems for Frequency-Selective MIMO Channels,” IEEE Trans. on
Signal Processing, July, 2007.
[2] Chun-Yang Chen and P. P. Vaidyanathan, “Quadratically Constrained
Beamforming Robust Against Direction-of-Arrival Mismatch,” IEEE Trans. on
Signal Processing, Aug., 2007.
[3] Chun-Yang Chen and P. P. Vaidyanathan, “MIMO Radar Space-Time
Adaptive Processing Using Prolate Spheroidal Wave Functions,” accepted to
IEEE Trans. on Signal Processing.
[4] Chun-Yang Chen and P. P. Vaidyanathan, “MIMO Radar Space-Time
Adaptive Processing and Signal Design,” invited chapter in MIMO Radar
Signal Processing, J. Li and P. Stoica, Wiley, to be published.
Journal Papers
Book Chapter
Publications
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
[5] Chun-Yang Chen and P. P. Vaidyanathan, “A Subspace Method for MIMO Radar
Space-Time Processing,” IEEE International Conference on Acoustics, Speech, and
Signal Processing Honolulu, Hi, April 2007.
[6] Chun-Yang Chen and P. P. Vaidyanathan, “Beamforming issues in modern MIMO
Radars with Doppler,” Proc. 40th Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, Nov. 2006.
[7] Chun-Yang Chen and P. P. Vaidyanathan, “A Novel Beamformer Robust to Steering
Vector Mismatch,” Proc. 40th Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, CA, Nov. 2006.
[8] Chun-Yang Chen and P. P. Vaidyanathan, “Precoded V-BLAST for ISI MIMO
channels,” IEEE International Symposium on Circuit and System Kos, Greece, May 2006,
[9] Chun-Yang Chen and P. P. Vaidyanathan, “IIR Ultra-Wideband Pulse Shaper Design,”
Proc. 39th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA,
Nov. 2005.
Conference Papers
Future Topic – Waveform Design in MIMO Radar
Chun-Yang Chen, Caltech DSP Lab | Candidacy
 In SIMO radar, chirp waveform is often used in the transmitter to
increase the range resolution. This technique is called pulse
compression.
Radar
target
R
Received Signal
Matched filter output
Time
Range
resolution
Future Topic – Waveform Design in MIMO Radar
Chun-Yang Chen, Caltech DSP Lab | Candidacy
 In MIMO radar, multiple orthogonal waveforms are
transmitted.
 These waveforms affects not only the range resolution but also
angle and Doppler resolution.
 It is not clear how to design multiple waveforms which provide
good range, angle and Doppler resolution.
f2(t)
f1(t)
f0(t)
Range resolution
Angle
resolution
Doppler
Q&A
Thank You!
Any questions?
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Parameters:
N=10, M=5, L=16, CNR=50dB
2 jammers, JNR=40dB
Normalized Spatial Frequency
Normalized
Doppler
Frequency
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
Jammer 1
Clutter
Target
Jammer 2
Target: (0,0.25)
Chun-Yang Chen, Caltech DSP Lab | Candidacy
Simulations – Beampattern
Proposed ZF Method
Space-Time Beam Pattern
Normalized Spatial Freq.
Normalized
Doppler
Freq.
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
Space-Time Beam Pattern
Normalized Spatial Freq.
Normalized
Doppler
Freq.
Velocity mismatch
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
Space-Time Beam Pattern
Normalized Spatial Freq.
Normalized
Doppler
Freq.
Velocity misalignment
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
Space-Time Beam Pattern
Normalized Spatial Freq.
Normalized
Doppler
Freq.
Internal clutter motion (ICM)
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
MIMO vs. SIMO
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
Simulations
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
Clutter Power in PSWF Vector Basis
0 50 100 150 200
-200
-150
-100
-50
0
50
100
Basis element index
Clutter
power
(dB)
Proposed subspace method
Eigen decomposition
N+(M-1)+(L-1)
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
Proposed method K=300,Kv=20
Simulations
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-16
-14
-12
-10
-8
-6
-4
-2
0
Normalized Doppler frequency
SINR
(dB)
MVDR perfect R
Proposed ZF method Kv=20
Sample matrix inversion K=2000
Diagonal loading K=300
Principal component K=300
SINR of a target at angle zero and
Doppler frequencies [-0.5, 0.5]
Parameters:
N=10, M=5, L=16
CNR=50dB
2 jammers, JNR=40dB
K: number of samples
Kv: number of clutter free samples
collected in passive mode
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
MIMO Radar – Virtual Array (2)
Receiver: N elements
Virtual array: NM elements
Transmitter: M elements
+ =
[D. W. Bliss and K. W. Forsythe, 03]
The spatial resolution for clutter is the same as a receiving array
with NM physical array elements.
NM degrees of freedom can be created using only N+M physical
array elements.
A processing gain of M is lost because of the broad transmitting
beam.
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
Efficient Representation for the Clutter



X
k
k
k
i
i
s x
f
x
c
0
,
, )
(
)
;
( 








c
N
i
l
m
n
i
s
i f
x
c
1
,
l
m,
n, )
;
(
c 

 
 





X
k
k
k
i
N
i
i l
m
n
c
0
,
1
)
( 











X
k
k
k l
m
n
0
)
( 


 )
1
(
)
1
(
1 




 L
M
N
X 

[D. Slepian, 62]
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
Efficient Representation for the Clutter



X
k
k
k
i
i
s x
f
x
c
0
,
, )
(
)
;
( 








c
N
i
l
m
n
i
s
i f
x
c
1
,
l
m,
n, )
;
(
c 

 
 





X
k
k
k
i
N
i
i l
m
n
c
0
,
1
)
( 











X
k
k
k l
m
n
0
)
( 


 )
1
(
)
1
(
1 




 L
M
N
X 

H
c Ψ
ΨR
R 

Ψ )
( l
m
n
k 


 


consists of

c Ψξ
NML X+1
[D. Slepian, 62]
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
Simplification of the Clutter Expression






c
N
i
i
s
i l
m
n
f
j
1
, ))
(
2
exp( 










c i
i
T
i
R
N
i
v
T
l
j
d
m
j
d
n
j
i
l
m
n e
e
e
c
1
sin
2
2
sin
2
sin
2
,
,










R
T
d
d


R
d
vT
2


, sin
R
s i i
d
f 









c
N
i
l
m
n
i
s
i f
x
c
1
, )
;
( 




 


otherwise
,
0
0
),
2
exp(
)
;
( ,
,
X
x
x
f
f
x
c i
s
i
s

5
.
0
5
.
0
)
1
(
)
1
(
1
, 








i
s
f
L
M
N
X 

-2 0 2 4 6 8 10 12
-1.5
-1
-0.5
0
0.5
1
1.5
x
Re{c(x;fs,i)}
Re{c(n+m+l;fs,i)}
Receiver Transmitter Doppler
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
T
T
…
T
T
T
…
T
T
T
…
T
…
…
T
T
T
…
Time window Frequency window
X -W W
0 in [0,X]
( )
k x
 ( )
k k x
 

More Related Content

Similar to Signal Processing Algorithms for MIMO Radar

chap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technicalchap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technicalshreenathji26
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptStefan Oprea
 
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORTCAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORTMassimo Garavaglia
 
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler RadarsRadar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler RadarsVenkataRatnam14
 
Chapter 09
Chapter 09Chapter 09
Chapter 09Tha Mike
 
Analog to Digital Converters and Data Acquisition Systems
Analog to Digital Converters and Data Acquisition SystemsAnalog to Digital Converters and Data Acquisition Systems
Analog to Digital Converters and Data Acquisition SystemsMathivanan Natarajan
 
1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdfsnehasingh75493
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and DemodulatorKannanKrishnana
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfNahshonMObiri
 
CSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO SystemsCSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO SystemsCPqD
 
Performances des turbo codes parallèles pour un canal satellite non linéaire
Performances des turbo codes parallèles pour un canal satellite non linéairePerformances des turbo codes parallèles pour un canal satellite non linéaire
Performances des turbo codes parallèles pour un canal satellite non linéaireRachidz
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Jyothirmaye Suneel
 
Ncc2004 ofdm tutorial part ii-apal
Ncc2004 ofdm tutorial   part ii-apalNcc2004 ofdm tutorial   part ii-apal
Ncc2004 ofdm tutorial part ii-apalArpan Pal
 

Similar to Signal Processing Algorithms for MIMO Radar (20)

chap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technicalchap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technical
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.ppt
 
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORTCAPACITIVE SENSORS ELECTRICAL WAFER SORT
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
 
STAN Tool overview
STAN Tool overviewSTAN Tool overview
STAN Tool overview
 
UNIT5_1.pdf
UNIT5_1.pdfUNIT5_1.pdf
UNIT5_1.pdf
 
Beamforming antennas (1)
Beamforming antennas (1)Beamforming antennas (1)
Beamforming antennas (1)
 
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler RadarsRadar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Analog to Digital Converters and Data Acquisition Systems
Analog to Digital Converters and Data Acquisition SystemsAnalog to Digital Converters and Data Acquisition Systems
Analog to Digital Converters and Data Acquisition Systems
 
1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
IMT Advanced
IMT AdvancedIMT Advanced
IMT Advanced
 
Final Project
Final ProjectFinal Project
Final Project
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and Demodulator
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
CSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO SystemsCSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO Systems
 
Performances des turbo codes parallèles pour un canal satellite non linéaire
Performances des turbo codes parallèles pour un canal satellite non linéairePerformances des turbo codes parallèles pour un canal satellite non linéaire
Performances des turbo codes parallèles pour un canal satellite non linéaire
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15
 
Ncc2004 ofdm tutorial part ii-apal
Ncc2004 ofdm tutorial   part ii-apalNcc2004 ofdm tutorial   part ii-apal
Ncc2004 ofdm tutorial part ii-apal
 

Recently uploaded

Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 

Recently uploaded (20)

Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 

Signal Processing Algorithms for MIMO Radar

  • 1. Signal Processing Algorithms for MIMO Radar Chun-Yang Chen and P. P. Vaidyanathan California Institute of Technology Electrical Engineering/DSP Lab Candidacy
  • 2. Chun-Yang Chen, Caltech DSP Lab | Candidacy Outline  Review of the background – MIMO radar – Space-Time Adaptive Processing (STAP)  The proposed MIMO-STAP method – Formulation of the MIMO-STAP – Prolate spheroidal representation of the clutter signals – Deriving the proposed method – Simulations  Conclusion and future work.
  • 3. MIMO Radar and Beamforming
  • 4. MIMO Radar f2(t) f1(t) f0(t) The radar systems which emits orthogonal (or noncoherent) waveforms in each transmitting antennas are called MIMO radar. w2f(t) w1f(t) w0f(t) Chun-Yang Chen, Caltech DSP Lab | Candidacy MIMO radar SIMO radar (Traditional)
  • 5. MIMO Radar MIMO radar f2(t) f1(t) f0(t) SIMO radar (Traditional) w2f(t) w1f(t) w0f(t) The radar systems which emits orthogonal (or noncoherent) waveforms in each transmitting antennas are called MIMO radar. [D. J. Rabideau and P. Parker, 03] [D. Bliss and K. Forsythe, 03] [E. Fishler et al. 04] [F. C. Robey, 04] [D. R. Fuhrmann and G. S. Antonio, 05] Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 6. Radar Systems Chun-Yang Chen, Caltech DSP Lab | Candidacy t Radar target R Received Signal Matched filter output threshold R=ct/2 Detection Ranging Time Radar was an acronym for Radio Detection and Ranging.
  • 7. Beampattern of Antennas Chun-Yang Chen, Caltech DSP Lab | Candidacy target Beampattern is the antenna gain as a function of angle of arrival.
  • 8. Beampattern of Antennas Chun-Yang Chen, Caltech DSP Lab | Candidacy d/2 -d/2   2 / 2 / sin 2 0 ) ( d d y j dy e A E      sin y target Plane wave-front  ) ( E Beampattern is the antenna gain as a function of angle of arrival.
  • 9. ) sin sinc( sin 2 2 / 2 / 0        d dy e A y d d j      Beampattern of Antennas Chun-Yang Chen, Caltech DSP Lab | Candidacy d/2 -d/2   2 / 2 / sin 2 0 ) ( d d y j dy e A E      sin y target Plane wave-front  ) ( E Beampattern is the antenna gain as a function of angle of arrival.
  • 10. Beampattern of Antennas Chun-Yang Chen, Caltech DSP Lab | Candidacy d/2 -d/2   2 / 2 / sin 2 0 ) ( d d y j dy e A E      sin y target Fourier transform Plane wave-front  ) ( E Beampattern is the antenna gain as a function of angle of arrival. ) sin sinc( sin 2 2 / 2 / 0        d dy e A y d d j     
  • 11. Antenna Array Chun-Yang Chen, Caltech DSP Lab | Candidacy N-1 I/Q Down- Convert and ADC w* N-1 1 I/Q Down- Convert and ADC w* 1 0 I/Q Down- Convert and ADC w* 0 + … y wH By linearly combining the output of a group of antennas, we can control the beampattern digitally.
  • 12. Antenna Array Chun-Yang Chen, Caltech DSP Lab | Candidacy ) 2 ( x kT ft j e   N-1 I/Q Down- Convert and ADC w* N-1 1 I/Q Down- Convert and ADC w* 1 0 I/Q Down- Convert and ADC w* 0 + … Plane wave-front   sin d  sin ) 1 ( d N  y wH          sin 2 1 0 * 1 0 sin 2 * ) ( d M n jn n M n n d j n e w e w E            By linearly combining the output of a group of antennas, we can control the beampattern digitally.
  • 13. Antenna Array Chun-Yang Chen, Caltech DSP Lab | Candidacy ) 2 ( x kT ft j e   N-1 I/Q Down- Convert and ADC w* N-1 1 I/Q Down- Convert and ADC w* 1 0 I/Q Down- Convert and ADC w* 0 + … Plane wave-front   sin d  sin ) 1 ( d N  y wH          sin 2 1 0 * 1 0 sin 2 * ) ( d M n jn n M n n d j n e w e w E            Discrete time Fourier transform By linearly combining the output of a group of antennas, we can control the beampattern digitally.
  • 14. Antenna Array (2) Chun-Yang Chen, Caltech DSP Lab | Candidacy      1 0 * ) ( M n jn ne w E    Advantages of antenna array: … target Beampattern can be steered digitally.
  • 15. Antenna Array (2) Chun-Yang Chen, Caltech DSP Lab | Candidacy      1 0 * ) ( M n jn ne w E    Advantages of antenna array: … target interferences Beampattern can be steered digitally. Beampattern can be adapted to the interferences.
  • 16. Antenna Array (2) Chun-Yang Chen, Caltech DSP Lab | Candidacy      1 0 * ) ( M n jn ne w E    Advantages of antenna array: … target interferences Beampattern can be steered digitally. Beampattern can be adapted to the interferences. The signal processing techniques to control the beampattern is called beamforming.
  • 17. Phased Array Beamforming Chun-Yang Chen, Caltech DSP Lab | Candidacy ) 2 ( x kT ft j e   N-1 I/Q Down- Convert and ADC w* N-1 1 I/Q Down- Convert and ADC w* 1 0 I/Q Down- Convert and ADC w* 0 + … Plane wave-front   sin d  sin ) 1 ( d N  y wH The response of a desired angle of arrival q can be maximized by adjust wi.
  • 18. Phased Array Beamforming Chun-Yang Chen, Caltech DSP Lab | Candidacy ) 2 ( x kT ft j e   N-1 I/Q Down- Convert and ADC w* N-1 1 I/Q Down- Convert and ADC w* 1 0 I/Q Down- Convert and ADC w* 0 + … Plane wave-front   sin d  sin ) 1 ( d N  y wH T N d j d j e e           ) 1 ( sin 2 sin 2 1        s 1 subject to max 2  w s w w H The response of a desired angle of arrival q can be maximized by adjust wi.
  • 19. Phased Array Beamforming Chun-Yang Chen, Caltech DSP Lab | Candidacy ) 2 ( x kT ft j e   N-1 I/Q Down- Convert and ADC w* N-1 1 I/Q Down- Convert and ADC w* 1 0 I/Q Down- Convert and ADC w* 0 + … Plane wave-front   sin d  sin ) 1 ( d N  y wH T N d j d j e e           ) 1 ( sin 2 sin 2 1        s 1 subject to max 2  w s w w H s w   The response of a desired angle of arrival q can be maximized by adjust wi.
  • 20. Adaptive Beamforming Chun-Yang Chen, Caltech DSP Lab | Candidacy          2 2 v w s w v s y H H E SINR The beamformer can be further designed to maximize the SINR using second order statistics of received signals.
  • 21. Adaptive Beamforming Chun-Yang Chen, Caltech DSP Lab | Candidacy          2 2 v w s w v s y H H E SINR   H H H E yy R s w Rw w w  1 subject to min The beamformer can be further designed to maximize the SINR using second order statistics of received signals. The SINR can be maximized by minimizing the total variance while maintaining unity signal response.
  • 22. Adaptive Beamforming Chun-Yang Chen, Caltech DSP Lab | Candidacy          2 2 v w s w v s y H H E SINR   H H H E yy R s w Rw w w  1 subject to min s 1   R w  [Capon 1969] MVDR beamformer (Minimum Variance Distortionless Response) The beamformer can be further designed to maximize the SINR using second order statistics of received signals. The SINR can be maximized by minimizing the total variance while maintaining unity signal response.
  • 23. An Example of Adaptive Beamforming Chun-Yang Chen, Caltech DSP Lab | Candidacy 0 10 20 30 40 50 60 70 80 90 -60 -50 -40 -30 -20 -10 0 10 20 Angle Beam pattern (dB)  Parameters  Noise: 0dB  Signal: 10dB, 43 degree  Jammer1: 40dB, 30 degree  Jammer2: 20dB, 75 degree  SINR  Phased array: -20.13dB  Adaptive: 9.70dB However, the MVDR beamformer is very sensitive to target DoA (Direction of Arrival) mismatch. Adaptive beamforming can be very effective when there exists strong interferences.
  • 24. Beamforming under Direction-of-Arrival Mismatch Chun-Yang Chen, Caltech DSP Lab | Candidacy [2] Chun-Yang Chen and P. P. Vaidyanathan, “Quadratically Constrained Beamforming Robust Against Direction-of-Arrival Mismatch,” IEEE Trans. on Signal Processing, July 2007.  SINR  Matched DoA: 9.70dB  Mismatched DoA: -8.80dB  Parameters  Noise: 0dB  Signal: 10dB, 43 degree  Jammer1: 40dB, 30 degree  Jammer2: 20dB, 75 degree 0 10 20 30 40 50 60 70 80 90 -60 -50 -40 -30 -20 -10 0 10 20 Angle Beam pattern (dB)
  • 25. Transmit Beamforming Chun-Yang Chen, Caltech DSP Lab | Candidacy N-1 I/Q Down- Convert and ADC w* N-1 1 I/Q Down- Convert and ADC w* 1 0 I/Q Down- Convert and ADC w* 0 … By weighting the input of a group of antennas, we can also control the transmit beampattern digitally. transmitted waveform
  • 26. Transmit Beamforming Chun-Yang Chen, Caltech DSP Lab | Candidacy ) 2 ( x kT ft j e   N-1 I/Q Down- Convert and ADC w* N-1 1 I/Q Down- Convert and ADC w* 1 0 I/Q Down- Convert and ADC w* 0 … Plane wave-front   sin d  sin ) 1 ( d N           sin 2 1 0 * 1 0 sin 2 * ) ( d M n jn n M n n d j n e w e w E            By weighting the input of a group of antennas, we can also control the transmit beampattern digitally. transmitted waveform
  • 27. Transmit Beamforming Chun-Yang Chen, Caltech DSP Lab | Candidacy ) 2 ( x kT ft j e   N-1 I/Q Down- Convert and ADC w* N-1 1 I/Q Down- Convert and ADC w* 1 0 I/Q Down- Convert and ADC w* 0 … Plane wave-front   sin d  sin ) 1 ( d N           sin 2 1 0 * 1 0 sin 2 * ) ( d M n jn n M n n d j n e w e w E            Discrete time Fourier transform By weighting the input of a group of antennas, we can also control the transmit beampattern digitally. transmitted waveform
  • 28. SIMO Radar (Traditional) Transmitter: M antenna elements dT ej2(ft-x/) w2f(t) w1f(t) w0f(t) Transmitter emits coherent waveforms. (transmit beamforming) Receiver: N antenna elements dR ej2(ft-x/) Number of received signals: N Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 29. MIMO Radar dT ej2(ft-x/) f2(t) f1(t) f0(t) Transmitter emits orthogonal waveforms. (No transmit beamforming) Transmitter: M antenna elements dR ej2(ft-x/) MF MF … … Matched filters extract the M orthogonal waveforms. Overall number of signals: NM Receiver: N antenna elements Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 30. MIMO Radar – Virtual Array Transmitter: M antenna elements Virtual array: NM elements  dT=NdR ej2(ft-x/) f2(t) f1(t) f0(t)  Receiver: N antenna elements dR ej2(ft-x/) MF MF … …  Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 31. MIMO Radar – Virtual Array (2) Receiver: N elements Virtual array: NM elements Transmitter: M elements + = [D. W. Bliss and K. W. Forsythe, 03] The spatial resolution for clutter is the same as a receiving array with NM physical array elements. NM degrees of freedom can be created using only N+M physical array elements. Chun-Yang Chen, Caltech DSP Lab | Candidacy However, a processing gain of M is lost because of the broad transmitting beam.
  • 32. MIMO Transmitter vs. SIMO Transmitter Chun-Yang Chen, Caltech DSP Lab | Candidacy dT w2f(t) w1f(t) w0f(t) dT=NdR f2(t) f1(t) f0(t) … In the application of scanning or imaging, global illumination is required. In this case the SIMO system needs to steer the transmit beam. This cancels the processing gain obtained by the focused beam in SIMO system.
  • 34. Space-Time Adaptive Processing v vsini airborne radar jammer target i-th clutter vt i The adaptive techniques for processing the data from airborne antenna arrays are called space-time adaptive processing (STAP). Chun-Yang Chen, Caltech DSP Lab | Candidacy The goal in STAP is to detect the moving target on the ground and estimate its position and velocity.
  • 35. Doppler Processing Radar target v ft j e  2 Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 36. Doppler Processing f c v fd 2   Doppler effect: Radar target v ft j e  2 t f f j d e ) ( 2   Radar target v The phenomenon can be used to estimate velocity. Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 37. Adaptive Temporal Processing Chun-Yang Chen, Caltech DSP Lab | Candidacy t f j d e  2 I/Q Down- Convert and ADC w* 0 w* 1 w* L-1 T T … + y wH The same idea in adaptive beamforming can be applied in Doppler processing.
  • 38. Adaptive Temporal Processing Chun-Yang Chen, Caltech DSP Lab | Candidacy t f j d e  2 I/Q Down- Convert and ADC w* 0 w* 1 w* L-1 T T … + y wH s 1   R w  The same idea in adaptive beamforming can be applied in Doppler processing.   H H H E yy R s w Rw w w  1 subject to min
  • 39. Separable Space-Time Processing Chun-Yang Chen, Caltech DSP Lab | Candidacy N-1 I/Q Down- Convert and ADC w* N-1 1 I/Q Down- Convert and ADC w* 1 0 I/Q Down- Convert and ADC + … w* 0 w* 1 w* L-1 T T … + w* 0 Filtered out the unwanted angles Filtered out the unwanted frequencies When the Doppler frequencies and looking-directions are independent, the spatial and temporal filtering can be implemented separately.
  • 40. Example of Separable Space-Time Processing Chun-Yang Chen, Caltech DSP Lab | Candidacy Normalized Spatial Frequency Normalized Doppler Frequency -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -70 -60 -50 -40 -30 -20 -10  Parameters  Noise: 0dB  Signal: 10dB, (0.11, 0.15)  Jammer1: 40dB, (-0.22, x )  Jammer2: 20dB, (0.33, x )  Clutter: 40dB, (x , 0 ) However, the beampattern is not always separable. Space-time beampattern is the antenna gain as a function of angle of arrival and Doppler frequency.
  • 41. Space-Time Adaptive Processing v vsini airborne radar jammer target i-th clutter vt i The adaptive techniques for processing the data from airborne antenna arrays are called space-time adaptive processing (STAP). f c v f i Di  sin 2  Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 42. Space-Time Adaptive Processing v vsini airborne radar jammer target i-th clutter vt i The clutter Doppler frequencies depend on angles. So, the problem is non-separable in space-time. The adaptive techniques for processing the data from airborne antenna arrays are called space-time adaptive processing (STAP). f c v f i Di  sin 2  Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 43. Example of a Non-Separable Beampattern Chun-Yang Chen, Caltech DSP Lab | Candidacy Normalized Spatial Frequency Normalized Doppler Frequency -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 Normalized Spatial Frequency Normalized Doppler Frequency -0.5 0 0.5 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -70 -60 -50 -40 -30 -20 -10 Non-Separable Separable In a stationary radar, clutter Doppler frequency is zero for all angle of arrival. In airborne radar, clutter Doppler frequency is proportional to the angle of arrival. Consequently, the beampattern becomes non-separable.
  • 44. Space-Time Adaptive Processing (2) Separable: N+L taps Non separable: NL taps Jointly process Doppler frequencies and angles Independently process Doppler frequencies and angles Angle processing Doppler processing Space-time processing L: # of radar pulses N: # of antennas L Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 45. NL signals As in beamforming and Doppler processing, the maximum SINR can be obtained by minimizing the total variance while maintaining unity signal response. Chun-Yang Chen, Caltech DSP Lab | Candidacy Optimal Space-Time Adaptive Processing
  • 46. Optimal Space-Time Adaptive Processing NL signals As in beamforming and Doppler processing, the maximum SINR can be obtained by minimizing the total variance while maintaining unity signal response. Chun-Yang Chen, Caltech DSP Lab | Candidacy   H H H E yy R s w Rw w w  1 subject to min
  • 47. s 1   R w  NL signals As in beamforming and Doppler processing, the maximum SINR can be obtained by minimizing the total variance while maintaining unity signal response. Chun-Yang Chen, Caltech DSP Lab | Candidacy   H H H E yy R s w Rw w w  1 subject to min Optimal Space-Time Adaptive Processing
  • 48. An Efficient Space-Time Adaptive Processing Algorithm for MIMO Radar
  • 49. MIMO Radar STAP STAP MIMO Radar NL signals MIMO STAP M waveforms NML signals N: # of receiving antennas M: # of transmitting antennas L: # of pulses [D. Bliss and K. Forsythe 03] + NM signals Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 50. MIMO Radar STAP (2) 1 ) , ( subject to min  D H H f  s w Rw w w NML signals MVDR (Capon) beamformer: Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 51. MIMO Radar STAP (2) 1 ) , ( subject to min  D H H f  s w Rw w w NML signals MVDR (Capon) beamformer: ) , ( 1 D f  s R w    Very good spatial resolution Pros Cons High complexity Slow convergence NMLxNML Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 52. The Proposed Method ) , ( 1 D f  s R w   NML J c I R R R 2     We first observe each of the matrices Rc and RJ has some special structures. clutter jammer noise We show how to exploit the structures of these matrices to compute R -1 more accurately and efficiently. Chun-Yang Chen, Caltech DSP Lab | Candidacy [Chun-Yang Chen and P. P. Vaidyanathan, ICASSP 07]
  • 53. The MIMO STAP Signals Chun-Yang Chen, Caltech DSP Lab | Candidacy  Received signal: yn,m,l  n: receiving antenna index  m: transmitting antenna index  l: pulse trains index  The signals contain four components:  Target  Noise  Jammer  Clutter v vsinqi airborne radar jammer vt target i i-th clutter Target Noise Jammer Clutter
  • 54. Formulation of the Clutter Signals Matched filters Pulse 2 Pulse 1 Pulse 0 Matched filters Matched filters c002 c012 c102 c001 c011 c101 c000 c010 c100 c112 c202 c212 c111 c201 c211 c110 c200 c210 cnml: clutter signals … Clutter points Chun-Yang Chen, Caltech DSP Lab | Candidacy n-th antenna m-th matched filter output l-th radar pulse
  • 55.        c i i T i R N i v T l j d m j d n j i l m n e e e c 1 sin 2 2 sin 2 sin 2 , ,           Formulation of the Clutter Signals Matched filters Pulse 2 Pulse 1 Pulse 0 Matched filters Matched filters … Clutter points n-th antenna m-th matched filter output l-th radar pulse  Nc: # of clutter points  ri: i-th clutter signal amplitude  Receiving antenna  Transmitting antenna  Doppler effect c002 c012 c102 c001 c011 c101 c000 c010 c100 c112 c202 c212 c111 c201 c211 c110 c200 c210 cnml: clutter signals Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 56. Simplification of the Clutter Expression Chun-Yang Chen, Caltech DSP Lab | Candidacy        c i i T i R N i v T l j d m j d n j i l m n e e e c 1 sin 2 2 sin 2 sin 2 , ,           R T d d   R d vT 2   , sin R s i i d f   
  • 57. Simplification of the Clutter Expression Chun-Yang Chen, Caltech DSP Lab | Candidacy 5 . 0 5 . 0 ) 1 ( ) 1 ( 1 ,          i s f L M N X         otherwise , 0 0 ), 2 exp( ) ; ( , , X x x f f x c i s i s         c i i T i R N i v T l j d m j d n j i l m n e e e c 1 sin 2 2 sin 2 sin 2 , ,           R T d d   R d vT 2   , sin R s i i d f   
  • 58. Simplification of the Clutter Expression Chun-Yang Chen, Caltech DSP Lab | Candidacy 5 . 0 5 . 0 ) 1 ( ) 1 ( 1 ,          i s f L M N X         otherwise , 0 0 ), 2 exp( ) ; ( , , X x x f f x c i s i s         c i i T i R N i v T l j d m j d n j i l m n e e e c 1 sin 2 2 sin 2 sin 2 , ,           R T d d   R d vT 2   , sin R s i i d f           c N i l m n i s i f x c 1 , ) ; (   
  • 59. Simplification of the Clutter Expression Chun-Yang Chen, Caltech DSP Lab | Candidacy 5 . 0 5 . 0 ) 1 ( ) 1 ( 1 ,          i s f L M N X         otherwise , 0 0 ), 2 exp( ) ; ( , , X x x f f x c i s i s         c i i T i R N i v T l j d m j d n j i l m n e e e c 1 sin 2 2 sin 2 sin 2 , ,           R T d d   R d vT 2   , sin R s i i d f           c N i l m n i s i f x c 1 , ) ; (    Trick: We can view the three dimensional signal as non-uniformly sampled one dimensional signal.
  • 60. Simplification of the Clutter Expression (2) Chun-Yang Chen, Caltech DSP Lab | Candidacy        c i i T i R N i v T l j d m j d n j i l m n e e e c 1 sin 2 2 sin 2 sin 2 , ,                  c N i l m n i s i f x c 1 , ) ; (    -2 0 2 4 6 8 10 12 -1.5 -1 -0.5 0 0.5 1 1.5 x Re{c(x;fs,i)} Re{c(n+m+l;fs,i)}       otherwise , 0 0 ), 2 exp( ) ; ( , , X x x f f x c i s i s 
  • 61. -50 0 50 100 150 -1 0 1 -1 -0.5 0 0.5 1 0 20 40 60 80 100 “Time-and-Band” Limited Signals       otherwise , 0 0 ), 2 exp( ) ; ( , , X x x f f x c i s i s  5 . 0 5 . 0 ) 1 ( ) 1 ( 1 ,          i s f L M N X   [0 X] [-0.5 0.5] Time domain Freq. domain The signals are well-localized in a time-frequency region. To concisely represent these signals, we can use a basis which concentrates most of its energy in this time-frequency region. Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 62. is called PSWF. Prolate Spheroidal Wave Functions (PSWF)       d x k X k k ) ( )) - sinc((x ) ( 0   ( ) k x  in [0,X] Frequency window -0.5 0.5 Time window X 0 ( ) k x  ( ) k x  k  Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 63. is called PSWF. Prolate Spheroidal Wave Functions (PSWF) , , 0 ( ; ) X s i i k k c x f           d x k X k k ) ( )) - sinc((x ) ( 0   [D. Slepian, 62] ( ) k x  in [0,X] Only X+1 basis functions are required to well represent the “time-and-band limited” signal Frequency window -0.5 0.5 Time window X 0 ( ) k x  ( ) k x  k  ( ) k x  Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 64.    X k k k i i s x f x c 0 , , ) ( ) ; (          c N i l m n i s i f x c 1 , l m, n, ) ; ( c    [D. Slepian, 62] Concise Representation of the Clutter Signals Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 65.    X k k k i i s x f x c 0 , , ) ( ) ; (          c N i l m n i s i f x c 1 , l m, n, ) ; ( c            X k k k i N i i l m n c 0 , 1 ) (             X k k k l m n 0 ) (     ) 1 ( ) 1 ( 1       L M N X   [D. Slepian, 62] Concise Representation of the Clutter Signals Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 66. Chun-Yang Chen, Caltech DSP Lab | Candidacy    X k k k i i s x f x c 0 , , ) ( ) ; (          c N i l m n i s i f x c 1 , l m, n, ) ; ( c            X k k k i N i i l m n c 0 , 1 ) (             X k k k l m n 0 ) (     ) 1 ( ) 1 ( 1       L M N X   H c Ψ ΨR R   Ψ ) ( l m n k        consists of  c Ψξ NML X+1 [D. Slepian, 62] Concise Representation of the Clutter Signals
  • 67. ) 1 ( ) 1 ( 1 , , 1 , 0       L M N k    Concise Representation of the Clutter Signals (2) H c Ψ ΨR R   Ψ ) ( l m n k        consists of NML N+(M-1)+(L-1) Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 68. ) 1 ( ) 1 ( 1 , , 1 , 0       L M N k    H c Ψ ΨR R   Ψ ) ( l m n k        consists of can be obtained by sampling from . The PSWF can be computed off-line Ψ k  NML N+(M-1)+(L-1) k  Chun-Yang Chen, Caltech DSP Lab | Candidacy Concise Representation of the Clutter Signals (2)
  • 69. ) 1 ( ) 1 ( 1 , , 1 , 0       L M N k    H c Ψ ΨR R   Ψ ) ( l m n k        consists of can be obtained by sampling from . The PSWF can be computed off-line Ψ k  NML N+(M-1)+(L-1) k  The NMLxNML clutter covariance matrix has only N+(M-1)+(L-1) significant eigenvalues. This is the MIMO extension of Brennan’s rule (1994). c R Chun-Yang Chen, Caltech DSP Lab | Candidacy Concise Representation of the Clutter Signals (2) [Chun-Yang Chen and P. P. Vaidyanathan, IEEE Trans SP, to appear]
  • 70. Jammer Covariance Matrix Matched filters jammer Pulse 2 Pulse 1 Pulse 0 Matched filters Matched filters j002 j012 j102 j001 j011 j101 j000 j010 j100 j112 j202 j212 j111 j201 j211 j110 j200 j210 jnml: jammer signals Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 71. Jammer Covariance Matrix Matched filters jammer Pulse 2 Pulse 1 Pulse 0 Jammer signals in different pulses are independent. Matched filters Matched filters j002 j012 j102 j001 j011 j101 j000 j010 j100 j112 j202 j212 j111 j201 j211 j110 j200 j210 jnml: jammer signals Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 72. Jammer Covariance Matrix Matched filters jammer Pulse 2 Pulse 1 Pulse 0 Jammer signals in different pulses are independent. Jammer signals in different matched filter outputs are independent. Matched filters Matched filters j002 j012 j102 j001 j011 j101 j000 j010 j100 j112 j202 j212 j111 j201 j211 j110 j200 j210 jnml: jammer signals Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 73. Jammer Covariance Matrix Matched filters jammer Pulse 2 Pulse 1 Pulse 0 Jammer signals in different pulses are independent. Jammer signals in different matched filter outputs are independent.              Js Js Js J R 0 0 0 R 0 0 0 R R        Matched filters Matched filters Block diagonal j002 j012 j102 j001 j011 j101 j000 j010 j100 j112 j202 j212 j111 j201 j211 j110 j200 j210 jnml: jammer signals Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 74. The Proposed Method low rank block diagonal NML J c I R R R 2     H v    ΨR Ψ R Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 75. The Proposed Method low rank block diagonal NML J c I R R R 2     H v    ΨR Ψ R 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  By Matrix Inversion Lemma Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 76. The Proposed Method low rank block diagonal NML J c I R R R 2     H v    ΨR Ψ R 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R   The proposed method – Compute Y by sampling the prolate spheroidal wave functions. By Matrix Inversion Lemma Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 77.  The proposed method – Compute Y by sampling the prolate spheroidal wave functions. – Instead of estimating R, we estimate Rv and Rx. The matrix Rv can be estimated using a small number of clutter free samples.k The Proposed Method low rank block diagonal NML J c I R R R 2     H v    ΨR Ψ R 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  By Matrix Inversion Lemma Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 78. The Proposed Method low rank block diagonal NML J c I R R R 2     H v    ΨR Ψ R  The proposed method – Compute Y by sampling the prolate spheroidal wave functions. – Instead of estimating R, we estimate Rv and Rx. The matrix Rv can be estimated using a small number of clutter free samples. – Use the above equation to compute R-1 . 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  By Matrix Inversion Lemma Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 79. The Proposed Method – Advantages v R  R :block diagonal :small size Inversions are easy to compute 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 80. The Proposed Method – Advantages v R  R :block diagonal :small size Inversions are easy to compute 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  Low complexity Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 81. The Proposed Method – Advantages v R  R :block diagonal :small size Inversions are easy to compute Fewer parameters need to be estimated 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  Low complexity Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 82. The Proposed Method – Advantages v R  R :block diagonal :small size Inversions are easy to compute Fewer parameters need to be estimated 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  Low complexity Fast convergence Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 83. The Proposed Method – Complexity 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  Complexity: 1 3 : (( ( 1) ( 1)) ) O N M L         R ) ( : 3 1 N O v  R Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 84. The Proposed Method – Complexity 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  Complexity: 1 3 : (( ( 1) ( 1)) ) O N M L         R ) ( : 3 1 N O v  R Direct method The proposed method ) , ( 1 D f  s R ) ( 3 3 3 L M N O 1  R ) ( 3 3 3 L M N O Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 85. The Proposed Method – Complexity 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  Complexity: 1 3 : (( ( 1) ( 1)) ) O N M L         R ) ( : 3 1 N O v  R Direct method The proposed method ) , ( 1 D f  s R ) ( 3 3 3 L M N O ) )) 1 ( ) 1 ( (( 3     L M N O   1  R ) )) 1 ( ) 1 ( (( 2 2 2 L M N L M N O       ) ( 3 3 3 L M N O Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 86. The Zero-Forcing Method  Typically we can assume that the clutter is very strong and all eigenvalues of Rx are very large. 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  1 0     R Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 87. The Zero-Forcing Method  Typically we can assume that the clutter is very strong and all eigenvalues of Rx are very large. 1 1 1 1 1 1 ( ) H H v v v v         R R R Ψ Ψ R Ψ Ψ R  Zero-forcing method – The entire clutter space is nulled out without estimation 1 1 1 1 1 1 1 ) (           v H v H v v R Ψ Ψ R Ψ R Ψ R R R  1 0     R Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 88. Proposed method K=300,Kv=20 Simulations – SINR MVDR known R (unrealizable) Proposed ZF method Kv=20 Sample matrix inversion K=1000 Diagonal loading K=300 Principal component K=300 SINR of a target at angle zero and Doppler frequencies [-0.5, 0.5] Parameters: N=10, M=5, L=16 CNR=50dB 2 jammers, JNR=40dB K: number of samples Kv: number of clutter free samples collected in passive mode -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -16 -14 -12 -10 -8 -6 -4 -2 0 Normalized Doppler frequency SINR (dB) Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 89. Parameters: N=10, M=5, L=16, CNR=50dB 2 jammers, JNR=40dB Target: (0,0.25) Chun-Yang Chen, Caltech DSP Lab | Candidacy Simulations – Beampattern Proposed ZF Method Normalized Spatial Frequency Normalized Doppler Frequency -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 Target Jammer Clutter Jammer
  • 90. Conclusion and Future Work  Conclusion – The clutter subspace is derived using the geometry of the problem. (data independent) – A new STAP method for MIMO radar is developed. – The new method is both efficient and accurate.  Future work – This method is entirely based on the ideal model. – Find algorithms which are robust against clutter subspace mismatch. – Develop clutter subspace estimation methods using a combination of both the geometry and the received data. Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 91. Research Topics Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 92. Research Topics Robust Beamforming Algorithm against DoA Mismatch [2] An Efficient STAP Algorithm for MIMO Radar [3] Precoded V-BLAST Transceiver for MIMO Communication [1] Beamforming techniques for Radar systems An Efficient STAP Algorithm for MIMO Radar [3] Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 93. Publications Chun-Yang Chen, Caltech DSP Lab | Candidacy [1] Chun-Yang Chen and P. P. Vaidyanathan, “Precoded FIR and Redundant V- BLAST Systems for Frequency-Selective MIMO Channels,” IEEE Trans. on Signal Processing, July, 2007. [2] Chun-Yang Chen and P. P. Vaidyanathan, “Quadratically Constrained Beamforming Robust Against Direction-of-Arrival Mismatch,” IEEE Trans. on Signal Processing, Aug., 2007. [3] Chun-Yang Chen and P. P. Vaidyanathan, “MIMO Radar Space-Time Adaptive Processing Using Prolate Spheroidal Wave Functions,” accepted to IEEE Trans. on Signal Processing. [4] Chun-Yang Chen and P. P. Vaidyanathan, “MIMO Radar Space-Time Adaptive Processing and Signal Design,” invited chapter in MIMO Radar Signal Processing, J. Li and P. Stoica, Wiley, to be published. Journal Papers Book Chapter
  • 94. Publications Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest [5] Chun-Yang Chen and P. P. Vaidyanathan, “A Subspace Method for MIMO Radar Space-Time Processing,” IEEE International Conference on Acoustics, Speech, and Signal Processing Honolulu, Hi, April 2007. [6] Chun-Yang Chen and P. P. Vaidyanathan, “Beamforming issues in modern MIMO Radars with Doppler,” Proc. 40th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2006. [7] Chun-Yang Chen and P. P. Vaidyanathan, “A Novel Beamformer Robust to Steering Vector Mismatch,” Proc. 40th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2006. [8] Chun-Yang Chen and P. P. Vaidyanathan, “Precoded V-BLAST for ISI MIMO channels,” IEEE International Symposium on Circuit and System Kos, Greece, May 2006, [9] Chun-Yang Chen and P. P. Vaidyanathan, “IIR Ultra-Wideband Pulse Shaper Design,” Proc. 39th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2005. Conference Papers
  • 95. Future Topic – Waveform Design in MIMO Radar Chun-Yang Chen, Caltech DSP Lab | Candidacy  In SIMO radar, chirp waveform is often used in the transmitter to increase the range resolution. This technique is called pulse compression. Radar target R Received Signal Matched filter output Time Range resolution
  • 96. Future Topic – Waveform Design in MIMO Radar Chun-Yang Chen, Caltech DSP Lab | Candidacy  In MIMO radar, multiple orthogonal waveforms are transmitted.  These waveforms affects not only the range resolution but also angle and Doppler resolution.  It is not clear how to design multiple waveforms which provide good range, angle and Doppler resolution. f2(t) f1(t) f0(t) Range resolution Angle resolution Doppler
  • 97. Q&A Thank You! Any questions? Chun-Yang Chen, Caltech DSP Lab | Candidacy
  • 98. Parameters: N=10, M=5, L=16, CNR=50dB 2 jammers, JNR=40dB Normalized Spatial Frequency Normalized Doppler Frequency -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 Jammer 1 Clutter Target Jammer 2 Target: (0,0.25) Chun-Yang Chen, Caltech DSP Lab | Candidacy Simulations – Beampattern Proposed ZF Method
  • 99. Space-Time Beam Pattern Normalized Spatial Freq. Normalized Doppler Freq. Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 100. Space-Time Beam Pattern Normalized Spatial Freq. Normalized Doppler Freq. Velocity mismatch Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 101. Space-Time Beam Pattern Normalized Spatial Freq. Normalized Doppler Freq. Velocity misalignment Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 102. Space-Time Beam Pattern Normalized Spatial Freq. Normalized Doppler Freq. Internal clutter motion (ICM) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 103. MIMO vs. SIMO Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 104. Simulations Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 105. Clutter Power in PSWF Vector Basis 0 50 100 150 200 -200 -150 -100 -50 0 50 100 Basis element index Clutter power (dB) Proposed subspace method Eigen decomposition N+(M-1)+(L-1) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 106. Proposed method K=300,Kv=20 Simulations -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -16 -14 -12 -10 -8 -6 -4 -2 0 Normalized Doppler frequency SINR (dB) MVDR perfect R Proposed ZF method Kv=20 Sample matrix inversion K=2000 Diagonal loading K=300 Principal component K=300 SINR of a target at angle zero and Doppler frequencies [-0.5, 0.5] Parameters: N=10, M=5, L=16 CNR=50dB 2 jammers, JNR=40dB K: number of samples Kv: number of clutter free samples collected in passive mode Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 107. MIMO Radar – Virtual Array (2) Receiver: N elements Virtual array: NM elements Transmitter: M elements + = [D. W. Bliss and K. W. Forsythe, 03] The spatial resolution for clutter is the same as a receiving array with NM physical array elements. NM degrees of freedom can be created using only N+M physical array elements. A processing gain of M is lost because of the broad transmitting beam. Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 108. Efficient Representation for the Clutter    X k k k i i s x f x c 0 , , ) ( ) ; (          c N i l m n i s i f x c 1 , l m, n, ) ; ( c            X k k k i N i i l m n c 0 , 1 ) (             X k k k l m n 0 ) (     ) 1 ( ) 1 ( 1       L M N X   [D. Slepian, 62] Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 109. Efficient Representation for the Clutter    X k k k i i s x f x c 0 , , ) ( ) ; (          c N i l m n i s i f x c 1 , l m, n, ) ; ( c            X k k k i N i i l m n c 0 , 1 ) (             X k k k l m n 0 ) (     ) 1 ( ) 1 ( 1       L M N X   H c Ψ ΨR R   Ψ ) ( l m n k        consists of  c Ψξ NML X+1 [D. Slepian, 62] Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 110. Simplification of the Clutter Expression       c N i i s i l m n f j 1 , )) ( 2 exp(            c i i T i R N i v T l j d m j d n j i l m n e e e c 1 sin 2 2 sin 2 sin 2 , ,           R T d d   R d vT 2   , sin R s i i d f           c N i l m n i s i f x c 1 , ) ; (          otherwise , 0 0 ), 2 exp( ) ; ( , , X x x f f x c i s i s  5 . 0 5 . 0 ) 1 ( ) 1 ( 1 ,          i s f L M N X   -2 0 2 4 6 8 10 12 -1.5 -1 -0.5 0 0.5 1 1.5 x Re{c(x;fs,i)} Re{c(n+m+l;fs,i)} Receiver Transmitter Doppler Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest
  • 111.
  • 113. Time window Frequency window X -W W 0 in [0,X] ( ) k x  ( ) k k x  