250"

200"

150"

MovieLens"

degree%

OpenScout"
100"

MACE"
Travel"well"

50"

0"
u1"

u2"

u3"

u4"

u5"

u6"

u7"

u8"

u9"

u10"

Top)10%central%users%

Degree	
  centrality	
  of	
  first	
  10	
  
central	
  users	
  

EU	
  FP7	
  Open	
  Discovery	
  
Space	
  (ODS)	
  

DATA-­‐DRIVEN	
  STUDY:	
  AUGMENTING	
  
PREDICTION	
  ACCURACY	
  OF	
  
RECOMMENDATIONS	
  IN	
  SOCIAL	
  
LEARNING	
  PLATFORMS	
  
MACE%

0.1"
Tanimoto4Jaccard"(CF1)"
Loglikelihood"(CF2)"

0.08"

Tanimoto3Jaccard"(CF1)"

0.06"

Loglikelihood"(CF2)"

Euclidean"(CF3)"

0.04"

Graph4based"(CF4)"

0.02"

Euclidean"(CF3)"
Graph3based"(CF4)"

0"
5"

7"

3"

10"

5"

0.2"

0.06"

Tanimoto3Jaccard"(CF1)"

0.04"

Loglikelihood"(CF2)"
Euclidean"(CF3)"
Graph3based"(CF4)"
3"

5"

7"

10"

size%of%neighborhood%(n)%

• 

Tanimoto0Jaccard"(CF1)"

0.15"

Loglikelihood"(CF2)"

0.1"

Euclidean"(CF3)"

0.05"

Graph0based"(CF4)"

0"

0"

Classical	
  collaboraHve	
  
filtering	
  based	
  on	
  nearest	
  
neighbors,	
  beside	
  a	
  graph-­‐
based	
  approach	
  
Three	
  datasets	
  similar	
  to	
  the	
  
ODS	
  data	
  plus	
  MovieLens	
  

F1@10%

F1@10%

0.25"

0.02"

• 

10"

MovieLens%

Travel%well%
0.1"
0.08"

Offline	
  data	
  study	
  

7"

size%of%neighborhood%(n)%

size%of%neighborhood%(n)%

1-­‐	
  Conceptual	
  model	
  
2-­‐	
  Offline	
  data	
  study	
  ✓	
  
3-­‐	
  User	
  study	
  
4-­‐	
  Go	
  online	
  

OPEN	
  UNIVERSITEIT	
  NEDERLAND	
  
FIRSTNAME.LASTNAME@OU.NL	
  

0.12"

3"

Research	
  methodology	
  

SOUDE	
  FAZELI	
  
HENDRIK	
  DRACHSLER	
  
PETER	
  SLOEP	
  

OpenScout%
0.14"

F1@10%

F1@10%

RQ1:	
  How	
  to	
  generate	
  more	
  
accurate	
  recommendaHons	
  by	
  
taking	
  into	
  account	
  user	
  
interacHons	
  in	
  social	
  learning	
  
pla_orms?	
  
RQ2:	
  Can	
  the	
  use	
  of	
  the	
  graph	
  
walking	
  algorithms	
  improve	
  
the	
  process	
  of	
  finding	
  like-­‐
minded	
  users	
  within	
  a	
  social	
  
learning	
  pla_orm?	
  

0.1"
0.09"
0.08"
0.07"
0.06"
0.05"
0.04"
0.03"
0.02"
0.01"
0"

3"

5"

7"

10"

size%of%neighborhood%(n)%

F1	
  score	
  of	
  different	
  user-­‐
based	
  collaboraHve	
  filtering	
  
algorithms	
  	
  

DATA-DRIVEN STUDY: AUGMENTING PREDICTION ACCURACY OF RECOMMENDATIONS IN SOCIAL LEARNING PLATFORMS

  • 1.
    250" 200" 150" MovieLens" degree% OpenScout" 100" MACE" Travel"well" 50" 0" u1" u2" u3" u4" u5" u6" u7" u8" u9" u10" Top)10%central%users% Degree  centrality  of  first  10   central  users   EU  FP7  Open  Discovery   Space  (ODS)   DATA-­‐DRIVEN  STUDY:  AUGMENTING   PREDICTION  ACCURACY  OF   RECOMMENDATIONS  IN  SOCIAL   LEARNING  PLATFORMS   MACE% 0.1" Tanimoto4Jaccard"(CF1)" Loglikelihood"(CF2)" 0.08" Tanimoto3Jaccard"(CF1)" 0.06" Loglikelihood"(CF2)" Euclidean"(CF3)" 0.04" Graph4based"(CF4)" 0.02" Euclidean"(CF3)" Graph3based"(CF4)" 0" 5" 7" 3" 10" 5" 0.2" 0.06" Tanimoto3Jaccard"(CF1)" 0.04" Loglikelihood"(CF2)" Euclidean"(CF3)" Graph3based"(CF4)" 3" 5" 7" 10" size%of%neighborhood%(n)% •  Tanimoto0Jaccard"(CF1)" 0.15" Loglikelihood"(CF2)" 0.1" Euclidean"(CF3)" 0.05" Graph0based"(CF4)" 0" 0" Classical  collaboraHve   filtering  based  on  nearest   neighbors,  beside  a  graph-­‐ based  approach   Three  datasets  similar  to  the   ODS  data  plus  MovieLens   F1@10% F1@10% 0.25" 0.02" •  10" MovieLens% Travel%well% 0.1" 0.08" Offline  data  study   7" size%of%neighborhood%(n)% size%of%neighborhood%(n)% 1-­‐  Conceptual  model   2-­‐  Offline  data  study  ✓   3-­‐  User  study   4-­‐  Go  online   OPEN  UNIVERSITEIT  NEDERLAND   FIRSTNAME.LASTNAME@OU.NL   0.12" 3" Research  methodology   SOUDE  FAZELI   HENDRIK  DRACHSLER   PETER  SLOEP   OpenScout% 0.14" F1@10% F1@10% RQ1:  How  to  generate  more   accurate  recommendaHons  by   taking  into  account  user   interacHons  in  social  learning   pla_orms?   RQ2:  Can  the  use  of  the  graph   walking  algorithms  improve   the  process  of  finding  like-­‐ minded  users  within  a  social   learning  pla_orm?   0.1" 0.09" 0.08" 0.07" 0.06" 0.05" 0.04" 0.03" 0.02" 0.01" 0" 3" 5" 7" 10" size%of%neighborhood%(n)% F1  score  of  different  user-­‐ based  collaboraHve  filtering   algorithms