SlideShare a Scribd company logo
No 106 (2022)
Sciences of Europe
(Praha, Czech Republic)
ISSN 3162-2364
The journal is registered and published in Czech Republic.
Articles in all spheres of sciences are published in the journal.
Journal is published in Czech, English, Polish, Russian, Chinese, German and French, Ukrainian.
Articles are accepted each month.
Frequency: 24 issues per year.
Format - A4
All articles are reviewed
Free access to the electronic version of journal
Edition of journal does not carry responsibility for the materials published in a journal.
Sending the article to the editorial the author confirms it’s uniqueness and takes full responsibility for possible
consequences for breaking copyright laws.
Chief editor: Petr Bohacek
Managing editor: Michal Hudecek
• Jiří Pospíšil (Organic and Medicinal Chemistry) Zentiva
• Jaroslav Fähnrich (Organic Chemistry) Institute of Organic Chemistry and Biochemistry
Academy of Sciences of the Czech Republic
• Smirnova Oksana K., Doctor of Pedagogical Sciences, Professor, Department of History
(Moscow, Russia);
• Rasa Boháček – Ph.D. člen Česká zemědělská univerzita v Praze
• Naumov Jaroslav S., MD, Ph.D., assistant professor of history of medicine and the social
sciences and humanities. (Kiev, Ukraine)
• Viktor Pour – Ph.D. člen Univerzita Pardubice
• Petrenko Svyatoslav, PhD in geography, lecturer in social and economic geography.
(Kharkov, Ukraine)
• Karel Schwaninger – Ph.D. člen Vysoká škola báňská – Technická univerzita Ostrava
• Kozachenko Artem Leonidovich, Doctor of Pedagogical Sciences, Professor, Department
of History (Moscow, Russia);
• Václav Pittner -Ph.D. člen Technická univerzita v Liberci
• Dudnik Oleg Arturovich, Doctor of Physical and Mathematical Sciences, Professor, De-
partment of Physical and Mathematical management methods. (Chernivtsi, Ukraine)
• Konovalov Artem Nikolaevich, Doctor of Psychology, Professor, Chair of General Psy-
chology and Pedagogy. (Minsk, Belarus)
«Sciences of Europe» -
Editorial office: Křižíkova 384/101 Karlín, 186 00 Praha
E-mail: info@european-science.org
Web: www.european-science.org
CONTENT
AGRICULTURAL SCIENCES
Osipova R., Ghukasyan A.,
Ghazaryan R., Mkrtchyan A.
APPLICATION OF COMPLEX MINERAL
MICROFERTILIZER GUMAT + 7 ON LENTILS.................4
Zhuravel S., Zhuravel S.,
Polishchuk V., Smaglii O., Tkachenko V.
TECHNOLOGICAL ASPECTS OF CULTIVATION OF
NIGELLA SATIVA USING ORGANIC TECHNOLOGY ON
POLISSYA UKRAINE......................................................7
Klymenko T., Binkivska N.,
Shulha K., Levkivskyi V., Shashchuk I.
YIELD OF SOYBEAN IN THE CONDITIONS OF THE
NORTHERN FOREST-STEPPE OF UKRAINE DEPENDS
ON MINERAL FERTILIZERS AND SEED INOCULATIONS
...................................................................................12
ART
Sarzhanov A., Saitova G.
MODERN NATIONAL CHOREOGRAPHY ON THE STAGE
OF THE «ASTANA OPERA».........................................14
BIOLOGICAL SCIENCES
Aliyeva A.
THE GENUS OF AETHIONEMA R. BR. SPREADING IN
FLORA OF NAKCHIVAN AUTONOMOUS REPUBLIC OF
AZERBAIJAN...............................................................17
ECONOMIC SCIENCES
Ayyubova N., Mammadli A.
ANALYSIS OF THE DYNAMICS OF INCOME AND COSTS
OF THE POPULATION IN THE REPUBLIC OF
AZERBAIJAN...............................................................20
Volynets І., Yanush Y.
TRENDS CHANGES ANALYSIS IN SOCIAL
RESPONSIBILITY MANAGEMENT OF HEALTH CARE
INSTITUTIONS IN UKRAINE........................................29
GEOGRAPHICAL SCIENCES
Nazarova G.
ENDANGERED SPECIES OF SHEKI-ZAGATALA NATURE
..................................................................................34
HISTORICAL SCIENCES
Akopov A., Hayrapetyan A.
THE ISSUE OF TAYK’S ETHNIC IDENTITY AND THE
SPREADING OF ORTHODOXY IN TAYK.......................39
MEDICAL SCIENCES
Jafarov R., Aliyev V.
THE PRINCIPLE OF PROSTHETICS OF PATIENTS WITH
COMPLETE REMOVABLE DENTURES ON THE LOWER
JAW ...........................................................................43
Panahov N., Aliyev T., Aliyev M.
THE USE OF REINFORCING QUARTZ MESH IN THE
MANUFACTURE OF PLATE REMOVABLE DENTURES .45
Musayev E., Babayeva N., Mahmudov T.
SIGNIFICANCE OF TEMPORARY RESTORATIONS MADE
OF SELF-CURING RESIN IN THE MANUFACTURE OF
CERAMIC VENEERS....................................................47
Boitsaniuk S., Patskan L.,
Pogoretska K., Levkiv M.
REVIEW OF CURRENT ENDODONTIC SEALERS ..........49
Makeyev O., Korotkov A.,
Satonkina O., Schumann E., Desyatova M.
TRANSDIFFERENTIATION OF MULTIPOTENT
MESENCHYMAL STROMAL CELLS BY GENETIC
ENGINEERING METHODS TO OBTAIN HEPATOCYTES54
Voznjouk I., Polyakova A., Ponomarev G.,
Pushkin M.
THE ROLE OF BIOMARKERS IN THE DIAGNOSIS AND
REHABILITATION OF PATIENTS WITH STROKE ..........58
PEDAGOGICAL SCIENCES
Slatvinska L., Zbyrannyk О.
THE FORMATION OF PROFESSIONAL COMPETENCES
OF BACHELORS IN TOURISM SPECIALISATION IN
HIGHER EDUCATIONAL INSTITUTIONS OF UKRAINE .63
PHILOLOGICAL SCIENCES
Nuradin G., Adilbek B.
PHILOSOPHY OF SOUND: WAVELET TRANSFORM FOR
PROCESSING OF AUDIO SIGNAL................................71
PSYCHOLOGICAL SCIENCES
Chorna N.
CITATION THINKING IN LATIN AMERICAN
POSTMODERN DISCOURSE .......................................78
SOCIAL SCIENCES
Asagade Shola O.
GOVERNMENT ACCOUNTABILITY IN PUBLIC
ADMINISTRATION .....................................................83
TECHNICAL SCIENCES
Issabayev K.,
Imansakipova N., Dzhangulova G.
COMPARATIVE ANALYSIS OF METHODS FOR
CALCULATING THE ATTENUATION COEFFICIENT OF
TROPOSPHERIC RADIO COMMUNICATION...............92
Jafarova F., Gurbanov K., Tagıyeva Z.,
Huseynova S., Ahadova S., Hacıyeva V.
INNOVATIVE METHOD OF GROWING PLANTS USING
THE EFFECT OF HIGH VOLTAGE IMPULSE DISCHARGE
.................................................................................107
4 Sciences of Europe # 106, (2022)
AGRICULTURAL SCIENCES
ПРИМЕНЕНИЕ КОМПЛЕКСНОГО МИНЕРАЛЬНОГО МИКРОУДОБРЕНИЯ ГУМАТ+7 НА
ЧЕЧЕВИЦЕ
Осипова Р.Г.
Научный центр земледелия Мин. экономики Республики Армения
к.б.н., старший научный сотрудник
ORCID: https://orcid.org/0000-0002-6423-7432
Гукасян А.Г.
Научный центр земледелия Мин. экономики Республики Армения
к.э.н., директор
ORCID: https://orcid.org/0000-0002-4632-2190
Казарян Р.Г.
Научный центр земледелия Мин. экономики Республики Армения
к.сх.н., ведущий научный сотрудник
Мкртчян А.T.
Научный центр земледелия Мин. экономики Республики Армения
к.б.н., старший научный сотрудник
ORCID: https://orcid.org/0000-0003-3242-4775
APPLICATION OF COMPLEX MINERAL MICROFERTILIZER GUMAT + 7 ON LENTILS
Osipova R.,
The Scientific Center of Agriculture of RA
PhD in Biology, Senior Researcher
ORCID: https://orcid.org/0000-0002-6423-7432
Ghukasyan A.,
The Scientific Center of Agriculture of RA
PhD in Economics, Director
ORCID: https://orcid.org/0000-0002-4632-2190
Ghazaryan R.,
The Scientific Center of Agriculture of RA
PhD in Agriculture, Lead Researcher
Mkrtchyan A.
The Scientific Center of Agriculture of RA
PhD in Biology, Senior Researcher
ORCID: https://orcid.org/0000-0003-3242-4775
DOI: 10.5281/zenodo.7408504
АННОТАЦИЯ
В статье дана оценка действия водного раствора Гуматa+7 на урожайность нового сорта озимой чече-
вицы Эребуни при фолиарном применении и при поливе в рядки. Показано, что при фолиарном примене-
нии Гумата+7, урожайность чечевицы увеличилась на 28.5% по сравнению с контролем. В варианте полив
в рядки урожайность на уровне контроля. Содержание сырого протеина в семенах чечевицы на 7.8% и
сбор сырого протеина с 1га на 39% выше при фолиарной обработке по сравнению с контролем.
ABSTRACT
The article evaluates the effect of an aqueous solution of Gumat + 7 on the productivity of a new variety of
winter lentils, Erebuni, when applied foliarly and when irrigated in rows. It was shown that with the foliar appli-
cation of Gumate + 7, the productivity of lentils increased by 28.5% compared with the control. In the variant of
watering in rows, the productivity is at the control level. The content of crude protein in lentil seeds is 7.8% and
the collection of crude protein per 1 ha is 39% higher with foliar treatment compared to the control.
Ключевые слова: чечевица, микроудобрение Гумат+7, фолиарная обработка, урожайность, белковая
продуктивность.
Keywords: lentil, microfertilizer Gumat+7, foliar treatment, yield, protein content.
Введение
Зернобобовые культуры имеют большое зна-
чение как источник растительного белка в продук-
тах питания людей и в кормах для сельскохозяй-
ственных животных. Бобовые культуры являются
источником поступления в почву азота и пополне-
ния органическими веществами корнеобитаемого
слоя, что оказывает положительное влияние на аг-
роценозы [1]. Чечевица (Lens culinaris Medik) явля-
ется одной из ценных зернобобовых культур, тра-
диционно имеющая широкое использование в
Sciences of Europe # 106, (2022) 5
пище, выращивается на зерно, которое содержит до
30% ценного легкоусвояемого белка, в состав кото-
рого входят все незаменимые аминокислоты [2,3,4].
В нашей стране средняя урожайность чечевицы в
пределах 12-13 ц/га, что не на много уступает
уровню урожайности ведущих производителей
зерна чечевицы. Учитывая ограниченные убороч-
ные площади в нашей стране и вместе с тем необ-
ходимость в обеспечении населения ценным расти-
тельным белком, для повышения урожайности че-
чевицы необходимо использовать новые
высокоурожайные сорта и новые технологии возде-
лывания. В современном сельскохозяйствевнном
производстве применяют интенсивные технологии
с использованием различных комплексных микро-
удобрений, которые играют важную роль в росте
урожая и повышении качества сельскохозяйствен-
ных культур [5,6]. Гумат+7 микроэлементов -ком-
плексное минеральное микроудобрение, которое
является одновременно и удобрением и регулято-
ром роста, мобилизует иммунную систему расте-
ний, стимулирует развитие мощной корневой си-
стемы, усиливает обменные процессы в раститель-
ной клетке, повышает усвояемость растениями
питательных веществ, что в конечном итоге ведет к
росту урожайности и качества, применяется на всех
культурах без ограничений. Гуминовые кислоты
улучшают почву за счет того, что переводят поч-
венные микроэлементы в хелаты, которые явля-
ются единственными органическими элементами,
доступными для усвоения растениями. Гумат+7
микроэлементов согласно описанию производи-
теля (“Иркутские гуматы”) содержит (%) Гумат –
75, K – 5, Cu -0.2, Mn – 0.17, Zn – 0.2, Mo – 0.018,
Co – 0.02, B – 0.2, Fe – 0.4.
В связи с развитием производства высококон-
центрированных растворимых удобрений и исполь-
зованием их в виде спреев, возрастает интерес к
применению фолиарной (некорневой) обработки
растений. Фолиарное внесение удобрений является
более экономичным и эффективным по сравнению
с традиционными способами и рассматривается в
ряду достижений в сельском хозяйстве [7]. При
этом следует учитывать факторы, влияющие на эф-
фективность фолиарного применения удобрений. К
ним относятся – состав удобрений, условия окру-
жающей среды, фенологическая фаза развития рас-
тений [8].
Целью данной работы является оценка дей-
ствия водного раствора гумата калия + 7 микроэле-
ментов на урожайность озимой чечевицы Эребуни
при фолиарном применении и при поливе под рас-
тения в рядках.
Материалы и методы
Исследование проведено на озимой чечевице,
сорт Эребуни, полученного методом индивидуаль-
ного отбора из мировой коллекции (ICARDA) в эч-
миадзинской экспериментальной базе Научного
центра земледелия. Семена сорта Эребуни круп-
ные, зеленые, тарелочного типа. Опытные участки
Научного центра находятся в центре Араратской
долины и относятся к орошаемым, луговым, бурым
почвам [9], поэтому в течение вегетации прово-
дится полив опытных делянок, кратность которых
зависит от культуры и метеоусловий. В период дан-
ной вегетации был произведен полив осенью, после
посева, весной перед обработкой гуматом и дважды
летом в период налива семян. Опыт заложен мето-
дом организованных повторений, в четырехкрат-
ной повторности. Размер делянки 4 м2
, учетной –
3.4 м2
. Посев произведен вручную, в каждом вари-
анте десять линий, расстояние между линиями
25см, между вариантами 50см и повторностями 1м.
В каждой линии по десять всхожих семян, расстоя-
ние между семенами 15см. Обработка вегетирую-
щих растений чечевицы произведена в фазе буто-
низация-цветение 0.02%-ным раствором Гумата+7
двумя методами – фолиарным и поливом в рядки.
Причем на полив в рядки ушло в восемь раз больше
раствора Гумата+7, чем на опрыскивание вегетиру-
ющих растений. Контроль опыта – необработанные
растения. Уборка урожая также проведена вручную
в конце июня. Урожайность чечевицы учитывали
поделяночно. Для структурного анализа отобрано
по десять растений с каждого варианта всех повтор-
ностей. Результаты по урожайности обработаны
методом дисперсионного анализа [10]. Содержание
белка в семенах определяли микрометодом Кьель-
даля.
Схема опыта:
1. Контроль – без обработки,
2. Гумат+7 – фолиарная обработка,
3. Гумат+7 – полив в рядки.
Результаты и обсуждения
Результаты исследований – средние по всем
повторностям, представлены в таблицах. В таблице
1 представлены данные по урожайности озимой че-
чевицы Эребуни в зависимости от способа приме-
нения Гумата+7 микроэлементов. При фолиарной
обработке урожайность чечевицы по сравнению с
контролем увеличилась на 28.5%. В варианте полив
в рядки урожайность на уровне контроля.
Таблица 1
Урожайность озимой чечевицы в зависимости от способа внесения Гумата+7 микроэлементов
N Варианты
Урожайность
ц/га
Прибавка к контролю
ц/га %
1 Контроль 21.86 - -
2 Гумат+7микроэлементов (фолиарная обработка) 28.10 6.24 28.5
3 Гумат+7микроэлементов (полив в рядках) 21.67 - -
НСР05 2.4
В таблице 2 представлены данные по показате-
лям основных элементов структуры урожая озимой
чечевицы при разных способах действия Гумата+7.
Урожайность чечевицы увеличилась под влиянием
фолиарной обработки за счет увеличения продук-
тивных ветвей (12.3%), количества бобов (12%) и
6 Sciences of Europe # 106, (2022)
семян (10.6%) и их массы (10.9%). Происходит уве-
личение интенсивности ростовых процессов и
накопления биомассы, что позволило получить
урожай чечевицы на 6.24ц/га больше, чем в кон-
троле.
Таблица2
Эффективность действия Гумата+7 микроэлементов по показателям основных элементов структуры уро-
жая озимой чечевицы
N Варианты
Высота
растений
(см)
Количество
стеблей
(шт.)
Количество
ветвей
(шт.)
Количество
бобов
на
одно
растение
(шт.)
Количество
семян
на
одно
растение
(шт.)
Масса
семян
с
одного
расте-
ния
(г)
Масса
1000
семян
(г)
1 Контроль 45.9 3.2 7.3 116.6 122.7 8.2 66.8
2
Гумат+7микроэлементов
(фолиарная обработка)
42.5 2.5 8.2 130.6 135.7 9.1 67.1
3
Гумат+7микроэлементов
(полив в рядках)
41.8 2.4 6.9 107.3 113.5 7.9 70.2
НСР 0.5 0.4 3.6 3.18 0.7 3.2
Поскольку чечевица является ценным источником растительного белка, важно знать как влияют но-
вые технологии возделования на качевство ее зерна.
Таблица 3
Содержание сырого протеина в семенах (%) и белковая продуктивность (кг/га) чечевицы
N Варианты
Сырой протеин, %
к сухой массе
Сбор сырого проте-
ина с 1га, кг/га
Прибавка к
контролю
кг/га %
1 Контроль 21.7 473 - -
2
Гумат+7микроэлементов
(фолиарная обработка)
23.4 658 185 39
3
Гумат+7микроэлементов
(полив в рядках)
24.0 520 47 9.9
НСР 0.5 7.9
Действие Гумата+7 также положительно вли-
яет на содержание сырого протеина в семенах и на
сбор сырого протеина с одного гектара. Содержа-
ние сырого протеина в семенах чечевицы увеличи-
вается при фолиарной обработке Гуматом+7 на
7.8% и даже при поливе в рядки на 10.5%. При этом,
сбор сырого протеина с 1 га при фолиарной обра-
ботке на 39% выше, чем в контроле благодаря уве-
личению урожайности.
Таким образом Гумат+7, имеющий невысокую
стоимость и небольшой расход, при фолиарной об-
работке вегетирующих растений чечевицы в фазе
бутонизация-цветение, положительно влияет и на
урожайность, и на накопление сырого протеина в
семенах.
Литература
1. Зотиков В.И., Наумкина Т.С., Грядунова
Н.В. и др. Зернобобовые культуры – важный фак-
тор устойчивого экологически ориентированного
сельского хозяйства//Зернобобовые и крупяные
культуры, 2016, № 1 (17), с. 6.
2. Кондыков И.В. Культура чечевицы в мире
и Российской Федерации (обзор)// Зернобобовые и
крупяные культуры, 2012, № 2, с. 13-21.
3. Наумкина Т.С., Грядунова Н.В., Наумкин
В.В. Чечевица ценная зернобобовая культура// Зер-
нобобовые и крупяные культуры, 2015, № 2 (14), с.
42.
4. Ядчук П.В. Современное состояние произ-
водства чечевицы// Зернобобовые и крупяные куль-
туры, 2018, № 4 (28), с. 110-112,
DOI:10.24411/2309-248x-2018-1058.
5. Литвинова А.Б., Литвинов Б.В. Эффектив-
ность применения региляторов роста и микроэле-
ментного комплекса Цитовит при выращивании
моркови на дерново-подзолистой почве// Агрохи-
мия, 2019, № 4, с. 46-53,
DOI:10.1134/S000218811902008X.
6. Глазова З.И. Использование органомине-
ральных агрохимикатов при возделовании чече-
вицы// Зернобобовые и крупяные культуры, 2020,
№ 1 (33), с. 40-45, DOI:10.24411/2309-348x-2020-
11153.
7. Shabana Ehsan, Shahid Javed, Ifra Saleem,
Fareeha Habib, Tahir Majeed. Effect of humic acid fo-
liar spraying and nitrogen fertilizers management on
wheat yield//International Journal of Agronomy and
Agricultural research. - 2014. – vol. 4, № 4. – p. 28-33.
8. Егоров В.С., Дзержинская А.А. Фолиарное
применение удобрений и механизм их поступлений
в растения//Агрохимия, 2015, № 2, с. 51-57.
9. Айрапетян Э.М. Почвоведение. – Ереван,
изд. Астгик, 2000. – 456 с. (на армянском языке)
10. Доспехов Б.А. Методика полевого опыта. –
Москва, изд. Агропромиздат, 1985. – 357 с.
Sciences of Europe # 106, (2022) 7
ТЕХНОЛОГІЧНІ АСПЕКТИ ВИРОЩУВАННЯ NIGELLA SATIVA ЗА ОРГАНІЧНОЇ
ТЕХНОЛОГІЇ В УМОВАХ ПОЛІССЯ УКРАЇНИ
Журавель С.В.
кандидат с.г. наук
Журавель С.С.
викладач ЖАТФК
Поліщук В.О.
асистент
Смаглій О.В.,
Ткаченко В.Д.
магістри
Поліський національний університет, Україна
TECHNOLOGICAL ASPECTS OF CULTIVATION OF NIGELLA SATIVA USING ORGANIC
TECHNOLOGY ON POLISSYA UKRAINE
Zhuravel S.,
Candidate of Agricultural Sciences
Zhuravel S.,
Lecturer ZATFK
Polishchuk V.,
Assistant
Smaglii O.,
Tkachenko V.
Master’s degree
Polissia National University, Ukraine
DOI: 10.5281/zenodo.7408510
АНОТАЦІЯ
Чорний кмин, або ще як його називають чорнушка, останнім часом набуває популярності у сільсько-
господарських виробників в Україні. Масове промислове вирощування даної культури проводиться в
Ірані, де вона набула високої популярності та широкого використання, зокрема в 93% усіх страв та напоїв
присутній чорний кмин, який наділяють майже міфічними, фармакологічними властивостями. Тому неда-
ремно і в Україні звернули увагу на дану культуру, однак переважно вирощують її як нішеву. Не зважаючи
на те, що походить він з посушливих теплих регіонів, можливість вирощування його на території України
та зокрема в Житомирській області є не лише можливим, але й економічно дуже привабливим. Насампе-
ред, це пов’язано з тим, що на сьогоднішній час нашими дослідженнями не виявлено ураження даної ку-
льтури, якимись типовими хворобами чи шкідниками, а отже це стає гарною запорукою можливості виро-
щування цієї культури за органічною технологією.
Проаналізвовано вплив ширини міжрядь на формування повноцінного насіння чорного кмину, так
вирощувати дану культуру найкраще за ширини міжрядь 45 см. Схожість насіння чорного кмину (Nigella
sativa L.) була найкращою при його яровізації 8 місяців та становила 94-96 %. Схожість насіння щодо
терміну його зберігання, була найвищою в процентному співвідношенні на третьому році, де вона була
практично рівнозначна 100 %.
ABSTRACT
Black cumin, or as it is also called black cumin, has recently been gaining popularity among agricultural
producers in Ukraine. Mass industrial cultivation of this crop is carried out in Iran, where it has gained high pop-
ularity and wide use, in particular, 93% of all dishes and drinks contain black cumin, which is endowed with almost
mythical, pharmacological properties. Therefore, it is not for nothing that attention has been paid to this culture in
Ukraine, but it is mainly grown as a niche crop. Despite the fact that it comes from arid warm regions, the possi-
bility of growing it in the territory of Ukraine, and in particular in the Zhytomyr region, is not only possible, but
also economically very attractive. First of all, this is due to the fact that to date, our research has not revealed
damage to this culture by any typical diseases or pests, and therefore this becomes a good guarantee of the possi-
bility of growing this culture using organic technology.
The influence of the row width on the formation of full-fledged black cumin seeds was analyzed, so it is best
to grow this culture with a row width of 45 cm. The similarity of black cumin seeds (Nigella sativa L.) was the
best when it was vernalized for 8 months and was 94-96%. The similarity of the seed with regard to its storage
period was the highest in percentage ratio in the third year, where it was practically equal to 100%.
Ключові слова: урожайність, ширина міжрядь, чорний кмин, посіви, органічна технологія, ро-
дючість, фаза розвитку.
8 Sciences of Europe # 106, (2022)
Keywords: productivity, row spacing, black cumin, crops, organic technology, fertility, development phase.
Постановка проблеми. На сьогоднішній час
технологічні аспекти вирощування чорного кмину
(Nigella sativa L.) в Україні практично не відпрацьо-
вані, як з точки зору строків, норм, способів посіву,
форми та виду добрив, та ряду інших чинників.
Тому виникає нагальна необхідність проведення
досліджень в даному напрямку.
В зв’язку з цим нами на базі Поліського націо-
нального університету, було проведено ряд дослі-
джень щодо відпрацювання органічної промисло-
вої технології вирощування чорного кмину (Nigella
sativa L.). Адже дана рослина має значний попит у
ланці бізнесу, а також таких сферах як: медицина,
косметологія, кулінарія тощо. Особливістю є також
те, що чорний кмин дуже гарно адаптується як до
кліматичних, так і ґрунтових показників і як пока-
зують наші дослідження може висіватися разом з
ранніми ярими. Ще однією особливістю культури є
достатньо короткий вегетаційний період, що ро-
бить її універсальною з точки зору, як строків по-
сіву так і строків збирання. Крім того чорний кмин
(Nigella sativa L.) на сьогоднішній час практично не
уражується шкідниками і хворобами, що дає мож-
ливість вирощування його за органічною техноло-
гією. За умов звичайної технології вирощування
для забезпечення повноцінного врожаю потребує
незначних норм внесення елементів живлення, зок-
рема 30-40 кг діючої речовини NPK.
Аналіз останніх досліджень та публікацій.
Чорний кмин (Nigella sativa L.) родом із Середзем-
номор’я, в якості дикороса зустрічається в країнах
Європи, Азії, а також в Індії та на Кавказі. Як куль-
турна рослина вирощується у Франції, Англії, Бель-
гії, Голландії, Азії, Африці та ряді інших країн світу
[4, 5]. В Україні чорний кмин вперше почали виро-
щувати у 1985 році, а сьогодні його культивують як
декоративну, лікарську та ефіроолійну рослину. Та-
кож в науковій літературі є відомості, що насіння
чорного кмину можна застосовувати для виготов-
лення біопалива [1].
Чорний кмин (Nigella sativa L.) має цілющі вла-
стивості, такі як: протизапальні, противірусні, ан-
типаразитарні, поліпшує роботу шлунково-кишко-
вого тракту, має фунгіцидну активність, посилює
пам’ять та лактацію, полегшує дихання при астмі,
поліпшує контроль над рівнем цукру в крові, лікує
суглоби, профілактика сечокам’яної хвороби і ка-
менів в жовчному міхурі, а також сприяє розши-
ренню судин і покращує серцеву діяльність [2, 3, 4].
Чорний кмин (Nigella sativa L.) має дуже важливу
лікувальну здатність ‒ протипухлинну дію, тобто
широко використовується у боротьбі з онкологіч-
ними захворюваннями, разом з тим було доведено і
протирадіаційні властивості рослини [4, 5].
Зауважимо, що вчені Технологічного універ-
ситету Сіднея (University of Technology Sydney,
UTS) запропонували використовувати у боротьбі з
COVID-19 чорний кмин (Nigella sativa L.). В резуль-
таті модельних досліджень вчених було виявлено,
що активний інгредієнт чорного кмину – тімохінон
може “прилипати” до білка шипа вірусу SARS-
CoV-2 і запобігати провокуванню легеневої інфек-
ції. Тімохінон був вивчений в лабораторіях споча-
тку на тваринах і дослідження показали, що дана
речовина має позитивний вплив на імунну систему.
Мета досліджень. В зоні Полісся технологія
вирощування чорного кмину (Nigella sativa L.).
мало апробована, при цьому господарств, що виро-
щують значні площі немає. Насамперед це
пов’язано з початковими етапами розвитку даної
культури, де розвиток її відбувається досить пові-
льно, сходи з’являються на 9-15 день, а у посушливі
роки на 20-25 день, що спричиняє інтенсивне за-
бур’янення міжрядь. Спеціалізованих хімічних за-
собів захисту у боротьбі з бур’янами для чорного
кмину (Nigella sativa L.) не розроблено, а з точки
зору органічної технології – це ручна або механізо-
вана прополка. В поданому нами матеріалі ми ана-
лізуємо ширину міжрядь даної культури та її вплив
безпосередньо на процеси росту, розвитку та фор-
мування врожайності.
Методика досліджень. Дослідження з органі-
чної технології вирощування чорного кмину
(Nigella sativa L.) проводилися в Поліському націо-
нальному університеті в рамках проєкту ПМГ
ПРООН-ГЕФ UKR/SGP/OP7/Y1/CORE/LD/2020/03
«Інноваційні агроекологічні рішення для сталого
сільського господарства на деградованих землях
Полісся». Місце впровадження досліджень та їх ви-
вчення проходило в науково-дослідному господар-
стві с. Велика Горбаша. Досліджувана ділянка
займала площу 5 га, на якій проводилося вирощу-
вання п’яти культур, таких як: амаранту
(Amaránthus), ромашки лікарської (Matricaria
recutita), чорного кмину (Nigella sativa L.), розторо-
пши плямистої (Silybum marianum), коріандру
(Coriandrum sativum). Тип ґрунту досліджуваної ді-
лянки ясно сірий лісовий, що характеризується ни-
зькою забезпеченістю елементами живлення, вміс-
том гумусу 1,1-1,2 та слабо кислою реакцією ґрун-
тового розчину рН 5,7.
Схема досліду передбачала вивчення різних
елементів технологічних прийомів вирощування
чорного кмину (Nigella sativa L.), що включають
такі компоненти, як ширину міжрядь, внесення до-
брив, особливості догляду. Схема посіву визначе-
них вище нішевих та лікарських рослин передба-
чали ширину міжрядь – 15 та 45 см. Дослідження
мали на меті оптимізувати органічні технології
щодо вирощування чорного кмину (Nigella sativa
L.) в умовах Житомирського Полісся.
Результати досліджень. Дана культура фак-
тично є дикоросом і має доволі специфічні біологі-
чні особливості. Так, зокрема свіжозібране насіння
має дуже низьку схожість, яка з часом практично
зростає майже до 100 відсоткової – це відбувається
з насінням, що пролежало в межах 2,5-3 років. Тому
ми рекомендуємо з метою забезпечення вирівня-
ного та якісного посіву використовувати насіння 2-
3 річної зборки.
Sciences of Europe # 106, (2022) 9
Як видно з рис. 1, насіння чорного кмину
(Nigella sativa L.) зібране за умов різної ширини мі-
жрядь має мінімальні відмінності щодо проценту
схожості. Однак більш кращі показники проявля-
ються за умов посіву даної культури з міжряддям
45 см. На нашу думку, збільшення ширини міжрядь
позитивно впливає на ростові процеси рослин, збі-
льшує площу живлення кореневої системи, а отже
формується більш повноцінне насіння. Найнижчою
схожістю насіння характеризується свіжозібране
насіння, так за ширини міжрядь 15 см, схожість ста-
новить 28 %, за ширини міжрядь 45 см ‒ 31 %. За
терміну 4 місяці схожість насіння коливається в ді-
апазоні 53-58 % за різної ширини міжрядь. При
чому варто зауважити, що практично за 8 місяців
підвищується схожість насіння чорного кмину
(Nigella sativa L.) до 94-96 %, тобто можна відмі-
тити, що насіння даної культури потребує яровіза-
ціїї (періоду спокою), що слід враховувати як при
визначенні якісних показників свіжозібраного на-
сіння, так і в подальшому насіннєвої придатності
посівного матеріалу.
Рис. 1. Особливості схожості свіжозібраного насіння чорного кмину (Nigella sativa L.)
Нами також було проаналізовано динаміку які-
сних показників чорного кмину (Nigella sativa L.),
зокрема схожості насіння щодо терміну його збері-
гання, та виявлено деяку закономірність (рис. 2).
Чітко прослідковується збільшення в процентному
співвідношенні схожість насіння на третьому році
вона практично рівнозначна майже 100 %. При
цьому варто зауважити, що на третій рік нівелю-
ються показники схожості Nigella sativa, отриманої
як при збиранні шириною міжрядь 15 см, так і ши-
риною міжрядь 45 см.
28
53
94
31
58
96
0
20
40
60
80
100
120
свіжозібрані 4 місяці 8 місяці
15 см 45 см
10 Sciences of Europe # 106, (2022)
Рис. 2. Вплив терміну зберігання на показники схожості насіння чорного кмину (Nigella sativa L.)
Проаналізувавши отримані результати серед-
ньозважених показників (рис. 3) в посівах чорного
кмину (Nigella sativa L.) можна відмітити, що при
ширині міжрядь 15 см на початкових етапах розви-
тку культури, зокрема сходів, середньозважений
показник кількості рослин на 1 м2
коливається в ме-
жах 607 рослин, в той час за умов посіву з міжряд-
дям 45 см всього 378. Однак на період збирання ми
бачимо випадання, що в першому випадку (міжря-
ддя 15 см) складає 35 рослин з м2
, в той час при мі-
жрядді 45 см цей показник становить 52 рослини.
На перший погляд кращі показники саме за умов
вузькорядного посіву, але аналізуючи дані щодо
формування коробочок на рослині, то на загущених
посівах їх кількість складає 7 шт./м2
, в той час як
при широкорядному способі – він становить 11
шт./м2
. Таким чином, ми бачимо, що при широко-
рядному посіві чорного кмину (Nigella sativa L.) ро-
звиток і продуктивність рослин відбувається більш
інтенсивніше, ніж за умов вузькорядного.
Рис. 3. Динаміка формування стеблостою в посівах чорного кмину (Nigella sativa L.) в залежності від
ширини міжрядь(середній показник)
94
96
97
98 98 98
92
97
95
99
96
99
88
90
92
94
96
98
100
15 см 45 см 15 см 45 см 15 см 45 см
1рік 2 роки 3 роки
Схожість насіння, % Відбір №1 Схожість насіння, % Відбір №2
607
572
7
4004
378
326
11
3586
0 1000 2000 3000 4000 5000
Кількість всходів, шт./м2
Кількість рослин в період
збирання, шт./м2
Кількість коробочок на одній
рослині, шт./м2
Кількість коробочок, шт./м2
45 см 15 см
Sciences of Europe # 106, (2022) 11
Рис. 4. Зміна динаміки фітометричних показників чорного кмину (Nigella sativa L.) в залежності від
ширини міжрядь при його посіві
За умов широкорядного способу посіву (рис. 4)
чорного кмину (Nigella sativa L.), рослини більш ви-
сокорослі, при цьому на 3 дні подовжується вегета-
ційний період, що нашу думку пов’язано з більшою
кількістю коробочок на кожній рослині в даному
варіанті. Однак варто зауважити, що показники
урожайності даної культури вищі за умов вузькоря-
дного способу посіву (15 см).
Висновки. Проаналізувавши отримані резуль-
тати, можна відмітити, що в залежності від подаль-
шого призначення насіння чорного кмину (Nigella
sativa L.) можна рекомендувати для вирощування
ту чи іншу ширину міжрядь. Так при вирощуванні
товарного насіння, що в подальшому буде перероб-
лятися на насіння та шрот, краще використовувати
вузькорядний спосіб посіву (15 см), де загальні по-
казники урожайності будуть вищі в порівнянні з
широкорядним. В той же час за умов закладання по-
сівів чорного кмину (Nigella sativa L.) в якості ре-
продуктивного матеріалу (насіннєві посіви), краще
збільшити ширину міжрядь до 45 см. При цьому бу-
дуть формуватися рослини з добре визрівшим на-
сінням з високою схожістю, однак загальна проду-
ктивність буде дещо нижча.
Література
1. Воронцов В.Т., Опара Н.М., Опара М.М. Ку-
льтурні рослини в раціональному харчуванні та
оздоровленні. Полтава: РВВ Полтавської державної
аграрної академії. 2007. С. 39-40.
2. Жарінов В.І., Остапенко А.І. Вирощування
лікарських, ефіроолійних, пряносмакових рослин:
Навчальний посібник. Київ: Вища школа. 1994. С.
230-231.
3. Лікарські рослини: Енциклопедичний довід-
ник / За ред. А. М. Гродзінського. Київ: УРЕ. 1990.
544 с.
4. Лікарське рослинництво: Навч. посіб. / М.І.
Бахмат, О.В. Кващук, В.Я. Хоміна, В.М. Комарні-
цький. Кам’янець-Подільський: ПП «Медобори
2006». 2011. 256 с.
5. Мамчур Ф.І., Гладун Я.Д. Лікарські рослини
на присадибній ділянці. Київ: Урожай. 1989. 196 с.
0,64
1,21
88
1,17
0,67
0,93
91
1,03
0 20 40 60 80 100
Висота рослин, см
Суха надземна біомаса, т/га
Довжина вегетаційного періоду,
днів
Урожайність насіння, т/га
45 см 15 см
12 Sciences of Europe # 106, (2022)
YIELD OF SOYBEAN IN THE CONDITIONS OF THE NORTHERN FOREST-STEPPE OF UKRAINE
DEPENDS ON MINERAL FERTILIZERS AND SEED INOCULATIONS
Klymenko T.,
Candidate of Agricultural Sciences
Binkivska N.,
Master
Shulha K.,
Master
Levkivskyi V.,
Master
Shashchuk I.
Master
Polissia National University, Ukraine
DOI: 10.5281/zenodo.7408512
ABSTRACT
For production in the conditions of the northern Forest-Steppe, it is recommended to grow the Zolotista soy-
bean variety with the use of mineral fertilizers at the rate of N40P45K60 and seed treatment with the inoculant
Nitrofix - C at the rate of 1,6 kg per 1 ton of seeds.
Keywords: variety, soybean, mineral fertilizers, inoculant, morphological indicators of plants, productivity.
Formulation of the problem.
Soy is a popular crop in the field of agriculture, it
provides good yields, it is grown on different types of
soil, except for sandy ones. The value of soybeans lies
in the content of protein and oil. This culture is used in
food production - flour, oil, soy milk soy sauce. An-
other uniqueness of soy is that it is considered univer-
sal. Various surrogates can be made from it, such as
meat, milk, chocolate etc [1, 2].
In order to increase crop productivity, it is neces-
sary to correctly and logically make a crop rotation of
alternating crops and a fertilization system, which
changes the quality and content of protein and oil in the
seeds of the crop.
The growth and development of plants also de-
pends on the water-heat balance of air and soil, variety,
hybrid, sowing time, tillage, phytosanitary state of
crops [3].
Analysis of recent research and publications.
An important point in the cultivation of soybeans
is the appropriate depth of fertilizer application, be-
cause it is the nutrients contained in the fertilizer that
are easily subject to water and wind erosion.
Fertilizer rates for soybeans are calculated accord-
ing to the soil and climatic conditions of the growing
zone. The standard amount of fertilizers depends on the
content of nutrients in the fertilizer, the mobile forms
of nutrients in the soil and the planned yield [1, 5].
Regarding the fertilization of crops in crop rota-
tion, soybean responds well to the introduction of or-
ganic fertilizers under the predecessor. Since the after-
effect of organic fertilizers (manure, compost) has a du-
ration of 3-4 years, crops are less weedy, since manure
contains a large number of weed seeds [3].
Leguminous crops, including soybeans, also need
bacterial fertilizers-inoculants, which are used to treat
seeds directly on the day of sowing [2]. Soybean is con-
sidered a fastidious crop and therefore requires careful
crop care and certain capital investments [4].
The purpose and tasks of the research.
The purpose of this work was to investigate the in-
fluence of the recommended rates of mineral fertilizers
in combination with the inoculant Nitrofix - C on the
growth and development of plants and the yield of soy-
beans of the Zolotista variety.
Research methods.
General scientific and special research methods:
field (selection of soil and plant samples); laboratory
(determination of the main agroecological parameters
of the soil and the dynamics of plant growth and devel-
opment).
Research was conducted during 2020-2021 at the
"Vertokyivka" farm of the Zhytomyr district of the
Zhytomyr region. The territory of the farm belongs to
the temperate soil and climate zone.
The soil is medium-loamy with a lumpy structure,
the density is 1,3-1,5 g/cm3
. The arable layer has the
following indicators: humus content – 2,9 – 4,2 %, al-
kaline hydrolyzed nitrogen - 66-80 mg/kg, mobile
phosphorus according to Chirkov - 140-250 mg/kg of
soil, exchangeable potassium - 80-99 mg/kg soil, soil
acidity – 5,5 – 6,9.
When growing soybeans, generally accepted agri-
cultural techniques for the region of the Northern Forest
Steppe were used. The seed sowing rate is 650-700
thousand
pcs. /ha.
Options for soybean fertilization:
1. Control - N40P45K60
2. N40P45K60 + Nitrofix - C (inoculant) - 1.6 kg per 1
ton of seeds.
Mid-early soybean variety Zolotista was used in
the research. Suitable for cultivation in all climatic
zones (Forest-Steppe, Polissia, Steppe). Vegetation pe-
riod - 105-120 days. The main feature of the variety is
the number of beans on the plant and the number of
seeds in the beans. Resistant to drought, lodging and
shedding of seeds.
From germination to flowering - 30-35 days. Re-
quires active temperatures at the level of 2230° С. The
height of the plant is 80-110 centimeters, 10-15 nodes
Sciences of Europe # 106, (2022) 13
are formed on the stem. The weight of 1000 seeds is
150-165 grams. The protein content varies between
39,3-41,0 %, and the oil content - 20-22 %.
Nitrofix - C inoculant was used for seed treatment.
Seed inoculation was carried out by evenly applying the
drug to soybean seeds with full seed coverage.
Research results.
The main technological factors affecting the
growth and development of soybean plants include
mineral nutrition of plants and seed inoculation (ta-
ble 1).
Table 1
Morphological indicators of plants of the Zolotista soybean variety depending on fertilizer,
average for 2020-2021
Fertilization Plant height, cm Stem diameter, cm Weight of plants, g
Control - N40P45K60 83,7 1,2 1025
N40P45K60 + Nitrofix - C 87,5 1,4 1129
The results of the research showed that the appli-
cation of N40P45K60 + Nitrofix - C (inoculant) contrib-
uted to the improvement of the morphological indica-
tors of soybean plants, and the height of the plants in-
creased by 3,8 cm, the diameter of the stem by 0,2 cm,
and the weight of the plants by 104 grams.
Also, the use of mineral fertilizers in combination
with the inoculant improved the characteristics of the
indicators of soybeans (table 2).
At the same time, the number of seeds (1 pc.), the
uniformity of seeds (0,2 %), the weight of 1000 pcs.
increased soybean seeds (7 g).
Table 2
Characteristics of indicators of soybeans of the Zolotista variety,
average for 2020-2021
Fertilization Number of seeds, pcs. Seed uniformity, % Weight 1000 pcs. soybean seeds, g
Control - N40P45K60 2 94 153
N40P45K60 + Nitrofix - C 3 96 160
The use of mineral fertilizers and inoculant had a positive effect on improving the morphological character-
istics of plants and soybeans, which, in turn, increased the yield of soybean seeds(table 3).
Table 3
The yield of the Zolotysta soybean seeds, depending on the fertilizer average for 2020-2021
Fertilization Productivity, t/ha
Increase in yield
t/hа %
Control - N40P45K60 2,3 - -
N40P45K60 + Nitrofix - C 2,6 0,3 112
NIR05 , t/hа 0,2
If in the control for the application of only mineral
fertilizers, the yield was obtained at the level of 2,3 t/ha,
then with the additional application of inoculant to min-
eral fertilizers, the yield increased to 2,6 t/ha, or by 0,3
t/ha. Such an increase in yield is reliable at the NIR05
level of 0,2 t/ha.
Conclusion.
When growing soybean seeds of the Zolotista va-
riety, the application of mineral fertilizers at the rate of
N40P45K60 in combination with the inoculant Nitrofix -
C1,6 kg per 1 ton of seeds in the soil-climatic zone of
the northern Forest-Steppe is sufficient to significantly
improve the morphological indicators of plants and ob-
tain a seed yield at the level of 2,6 t/ha.
References
1. Petrosyan T.O. Agricultural cultures and min-
eral nutrition / T.O. Petrosyan // K.: Raccoon, 2010. P.
200.
2. Luhova K.Yu. The quality of soybean grain due
to the use of inoculation and foliar feeding / K.Yu.
Lugova // Tavrii Scientific Bulletin. - T.: 2015. No. 11.
P. 44-48.
3. Organic fertilizers: teaching. manual / S. V.
Zhuravel et al. Polisky University Publishing House,
2020. P. 200.
4. Kirpa M. Soybeans: features of harvesting, pro-
cessing and preservation of the seed crop / M. Kirpa //
Proposal, 2015. No. 9. P. 58–61.
5. Buchko O.P. cultivation of agricultural plants
with the use of organo-mineral fertilizer / O.P. Buchko
// Visn. agrarian science, 2015. No. 4. P. 33-138.
14 Sciences of Europe # 106, (2022)
ART
MODERN NATIONAL CHOREOGRAPHY ON THE STAGE OF THE «ASTANA OPERA»
Sarzhanov A.,
The Kazakh National Academy of Choreography
Master student
Faculty of Arts
Saitova G.
The Kazakh National Academy of Choreography,
professor, Ph.D. in History of Arts
Faculty of Arts
DOI: 10.5281/zenodo.7408521
ABSTRACT
The article deals with the creation of the national ballet “Call of the Steppe” staged by the French choreogra-
pher Patrick de Bana and his interesting, creative idea for the Kazakh historical value in abstract images of an
eagle, wolf and horse. The author studies the work of the Western production group with Kazakhstan art workers
and their symbiosis in the creation of modern national ballet, their achievement and promotion of the final product
of both East and West.
Keywords: French choreographer, theater, interpretation, stage, modern choreography.
Introduction. Patrick de Bana is a French chore-
ographer and a citizen of the world. His collaboration
and creative ideas with numerous world stars in various
areas of theatrical art plunges into amazement. In such
vectors of art as dramaturgy or cinematography, visual
and musical art, scenography and, of course, choreog-
raphy, we can fully enjoy the versatility of Patrick de
Bain.
Aim: to determine the individual hand and style of
the choreographer Patrick de Bana in the process of
staging the ballet “Call of the Steppe” on the stage of
the Kazakhstan Theater “Astana Opera”.
Research methods:
- method of structural analysis and synthesis;
- method of observation and interviewing;
- empirical method
Our versatile hero was born in the north of Ger-
many in the city of Hamburg in an international family.
His mother is German by nationality, and his father is a
native of the West African Federal Republic of Nigeria.
His extraordinary origins most likely influenced his
ability to express his feelings in the language of dance.
Perhaps the ancestors of Patrick de Bana are African
sorcerers, and when creating his choreographic text, he
seems to enter a trance, where the mysterious magic of
dance is born. An extraordinary personality: “he stud-
ied at the choreographic school at the Hamburg Ballet
under the direction of John Neumeier and Truman Fin-
ney” [1]. Patrick de Bana received a good school in
modern German dance and subsequently developed his
innate talent from the venerable choreographer Maurice
Béjart. Under the direction of M. Bejart in the troupe
“Ballet de Lausanne” Patrick de Bana rose to the posi-
tion of leading soloist. Thereafter, “he moved to the
Spanish National Dance Company under the direction
of Nacho Duato, where he remained the premiere for
over ten years and danced in productions by Nacho Du-
ato, Jiri Kilian, Ohad Naarin, William Forsythe, Mats
Ek, Hans van Manen and others” [1].
Work on the ballet “Call of the Steppe” went on
for a long time. Firstly, the idea of origin and the search
for a choreographer who could embody what was con-
ceived and bring something new into the performance
of a national character is not a piece of cake. The ac-
quaintance of Patrick de Ban with the dancers of the
ballet troupe of the Astana Opera and the preliminary
rehearsal began in the second half of 2019. According
to the plan, work ought to be continued in the first half
of 2020. However, there is the second factor of obsta-
cles, the global pandemic of the COVID-19 Virus,
which has introduced its own adjustments in all areas
of the life of all mankind. Thirdly, just before the prem-
iere of the performance, unflattering, contradictory
claims flared up around the use of the author’s music
by the Kazakh composer Tles Kazhgaliyev.
As it is seen, the birth of this performance experi-
enced ups and downs, nevertheless, the premiere of the
ballet “Call of the Steppe” took place on December 15
and 16, 2020. It was symbolic since it was dedicated to
the Independence Day of the Republic of Kazakhstan,
evoking patriotic feelings of joy for the national prod-
uct that was created by the joint efforts of a Kazakh and
foreign team. The libretto for the ballet was written by
Kazakh film director, screenwriter and poet Bakhyt
Kairbekov, who has recently been working closely with
the Astana Ballet Theatre. But the adaptation of the
choreographic libretto was provided by the French spe-
cialist Jean Francois Vazel.
Initially, Patrick de Bana conceived to intertwine
organically the traditional elements of Kazakh dance
with modern choreography. “The idea of the continuity
of traditions and connection with the roots is the con-
necting thread between the choreography and the story-
line of the ballet” [2], - notes the information portal
Kapital.kz. Continuing the idea and plot of the ballet,
he emphasizes that “it is respect for one’s own history
and veneration of ancestors that gives the heroes the
strength to move confidently into the future” [2].
Once again, the irrefutable truth is confirmed -
there is no future without the past or everything new is
well-forgotten old. Also, you cannot argue with these
Sciences of Europe # 106, (2022) 15
statements. The very name “Call of the Steppe” con-
tains the ancient postulates of the truth of our ancestors,
which we must adhere to, honor and propagate to the
masses. It should be noted that the Kapital.kz article
talks about the interweaving of traditional elements of
folk dance with modern choreography, although in the
ballet itself the techniques of Kazakh dance are not
traced at all. In the costumes of the Father and Mother,
glimpses of national color are visible and nothing more
or in a Shaman costume, the uniform of which consists
of the attributes of the Kazakh shapan and tymak. In the
setting of the stage space there is a sacred place - the
Mausoleum of the Ancestors. That's all the positioning
with national symbols in this performance.
I would like to note that: “Earlier, Patrick de Bana
worked on national ballets in China, Turkey, Japan and
Bahrain” [2]. Thus, holding extensive experience in
creating national ballets, the French choreographer de-
cided to stage the Kazakh ballet in the light of his vi-
sion. This is the story of a simple family dreaming of
having a child. Parents ask the Almighty and pray for
the birth of a baby. Here, it was very important to show
a new look at the Kazakh culture, mentality and way of
life, which is embodied in a modern interpretation.
As mentioned above, work on the performance be-
gan even before the global pandemic. The plot of the
ballet “Call of the Steppe” echoes a series of films
about the first president of the Republic of Kazakhstan.
The narration of the story comes from the Shaman char-
acter, deeply revered by the people, closer to the Ka-
zakh culture of Baksy. Why did they leave the more
common terminology of the Sorcerer? It is most likely
that it is easier for the Western team to work in the di-
rection of Orientalism. The catch is not in the name of
the character, but what he represents. The young tal-
ented artist Gumar Sultanbek was entrusted with mak-
ing the Shaman a reality. Its plasticity and flexibility of
the body subjugates easily the gaze of the audience, as
if bewitching and transferring human consciousness to
another dimension. Sultanbek has a great sense of im-
provisation and hears the musical component of this
performance subtly. The shaman is the only character
in the ballet who practically never leaves the stage.
Speaking to the audience in the language of modern
Western choreography superimposed on folk music,
modified with elements of electronic sound inserts. Sul-
tanbek admits that working with Patrick de Bana was
exciting. The French choreographer is an excellent mo-
tivator and his requirements are clear to everyone, since
we speak the same language, the language of dance.
A shaman is a mediator between the worlds and a
chosen one of spirits, who has the ability to see a dif-
ferent reality. In this performance, the Shaman is a
guide to another universe, to the world of dreams and
dreaming. Throughout the action, abstract images of an
eagle, a wolf and a horse obey him. In the mythological
consciousness of the Kazakh people, the eagle had the
ability to disperse unclean forces. Thus, during child-
birth in women, this sacred bird protected the woman
in labor from the evil influence: the evil eye, slander. In
the projection on a person, the eagle gives him signifi-
cant character traits of courage, determination and lead-
ership. For Kazakhstan, the eagle plays an important
role as a symbol of love of freedom, because Kazakh
from ancient Turkic means a free nomad. It is not for
nothing that the eagle is depicted on the flag of the re-
public with widely spread wings.
From time immemorial, the Kazakh people led a
nomadic lifestyle, and for a free nomad and warrior, a
horse is an obligatory animal. The horse is a true friend
of man in this world. During the tengrism, after the
death of its owner, the horse accompanied him on his
way to heaven.
It is known that in folklore - the wolf represents
ferocity, deceit, cruelty and evil, all the negative criteria
of human character. But in this ballet, the wolf person-
ified courage and victory. In certain circumstances, the
wolf could become a powerful protector of helpless
creatures, and in this production, the wolf assists the
main character.
The protagonist, who embodies all the positive as-
pects of the human character, throughout the perfor-
mance, transforming himself, goes through all types of
psychological maturation of a person: the youth, the
son and the master. He must go through his life. “Hav-
ing come into this world, he, the future architect, be-
comes the main character of the work, around which all
further events unfold. The fight against envious people,
meeting with his beloved, building a city and much
more awaits him on the path of life” [3]. The performer
of the main part Nurmukhamet Galymzhan for the first
time tried on the role of the leading part in the perfor-
mance. It should be noted that the artist coped with the
task, because there was nothing difficult for the artist in
the choreography. According to Galymzhan, at the time
of studying at the AHU. A. V. Seleznev, their course
took the program "Modern Dance", so he did not have
any difficulties in mastering modern choreography on
a national theme presented by the French production.
As with all literary works, there must be conflict
in the plot. Conflict of interests of good and evil, black
and white. This conflict occurred between the antipode
of the protagonist of the Man in Black. This character
was embodied by Bekzat Orynbaev, who is like the ex-
act opposite reflection of the main character. Bekzat de-
scribed his version of the Man in Black as a zealous
leader with his own internal unresolved psychological
problems. Bekzat studied together with Galymzhan on
the same course, respectively, the innovative produc-
tion of the French choreographer did not cause any dif-
ficulties for him.
Why innovative production? Because any chore-
ographer has his own style, and Patrick de Bana has
such a style. According to Bekzat, the only thing that
did not bring comfort in the role was the life drive in
which the Man in Black should be. By nature, Bekzat
is phlegmatic and thus he did not fit his character. The
physical body of the performer must be hardy and ready
for various overloads. An artist is an artist because he
must be ready for different roles. Bekzat is the only bal-
let dancer who was involved in two groups of perform-
ers.
Patrick de Bana, first worked with the young ballet
troupe of the capital’s theater. Talking about the pro-
cess of creating a national ballet, the choreographer em-
16 Sciences of Europe # 106, (2022)
phasized: “... for myself I decided not to make a repro-
duction of the Kazakh dance, for this the viewer just
needs to go and watch the performance of the national
creative team. Everything that I do, I do with great re-
spect for the land on which I am, because I am a guest”
[3].
Thereby, the first act of the ballet reminds us more
of the past, and above all, emphasizes the forces and
significance of nature: the sounds of the wind, the mur-
mur of water and the howl of wolves. Abstract sacred
animals were portrayed by young, promising ballet
dancers such as Akhmetov Zhanserik in the role of the
Eagle, Akarys Beybarys - the wolf, Saukymbekov
Zhaksylyk - the horse. It is noteworthy that all these
characters, including the Shaman, perform their dances
with a naked torso, showing the beauty of their upper
body. Moving to the beat of the music, simultaneously
improvising, everyone revealed their images. Espe-
cially in their solo performances, where there is no mu-
sical introduction. The dance is accompanied by elec-
tronic music in the synthesis of various folk instru-
ments.
The second act is our modern world, where the
steppe life is being transformed in the context of mod-
ern society. As mentioned above, “The main idea of this
whole story is that moving forward is impossible with-
out awareness of one's roots and respect for the past, for
one's ancestors” [3]. Initially, the musical basis of this
national performance was the work of the talented Ka-
zakh composer Tles Kazhgaliyev. Unfortunately, un-
foreseen circumstances occurred, the directors were
forced to abandon the music of the Kazakh composer.
And in a short period of time, the modern composer Re-
nat Gaysin contributed his musical component to the
performance. The unique folklore group “Turan” made
a great contribution to the development of the national
ballet “Air Nomad”, then continued its partnership in
the play "Call of the Steppe".
In the first act of the ballet, “composer-arranger
Carlos Pino-Quintana created a compilation of sound
picture, built from music of his own composition, as
well as music of Kazakh authors” [4]. Uniting under the
slogan “Beauty saves the world”, the joint work on the
national performance emphasized the creative style of
the French choreographer Patrick de Bana, revealed the
performance potential of the Astana Opera ballet danc-
ers.
The results of the foreseen study showed that the
artistic director of the ballet troupe Altynai Ab-
duakhimovna Asylmuratova with many years of expe-
rience in the West and high aesthetic taste chose Patrick
de Bana as the choreographer for this national produc-
tion. Since the French choreographer continued the pro-
fessional development of ballet dancers in modern
dance. He gave the ballet dancers the opportunity to get
to know and touch the European school, modern chore-
ography more closely as well as to gain deep and mean-
ingful experience in the little-studied style of the cho-
reographer. As a result, we saw another facet of the Ka-
zakh dance heritage through the prism of the Western
choreographer. Without offending anyone, having
pushed aside the old blurry stereotype of perception of
Kazakh dance, we continue to search for our own style
with the help of Western choreographers.
Conclusion
Taking above mentioned facets into consideration,
we can say that a new meeting of the Kazakh public
with a ballet on a national theme, staged in modern cho-
reography, has strengthened the ranks of fans of ballet
art. The vividly tangible emotional and expressive
world of movements in the ballet “The Call of the
Steppe” by Patrick de Bana gave impetus to the work
of the Astana Opera ballet troupe. The modern ballet
art of Kazakhstan lives largely because of the powerful
impulse of talented choreographers, librettists, artists,
conductors and artists as well [4].
References
1. The Call of the Steppe – [B.M.]: [B.I.], 2021.
2. The world premiere of the ballet "The Call of
the Steppe" took place in the capital -
https://kapital.kz/lifestyle/91979/v-stolitse-sostoyalas-
mirovaya-prem-yera-baleta-zov-stepi.html
3. The National Ballet "The Call of the Steppe"
can become the hallmark of the culture of Kazakhstan
- https://www.zakon.kz/5048187-natsionalnyy-balet-
zov-stepi-mozhet.html
4. "The Call of the Steppe": The world premiere
took place on the stage of the Astana Opera -
https://tengrinews.kz/news/zov-stepi-mirovaya-
premera-proshla-na-stsene- astana-opera-423358/
Sciences of Europe # 106, (2022) 17
BIOLOGICAL SCIENCES
THE GENUS OF AETHIONEMA R. BR. SPREADING IN FLORA OF NAKCHIVAN AUTONOMOUS
REPUBLIC OF AZERBAIJAN
Aliyeva A.
PhD in Biological Sciences
University lecturer, Nakhchivan State University, Nakhchivan, Azerbaijan
DOI: 10.5281/zenodo.7408525
ABSTRACT
Article Brassicaceae Burnett distributed in Nakhchivan flora. belonging to the family Aethionema R.Br. It
talks about sexual types. Here, the bioecological characteristics of species - phenophase, life form, ecological
group, altitude zone, ecological environment are explained in detail. Aethionema R.Br. It was also mentioned
about the subendemic plant of the flora of Azerbaijan, spreading in the flora of the Nakhchivan Autonomous
Republic of the genus. The characteristic species of the genus for the Nakhchivan flora of Azerbaijan are reported.
Keywords: cruciferous family, genus, species, subendemic, ecology, phenophase, formation, geographical
range.
INTRODUCTION. Brassicaceae Burnett. -
species of the cruciferous family is widespread in the
world (especially in the Northern Hemisphere). The
family includes annuals, biennials, perennials and
shrubs. There are decorative, economically important
oil-bearing, fruit-bearing, food species of such plants.
The family includes both wild and cultivated species.
These species are distributed throughout the world and
in all ecological environments (mainly in temperature
climates) except Antarctica.
OBJECTIVES AND METHODS: Boyahmad
area of Julfa district was selected as the research area.
The research object is Aethionema pulchellum Boiss. &
Huet. and other species belonging to the genus
Aethionema R.Br. of the Brassicaceae Burnett family.
During expeditions and free itineraries to the area (03
June - 15 July 2022) distribution area and ecological
environment of Aethionema pulchellum Boiss. & Huet.
specie of Aethionema R.Br. have been specified.
[Qurbanov E.M., Cabbarov M.T.. 2017.; 8, s. 1042-
1054; 9, s. 1-66]. Altitude zones and coordinates of the
research area have been determined. Researches were
carried out in areas with an altitude above sea level
(DSH) of 2175 - 2223 m, coordinates - 390 15ʹ 31ʺ N,
450 52ʹ 12ʺ E.
RESULTS AND ANALYSIS Plants were
collected and herbarium in the research area. Species
have been identified using various determinants.
During the expedition to the territories, Aethionema
R.Br. The distribution area and ecological environment
of the species of the genus have been specified. The
species composition of the formation in which the plant
is included has been studied.
The Brassicaceae Burnett. family has a special
placement in the diversity of the flora of the
Nakhchivan Autonomous Republic. It is known that
there are more than 3 thousand species belonging to 350
genus of the cruciferous family. [Ə.M Talıbov T.H.,
İbrahimov Ə.Ş., İbrahimov, Герман Д. А. 2022]. 165
species collected in 67 genus of the family grow in
Nakhchivan Autonomous Republic. [Nəbiyeva F.,
2013; Talıbov T.H., İbrahimov Ə.Ş., İbrahimov Ə.M.,
2021].
Aethionema R.Br. (Puljugluot genus) is one of the
genus belonging to the cruciferous family. Aethionema
originates from the ancient Greek words "to clarify, to
connect, to thread". In English, it means "stone salt".
This name was given to the plant because it grows in
stony places.
8 species (5%) of the genus are distributed in the
flora of the Nakhchivan Autonomous Republic:
Genus: Aethionema R.Br.
Aethionema arabicum (L.) Lipsky
Aethionema cardiophyllum Boiss. & Heldr.
Aethionema cordatum (Desf.) Boiss.
Aethionema diastrophis Bunge
Aethionema edentulum N.Busch
Aethionema fimbriatum Boiss.
Aethionema pulchellum Boiss. & Huet.
Aethionema Szowitsii Boiss. (A. elengatum auct.)
Aethionema R.Br. cinsinin Aethionema
cardiophyllum Boiss. & Heldr., Aethionema cordatum
(Desf.) Boiss., Aethionema diastrophis Bunge,
Aethionema edentulum N.Busch, Aethionema
fimbriatum Boiss., Aethionema pulchellum Boiss. &
Huet. are typical for the Nakhchivan flora of
Azerbaijan, Aethionema edentulum N.Busch. species is
also a subendemic plant of Azerbaijan flora.
18 Sciences of Europe # 106, (2022)
Aethionema pulchellum Boiss. & Huet.
Aethionema pulchellum Boiss. & Huet. is one of
the plants belonging to the genus Aethionema R.Br.
Aethionema pulchellum Boiss. & Huet. is a multi-
stemmed semibush plant with a height of 15-30 cm.
The green leaves are linear and oblong in shape.
Green calyx leaves are sometimes dark, pink petals are
6 mm long. It is short columnar. The plant blooms in
the 5th month and bears fruit in the 6th month. It is
distributed on the dry, stony, rocky slopes of the lower
to middle mountain belt. Due to its beautiful leaves and
pink flowers, it is very valuable from a decorative point
of view.
(Decorative species of the genus Aethionema
R.Br., Julfa district - Boyahmad village 09. VI. 2022).
Boyahmad village is located 62 km northeast of
Julfa district center, on the left bank of Alinja river.
During the expedition to the area, the species
Aethionema pulchellum Boiss. & Huet. was found. The
plant is located in Boyahmed village, altitude 2175 -
2223 m. spread at high altitude. The botanical and
ecological characteristics of the species belonging to
the genus Aethionema R.Br. – Pulcugluot are
mentioned in the table below:
Table 1
Botanical and ecological characteristics of species of the genus Aethionema R.Br.
№ Species Altitude Phenophase Life form Height belt
Ecological
environment
1.
Aethionema arabicum
(L.)
5-25cm V-VI, VI (VII)
Annual
grass
Middle
mountain
belt
Dry, stony,
gravelly places
and spills
2.
Aethionema
cardiophyllum Boiss.
& Heldr.
15-25cm V-VI, VI-VII semibush
Middle
mountain
belt
Dry, stony,
gravelly places
3.
Aethionema cordatum
(Desf.) Boiss.
10-30cm V-VI, VI-VII semibush
Middle
mountain
belt
Dry, gravelly
places
4.
Aethionema diastrophis
Bunge
15-25cm V-VI, VII-VIII semibush
Middle
mountain
belt
Stony, gravelly
places
5.
Aethionema edentulum
N.Busch
25-35cm V, VII-VIII semibush
Middle
mountain
belt
Dry, stony,
gravelly places
6.
Aethionema fimbriatum
Boiss.
25-40cm VIII semibush
Middle
mountain
belt
Rocky places
Sciences of Europe # 106, (2022) 19
7.
Aethionema pulchellum
Boiss. & Huet.
15-30cm V, VI semibush
Middle
mountain
belt
Rocky,
gravelly places
8.
Aethionema Szowitsii
Boiss. (A. elengatum
auct.)
20-40cm V-VI, V semibush
Middle
mountain
belt
Rocky, mostly
calcareus places
As can be seen from the table, Aethionema R.Br. The species belonging to the genus are mainly semi-bush
due to their life form. Most of these plants are distributed in the middle mountain belt and on dry, stony slopes.
The plants of the genus Aethionema R.Br are subendemic of the flora of Azerbaijan, and there are species
characteristic of the Nakhchivan flora of Azerbaijan. These types and other information are listed in the table
below.
Table 2
Subendemic species and other characteristics of the species of the genus Aethionema R.Br belonging to the
Nakhchivan flora of Azerbaijan
№ Species
Species of
Nakhchivan`s
flora
Subendemic
species of
Azerbaijan`s Flora
Geographic
area type
Useful features
1.
Aethionema arabicum (L.)
Lipsky
Front Asia
Decorative,
fodder
2.
Aethionema cardiophyllum
Boiss. & Heldr. -
+ Asia Minor
Decorative,
fodder
3.
Aethionema cordatum
(Desf.) Boiss.
+ Asia Minor Decorative
4.
Aethionema diastrophis
Bunge
+ Atropatan
5.
Aethionema edentulum
N.Busch
+ + Atropatan
6.
Aethionema fimbriatum
Boiss.
+ Atropatan
7.
Aethionema pulchellum
Boiss. & Huet.
+ Iran
Decorative,
pharmaceptual
8.
Aethionema Szowitsii Boiss.
(A. elengatum auct.)
Atropatan Decorative
CONCLUSION As can be seen from the data in
the table, 6 of the 8 species of the Puljugluot genus
distributed in the flora of Nakhchivan Autonomous
Republic (75%) are typical for the flora of Nakhchivan
of Azerbaijan and one species (Aethionema edentulum
N.Busch) is a subendemic plant. Half of the species of
the genus belong to the geographical area type
Atropatan. Also, most of the species belonging to the
Pulcugluot genus (5 species, 62%) are of decorative
importance.
References
1. Askerov A. Flora of Azerbaijan. Baku; TEAS
Press, 2016, p. 183-198
2. Kurbanov E.M., Jabbarov M.T. Geobotany.
Baku, Baku State University Publishing House, 2017,
320 p.
3. Red Book of the Nakhchivan Autonomous
Republic (Higher spore, gymnosperms and
angiosperms), volume 2, Nakhchivan: "Ajami" 2010, p.
322-330
4. Nabieva F. Useful properties of plants of the
family Brassicaceae Burnett common in Shahbuz
region // Bulletin of the Nakhchivan branch of the
National Academy of Sciences of Azerbaijan. Series of
natural and technical sciences, vol. 9, no. 4, 2013, p.
122-132
5. Talybov T.G., Ibragimov A.Sh., Ibragimov
A.M. Taxonomic spectrum of the flora of the
Nakhchivan Autonomous Republic (Higher spore,
gymnosperms and angiosperms), 2nd ed., Nakhchivan,
2021, p. 147-157
6. German D. A. To the species composition of
cruciferous plants (Cruciferae) in Russia and some
neighboring countries, // Altai State University, prosp.
Lenina, d. 61, 656049, Barnaul, Russia, Turczaninowia
25, 1: 146–152 (2022)
7. Flora of Azerbaijan, volume IV, publishing
house of the Academy of Sciences of the Azerbaijan
SSR, Baku, 1953, art. 169-182
8. Mohammadin S, Peterse K, van de Kerke S.J,
Chatrou L.W, Dönmez A.A et al. Anatolian origins and
diversification of Aethionema, the sister lineage of the
core Brassicaceae. American Journal of Botany 104
(7): 2017, pp. 1042–1054
9. Yıldırımlı Ş, Kılıç Ö. New infrageneric taxa
and species of Aethionema W.T. Aiton (Brassicaceae)
and their current key from Turkey. The Herb Journal of
Systematic Botany 23 (1-2), 2016, pp. 1–6
20 Sciences of Europe # 106, (2022)
ECONOMIC SCIENCES
ANALYSIS OF THE DYNAMICS OF INCOME AND COSTS OF THE POPULATION IN THE
REPUBLIC OF AZERBAIJAN
Ayyubova N.,
Ph.D in Economics. Associate Professor of “Mathematical Economy”
department of Baku State University, Republic of Azerbaijan
https://orcid.org/0000-0003-3225-389X
Mammadli A.
Master student of “Mathematical Economy”
department of Baku State University, Republic of Azerbaijan
DOI: 10.5281/zenodo.7408529
ABSTRACT
In the presented work, a statistical analysis of the distribution of income indicators and costs of the population
was carried out, the distribution of the population's income and the degree of stratification of the society were
investigated based on the Gini and Lorenz indices. An extensive empirical analysis of the time series according to
the income and costs indicators of the population was carried out, descriptive statistics were determined, the normal
distribution of the series based on the Jarque-Bera test, stationarity was investigated based on the autocorrelation
function and the Dickey-Fuller test, White, Cusum tests were checked. AR models with first and second order
differences were established, it was determined that the AR(1) model for income is not stationary, the AR(2) model
satisfies the stationarity conditions, and the AR(1) time series for costs is stationary.
The conducted research can be evaluated as the basis of studies on extensive empirical analysis, modeling
and forecasting of the income and cost of the population in the Republic of Azerbaijan and create wide
opportunities for prospective studies. The statistical information used in the study was obtained from the official
website of the State Statistical Institute and covers the years 1995-2021. The obtained data were processed in Excel
and Eviews application software packages.
Keywords: empirical analysis of income and cost indicators of the population, Jarque-Bera test, AR models,
Cusum test, autocorrelation, stationarity.
Introduction. In modern periods, the statistical
study of the income and costs of the population across
countries is of great importance. Accordingly, to ana-
lyze the standard of living of the population, to develop
a socio-economic policy and, most importantly, to or-
ganize the social protection of individual population
groups, it is necessary to collect and statistical analyze
objective data about income. Income is an important
economic indicator reflecting social development. If
the distribution of income is fair, the social welfare in
the country will increase, the poverty level will de-
crease and there will be optimistic expectations about
the future. Currently, the change in the economic situa-
tion in a number of countries has a significant impact
on the living standards of the population and its sepa-
rate strata, as well as the level and structure of their in-
come and costs to one degree or another. The popula-
tion's standard of living has seriously decreased, the
number of unemployed and those living in poverty has
increased, the process of stratification has intensified,
such cases increase the importance of the statistical
study of income and expenses of the population based
on the MHS concept, justifies the relevance of the topic
of the research.
It is important to collect objective information
about the income and costs of the population, to analyze
the general state of the economy and the standard of
living of the population, to develop the social policy of
the state and to implement concrete measures to organ-
ize. Systematized information on the income of the
population can be used to assess the possibilities of ex-
panding investment processes through the mobilization
of internal resources. Despite the statistical analysis,
modeling of macroeconomic indicators [5,14] that
shape and determine the standard of living of the pop-
ulation in domestic and foreign literature
[3,4,7,9,16,17], as well as work designed to investigate
and solve other problems, the relevance of the issue
considered, the application of these economic for re-
search studies is important [1,2,6,12,13].
A number of scientific articles are devoted to these
problems, taking into account regional characteristics
in the process of transformation of national economies,
and are devoted to the analysis of integration processes
between individual countries and groups of countries of
the post-Soviet space.
The main part of research. The statistical data re-
quired to conduct an econometric analysis of the une-
ven distribution of income and cost of the population in
the Republic of Azerbaijan were obtained from the of-
ficial website[15] of the State Statistical Committee of
the Republic of Azerbaijan and presented in Table 1.
The statistical information in Table 1 indicates In-
come(Y1) - the income of the population, Absolute rate
of change (Y2) - the rate of absolute change of income,
Costs (Y3) - the cost of the population. The absolute rate
of change of income was determined by calculating the
ratio of the difference between the current level and the
previous level to the previous level according to the in-
come in the Excel software package.
Sciences of Europe # 106, (2022) 21
Table 1.
Income and cost indicators of the population for the years 1995-2021 (in current prices, in million manats)
Years Income(Y1) Absolute rate of change (Y2) Costs (Y3)
1995 1,340.5 - 1,275.8
1996 1,905.1 0.42 1,853.1
1997 2,473.4 0.30 2,411.3
1998 2,884.8 0.17 2,932.6
1999 3,687.7 0.28 3031.4
2000 4,047.3 0.10 3,272.2
2001 4,301.6 0.06 3,498.4
2002 5,018.6 0.17 4,171.2
2003 5,738.1 0.14 4,793.8
2004 6,595.1 0.15 5,549.9
2005 8,063.6 0.22 6,508.7
2006 10,198.5 0.26 8,208.1
2007 14,558.2 0.43 11,249.7
2008 20,735.4 0.42 15,891.9
2009 22,601.1 0.09 17,417.6
2010 25,607.0 0.13 19,251.5
2011 30,524.6 0.19 22,184.0
2012 34,769.5 0.14 24,564.0
2013 37,562.0 0.08 28,021.2
2014 39,472.2 0.05 30,799.6
2015 41,744.8 0.06 34,963.4
2016 45,395.1 0.09 39,775.0
2017 49,187.9 0.08 44,498.4
2018 53,103.7 0.08 47,557.2
2019 56,769.0 0.07 51,927.4
2020 55,754.1 -0.02 49,744.0
2021 57,181.5 0.03 55201.5
Source: Prepared by the authors based on the data obtained from the State Statistical Committee.
The results of descriptive statistics are important in time series analysis.
Table 2.
Results of descriptive statistics on incomes and costs of the population, absolute rate of change of income
Income (Y1)
(23748.90)
Absolute rate of change(Y2)
(0.161280)
Costs (Y3)
(20020.48)
Median 20735.40 0.136031 15891.90
Maximum 57181.50 0.427484 55201.50
Minimum 1340.500 -0.017878 1275.800
Std.Dev 20260.34 0.123748 18141.79
Skewness 0.395810 0.970919 0.644498
Kurtosis 1.619909 3.022570 1.981182
Jarque-Bera statistic 2.847730 4.085511 3.036940
Probability 0.240782 0.129671 0.219047
Sum 641220.4 4.193279 540552.9
Sum Sq.Dev 1.07E+10 0.382837 8.56E+09
Observations 27 26 27
In Table 2 represents average indicators, mean
square deviations, excess, asymmetry and other charac-
teristics of time series on income, absolute rate of
change of income and costs. Satisfactory results were
obtained for all three series for both excess and asym-
metry. In this way, for these mentioned characteristics,
the calculated results in all cases are small and very
close to 0, they satisfy the conditions for the signifi-
cance of asymmetry and excess. The distribution of the
time series follows a normal distribution in all three
cases. The results of the Jarque-Bera test also confirm
this. JBY1=2.847730, prob.=0.240>0.05; since
JBY2=4.085511, prob.=0.12>0.05 and JBY3=3.036940,
prob.=0.21>0.05, the hypotheses of normal distribu-
tion are accepted. Note that the average values for Y1,
Y2 and Y3 are listed in parentheses in Table 2.
Results according to the autocorrelation function
(ACF) and specific autocorrelation function (PACF),
their graphs and the results of the ADF test with both
primary and first and second order differences can char-
acterize the stationarity of time series [8,10,11,14]. In
the next step of the research, the autocorrelation
functions for the incomes and costs of the population
were investigated.
22 Sciences of Europe # 106, (2022)
The presence of autocorrelation among the
residuals in the autoregression model indicates that
there is correlation between the levels of the time series.
This dependence causes cyclical fluctuations in the
levels of the series, which leads to the low quality and
inefficiency of the forecasts formed on the basis of the
autoregression model, because deviations of a cyclical
nature, in general, are not random and can create a
trend. The analysis of dynamic results and the
constructed autocorrelation and special autocorrelation
functions of the considered time series can form an
opinion whether the series Y1 and Y3 are stationary or
non-stationary according to the initial data.
Thus, in the autocorrelation analysis conducted on
population incomes, probabilities less than 0.05 for all
levels determine that the series is non-stationary, and
the H0 hypothesis is rejected (see Picture1).
Picture 1. ACF and PACF for the order Y1 according to the income of the population.
In picture 2 presents the results of the autocorrelation analysis on population costs. In this case, the
probabilities are equal to 0.00 for all levels of the series, and the hypothesis H1 is accepted as an alternative
hypothesis to H0 about the non-stationarity of the considered series.
Picture 2. ACF and PACF for the Y3 row according to population cost.
According to the results in Picture-1 and Picture-
2, we can conclude that ACF decreases for series Y1
and Y3, and PACF has the highest autocorrelation
coefficient for series Y1 for first order and for series Y3
for first and third order. Functions for other levels do
not have significant autocorrelation coefficients.
In the conducted research, the capabilities of the
Dickey-Fuller test were used to eliminate the non-
stationarity of the studied time series based on the
primary data. Let's examine the ADF test results using
the Eviews application software package. According to
the test, the hypothesis that the time series has a single
root is accepted if the probability of the t-statistic is less
than 5% (significance level of 0.05). For the time series
to be stationary, the value of the Dickey-Fuller test
should be smaller than the critical value at the 1%, 5%,
10% significance levels. The test results are presented
in Table 3:
Sciences of Europe # 106, (2022) 23
Table 3.
Dickey-Fuller test results
Variable T-statistic
Critical
values: 1%
Critical
values: 5%
Critical
values: 10%
Prob.
First difference, trend and constant
Income (Y1)
Absolute rate of change (Y2)
Costs (Y3)
-2.666340
-5.152159
-5.217134
-4.374307
-4.416345
-4.374307
-3.603202
-3.622033
-3.603202
-3.238054
-3.248592
-3.238054
0.2573
0.0021
0.0015
Second difference, trend and constant
Income (Y1)
Absolute rate of change (Y2)
Costs (Y3)
-5.170003
-7.392002
-9.236511
-4.416345
-4.440739
-4.394309
-3.622033
-3.632896
-3.612199
-3.248592
-3.254671
-3.243079
0.0020
0.0000
0.0000
In Table 3, because the probability level for
Income (Y1) is greater than 0.05, the time series is
trending and stationary with the first difference, and the
absolute rate of change of income (Y2) is less than 0.05,
and the t-statistic value is 1% , 5%, is smaller than the
significance level value of 10%, so the H0-hypothesis is
rejected and the time series is stationary in the case of
trend constant with the first difference. When we look
at cost (Y3), since the probability level is less than 0.05,
and also the value of t-statistic is smaller than the value
of 1%, 5%, 10% significance level, the time series is
assumed to be stationary in the case of trend constant
with first order difference. The probability level of
Income (Y1) with the second design difference is less
than 0.05 and the value of the t-statistic is smaller than
the value of the significance level of 1%, 5%, 10%, so
the H0-hypothesis is rejected and the trend with the
second design differences is stationary. Since the
absolute rate of change of income (Y2) is smaller than
the 5% probability level and the 1%, 5%, 10%
significance level, the second formulation is considered
stationary in the case of a trend constant with the
difference, and also the cost (Y3) is less than the 5%
probability level and the 1%, 5%, 1%, 5%, since it is
smaller than the 10% significance level, the second
formulation is stationary with the trend constant.
White's test was used to check the
heteroskedasticity and the result is given in Table-4 for
income, Table-5 for absolute rate of change of income,
and Table-6 for cost. nR2
=Obz*R2
, the number of
observations was taken n=26 in both cases. It received
value R2
=3.506367 for income, R2
=1.264556 for
absolute rate of change of income, and R2
=4.729267
for cost. As the probability level for all three values is
greater than 0.05, heteroscedasticity is not detected in
the model, and the hypothesis H0 about
homoscedasticity is accepted.
Table 4.
White test results (Income Y1)
F-statistic 1.792650 Prob (2,23) 0.1890
Obs*R- squared 3.506367 Prob. Chi-Square (2) 0.1732
Table 5.
White test results (Absolute rate of change Y2)
F-statistic 0.587917 Prob(2,23) 0.5636
Obs*R- squared 1.264556 Prob. Chi-Square (2) 0.5314
Table 6.
White test results (Costs Y3)
F-statistic 2.548241 Prob(2,24) 0.0992
Obs*R- squared 4.729267 Prob.Chi-Square(2) 0.0940
It is used to evaluate the stability of the parameters
of the model. These tests are based on the calculation
of the cumulative sum of the recursive residuals and the
cumulative sum of the squares of the recursive residuals
and the evaluation of the corresponding equations. Test
results are analyzed according to 95% confidence
intervals. If the recursive estimates of the residuals
deviate from the critical limits, then this indicates
instability of the model parameters. Graphically, if the
blue line is located between the red lines and does not
intersect with them, it confirms the Н0 hypothesis about
the stability of the parameters, otherwise, if the blue
line intersects with the red lines, then the H1 hypothesis
about the instability of the parameters relative to the
length of the time interval is accepted. The results of
the CUSUM test are shown in Picture-3 for income,
Picture-4 for the absolute rate of change of income, and
Picture-5 for cost.
24 Sciences of Europe # 106, (2022)
-20
-10
0
10
20
30
40
98 00 02 04 06 08 10 12 14 16 18 20
CUSUM 5% Significance
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
96 98 00 02 04 06 08 10 12 14 16 18 20
Standardized Residuals
Picture 3. Cusum test and standardized residuals (income Y1)
-15
-10
-5
0
5
10
15
98 00 02 04 06 08 10 12 14 16 18 20
CUSUM 5% Significance
-2
-1
0
1
2
3
96 98 00 02 04 06 08 10 12 14 16 18 20
Standardized Residuals
Picture 4. Cusum test and standardized residuals (Absolute rate of change Y2)
-15
-10
-5
0
5
10
15
98 00 02 04 06 08 10 12 14 16 18 20
CUSUM 5% Significance
-3
-2
-1
0
1
2
3
96 98 00 02 04 06 08 10 12 14 16 18 20
Standardized Residuals
Picture 5. Cusum test and standardized residuals (costs Y3)
According to the results of the CUSUM test for the
income of the population (Y1), the instability of its
parameter is observed because it does not meet the
required conditions. As the level indicators of the
results of the CUSUM test on the absolute rate of
change of income (Y2) are close to each other, they do
not change and give the impression of stable dynamics
on a straight line, and since the blue line is located
between the red lines, it is assumed that the Y2-
parameter is stable or steady. Also presented in Picture
4 is a representation of the standardized residuals, and
in this graphical representation, the recursive values of
residuals (CUSUM) and the recursive values of squares
of residuals (CUSUM of Squares) do not deviate from
the 95% confidence interval. According to the results
of the CUSUM test on cost (Y3) in figure 5, the cost
parameters can be considered stable and steady.
Let's consider autoregression models with first and
second order differences to characterize the
dependencies between economic indicators.
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)
Sciences of Europe No 106 (2022)

More Related Content

Similar to Sciences of Europe No 106 (2022)

The scientific heritage No 99 (99) (2022)
The scientific heritage No 99 (99) (2022)The scientific heritage No 99 (99) (2022)
The scientific heritage No 99 (99) (2022)
The scientific heritage
 
The scientific heritage No 78 (78) (2021) Vol 3
The scientific heritage No 78 (78) (2021) Vol 3The scientific heritage No 78 (78) (2021) Vol 3
The scientific heritage No 78 (78) (2021) Vol 3
The scientific heritage
 
VOL 1, No 4 (4) (2016)
VOL 1, No 4 (4) (2016)VOL 1, No 4 (4) (2016)
VOL 1, No 4 (4) (2016)
The scientific heritage
 
Sciences of Europe No 117 (2023)
Sciences of Europe No 117 (2023)Sciences of Europe No 117 (2023)
Sciences of Europe No 117 (2023)
Sciences of Europe
 
Sciences of Europe No 97 (2022)
Sciences of Europe No 97 (2022)Sciences of Europe No 97 (2022)
Sciences of Europe No 97 (2022)
Sciences of Europe
 
VOL-1-No-12-12-2017
VOL-1-No-12-12-2017VOL-1-No-12-12-2017
VOL-1-No-12-12-2017
Sciences of Europe
 
Vol 2-№-40-40-2019
Vol 2-№-40-40-2019Vol 2-№-40-40-2019
Vol 2-№-40-40-2019
The scientific heritage
 
VOL-2-No-35-2019
VOL-2-No-35-2019VOL-2-No-35-2019
VOL-2-No-35-2019
Sciences of Europe
 
VOL 2, No 59 (2020)
VOL 2, No 59 (2020)VOL 2, No 59 (2020)
VOL 2, No 59 (2020)
Sciences of Europe
 
VOL-2-No-45-45-2020
VOL-2-No-45-45-2020VOL-2-No-45-45-2020
VOL-2-No-45-45-2020
The scientific heritage
 
Vol 1-No-43-2019
Vol 1-No-43-2019Vol 1-No-43-2019
Vol 1-No-43-2019
Sciences of Europe
 
Njd 45 2
Njd 45 2Njd 45 2
VOL 1, No 52 (52) (2020)
VOL 1, No 52 (52) (2020)VOL 1, No 52 (52) (2020)
VOL 1, No 52 (52) (2020)
The scientific heritage
 
Vol 2-no-44-44-2020
Vol 2-no-44-44-2020Vol 2-no-44-44-2020
Vol 2-no-44-44-2020
The scientific heritage
 
конференция актуальные проблемы науки и практики 21 в. 2 выпуск
конференция актуальные проблемы науки и практики 21 в. 2 выпускконференция актуальные проблемы науки и практики 21 в. 2 выпуск
конференция актуальные проблемы науки и практики 21 в. 2 выпуск
Елена Овечкина
 
Sciences of Europe VOL 2, No 66 (2021)
Sciences of Europe VOL 2, No 66 (2021)Sciences of Europe VOL 2, No 66 (2021)
Sciences of Europe VOL 2, No 66 (2021)
Sciences of Europe
 
VOL-1-No-8-8-2016
VOL-1-No-8-8-2016VOL-1-No-8-8-2016
VOL-1-No-8-8-2016
Sciences of Europe
 
VOL 1, No 53 (53) (2020)
VOL 1, No 53 (53) (2020)VOL 1, No 53 (53) (2020)
VOL 1, No 53 (53) (2020)
The scientific heritage
 
The scientific heritage No 93 (93) (2022)
The scientific heritage No 93 (93) (2022)The scientific heritage No 93 (93) (2022)
The scientific heritage No 93 (93) (2022)
The scientific heritage
 
Sciences of Europe No 95 (2022)
Sciences of Europe No 95 (2022)Sciences of Europe No 95 (2022)
Sciences of Europe No 95 (2022)
Sciences of Europe
 

Similar to Sciences of Europe No 106 (2022) (20)

The scientific heritage No 99 (99) (2022)
The scientific heritage No 99 (99) (2022)The scientific heritage No 99 (99) (2022)
The scientific heritage No 99 (99) (2022)
 
The scientific heritage No 78 (78) (2021) Vol 3
The scientific heritage No 78 (78) (2021) Vol 3The scientific heritage No 78 (78) (2021) Vol 3
The scientific heritage No 78 (78) (2021) Vol 3
 
VOL 1, No 4 (4) (2016)
VOL 1, No 4 (4) (2016)VOL 1, No 4 (4) (2016)
VOL 1, No 4 (4) (2016)
 
Sciences of Europe No 117 (2023)
Sciences of Europe No 117 (2023)Sciences of Europe No 117 (2023)
Sciences of Europe No 117 (2023)
 
Sciences of Europe No 97 (2022)
Sciences of Europe No 97 (2022)Sciences of Europe No 97 (2022)
Sciences of Europe No 97 (2022)
 
VOL-1-No-12-12-2017
VOL-1-No-12-12-2017VOL-1-No-12-12-2017
VOL-1-No-12-12-2017
 
Vol 2-№-40-40-2019
Vol 2-№-40-40-2019Vol 2-№-40-40-2019
Vol 2-№-40-40-2019
 
VOL-2-No-35-2019
VOL-2-No-35-2019VOL-2-No-35-2019
VOL-2-No-35-2019
 
VOL 2, No 59 (2020)
VOL 2, No 59 (2020)VOL 2, No 59 (2020)
VOL 2, No 59 (2020)
 
VOL-2-No-45-45-2020
VOL-2-No-45-45-2020VOL-2-No-45-45-2020
VOL-2-No-45-45-2020
 
Vol 1-No-43-2019
Vol 1-No-43-2019Vol 1-No-43-2019
Vol 1-No-43-2019
 
Njd 45 2
Njd 45 2Njd 45 2
Njd 45 2
 
VOL 1, No 52 (52) (2020)
VOL 1, No 52 (52) (2020)VOL 1, No 52 (52) (2020)
VOL 1, No 52 (52) (2020)
 
Vol 2-no-44-44-2020
Vol 2-no-44-44-2020Vol 2-no-44-44-2020
Vol 2-no-44-44-2020
 
конференция актуальные проблемы науки и практики 21 в. 2 выпуск
конференция актуальные проблемы науки и практики 21 в. 2 выпускконференция актуальные проблемы науки и практики 21 в. 2 выпуск
конференция актуальные проблемы науки и практики 21 в. 2 выпуск
 
Sciences of Europe VOL 2, No 66 (2021)
Sciences of Europe VOL 2, No 66 (2021)Sciences of Europe VOL 2, No 66 (2021)
Sciences of Europe VOL 2, No 66 (2021)
 
VOL-1-No-8-8-2016
VOL-1-No-8-8-2016VOL-1-No-8-8-2016
VOL-1-No-8-8-2016
 
VOL 1, No 53 (53) (2020)
VOL 1, No 53 (53) (2020)VOL 1, No 53 (53) (2020)
VOL 1, No 53 (53) (2020)
 
The scientific heritage No 93 (93) (2022)
The scientific heritage No 93 (93) (2022)The scientific heritage No 93 (93) (2022)
The scientific heritage No 93 (93) (2022)
 
Sciences of Europe No 95 (2022)
Sciences of Europe No 95 (2022)Sciences of Europe No 95 (2022)
Sciences of Europe No 95 (2022)
 

More from Sciences of Europe

Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)
Sciences of Europe
 
Sciences of Europe journal No 141 (2024)
Sciences of Europe journal No 141 (2024)Sciences of Europe journal No 141 (2024)
Sciences of Europe journal No 141 (2024)
Sciences of Europe
 
Sciences of Europe jounal No 140 (2024)
Sciences of Europe jounal  No 140 (2024)Sciences of Europe jounal  No 140 (2024)
Sciences of Europe jounal No 140 (2024)
Sciences of Europe
 
Sciences of Europe journal No 139 (2024).pdf
Sciences of Europe journal No 139 (2024).pdfSciences of Europe journal No 139 (2024).pdf
Sciences of Europe journal No 139 (2024).pdf
Sciences of Europe
 
Sciences of Europe journal No 138 (2024)
Sciences of Europe journal No 138 (2024)Sciences of Europe journal No 138 (2024)
Sciences of Europe journal No 138 (2024)
Sciences of Europe
 
Sciences of Europe journal No 137 (2024)
Sciences of Europe journal No 137 (2024)Sciences of Europe journal No 137 (2024)
Sciences of Europe journal No 137 (2024)
Sciences of Europe
 
Sciences of Europe journal No 136 (2024)
Sciences of Europe journal No 136 (2024)Sciences of Europe journal No 136 (2024)
Sciences of Europe journal No 136 (2024)
Sciences of Europe
 
"Sciences of Europe" journal No 135 (2024)
"Sciences of Europe" journal No 135 (2024)"Sciences of Europe" journal No 135 (2024)
"Sciences of Europe" journal No 135 (2024)
Sciences of Europe
 
Sciences of Europe No 133 (2024)
Sciences of Europe No 133 (2024)Sciences of Europe No 133 (2024)
Sciences of Europe No 133 (2024)
Sciences of Europe
 
Sciences of Europe No 132 (2023)
Sciences of Europe No 132 (2023)Sciences of Europe No 132 (2023)
Sciences of Europe No 132 (2023)
Sciences of Europe
 
Sciences of Europe No 131 (2023)
Sciences of Europe No 131 (2023)Sciences of Europe No 131 (2023)
Sciences of Europe No 131 (2023)
Sciences of Europe
 
Sciences of Europe No 130 (2023)
Sciences of Europe No 130 (2023)Sciences of Europe No 130 (2023)
Sciences of Europe No 130 (2023)
Sciences of Europe
 
Sciences of Europe No 129 (2023)
Sciences of Europe No 129 (2023)Sciences of Europe No 129 (2023)
Sciences of Europe No 129 (2023)
Sciences of Europe
 
Sciences of Europe No 128 (2023)
Sciences of Europe No 128 (2023)Sciences of Europe No 128 (2023)
Sciences of Europe No 128 (2023)
Sciences of Europe
 
Sciences of Europe No 127 (2023)
Sciences of Europe No 127 (2023)Sciences of Europe No 127 (2023)
Sciences of Europe No 127 (2023)
Sciences of Europe
 
Sciences of Europe No 126 (2023)
Sciences of Europe No 126 (2023)Sciences of Europe No 126 (2023)
Sciences of Europe No 126 (2023)
Sciences of Europe
 
Sciences of Europe No 125 (2023)
Sciences of Europe No 125 (2023)Sciences of Europe No 125 (2023)
Sciences of Europe No 125 (2023)
Sciences of Europe
 
Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)
Sciences of Europe
 
Sciences of Europe No 123 (2023)
Sciences of Europe No 123 (2023)Sciences of Europe No 123 (2023)
Sciences of Europe No 123 (2023)
Sciences of Europe
 
Sciences of Europe No 122 (2023)
Sciences of Europe No 122 (2023)Sciences of Europe No 122 (2023)
Sciences of Europe No 122 (2023)
Sciences of Europe
 

More from Sciences of Europe (20)

Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)
 
Sciences of Europe journal No 141 (2024)
Sciences of Europe journal No 141 (2024)Sciences of Europe journal No 141 (2024)
Sciences of Europe journal No 141 (2024)
 
Sciences of Europe jounal No 140 (2024)
Sciences of Europe jounal  No 140 (2024)Sciences of Europe jounal  No 140 (2024)
Sciences of Europe jounal No 140 (2024)
 
Sciences of Europe journal No 139 (2024).pdf
Sciences of Europe journal No 139 (2024).pdfSciences of Europe journal No 139 (2024).pdf
Sciences of Europe journal No 139 (2024).pdf
 
Sciences of Europe journal No 138 (2024)
Sciences of Europe journal No 138 (2024)Sciences of Europe journal No 138 (2024)
Sciences of Europe journal No 138 (2024)
 
Sciences of Europe journal No 137 (2024)
Sciences of Europe journal No 137 (2024)Sciences of Europe journal No 137 (2024)
Sciences of Europe journal No 137 (2024)
 
Sciences of Europe journal No 136 (2024)
Sciences of Europe journal No 136 (2024)Sciences of Europe journal No 136 (2024)
Sciences of Europe journal No 136 (2024)
 
"Sciences of Europe" journal No 135 (2024)
"Sciences of Europe" journal No 135 (2024)"Sciences of Europe" journal No 135 (2024)
"Sciences of Europe" journal No 135 (2024)
 
Sciences of Europe No 133 (2024)
Sciences of Europe No 133 (2024)Sciences of Europe No 133 (2024)
Sciences of Europe No 133 (2024)
 
Sciences of Europe No 132 (2023)
Sciences of Europe No 132 (2023)Sciences of Europe No 132 (2023)
Sciences of Europe No 132 (2023)
 
Sciences of Europe No 131 (2023)
Sciences of Europe No 131 (2023)Sciences of Europe No 131 (2023)
Sciences of Europe No 131 (2023)
 
Sciences of Europe No 130 (2023)
Sciences of Europe No 130 (2023)Sciences of Europe No 130 (2023)
Sciences of Europe No 130 (2023)
 
Sciences of Europe No 129 (2023)
Sciences of Europe No 129 (2023)Sciences of Europe No 129 (2023)
Sciences of Europe No 129 (2023)
 
Sciences of Europe No 128 (2023)
Sciences of Europe No 128 (2023)Sciences of Europe No 128 (2023)
Sciences of Europe No 128 (2023)
 
Sciences of Europe No 127 (2023)
Sciences of Europe No 127 (2023)Sciences of Europe No 127 (2023)
Sciences of Europe No 127 (2023)
 
Sciences of Europe No 126 (2023)
Sciences of Europe No 126 (2023)Sciences of Europe No 126 (2023)
Sciences of Europe No 126 (2023)
 
Sciences of Europe No 125 (2023)
Sciences of Europe No 125 (2023)Sciences of Europe No 125 (2023)
Sciences of Europe No 125 (2023)
 
Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)
 
Sciences of Europe No 123 (2023)
Sciences of Europe No 123 (2023)Sciences of Europe No 123 (2023)
Sciences of Europe No 123 (2023)
 
Sciences of Europe No 122 (2023)
Sciences of Europe No 122 (2023)Sciences of Europe No 122 (2023)
Sciences of Europe No 122 (2023)
 

Sciences of Europe No 106 (2022)

  • 1. No 106 (2022) Sciences of Europe (Praha, Czech Republic) ISSN 3162-2364 The journal is registered and published in Czech Republic. Articles in all spheres of sciences are published in the journal. Journal is published in Czech, English, Polish, Russian, Chinese, German and French, Ukrainian. Articles are accepted each month. Frequency: 24 issues per year. Format - A4 All articles are reviewed Free access to the electronic version of journal Edition of journal does not carry responsibility for the materials published in a journal. Sending the article to the editorial the author confirms it’s uniqueness and takes full responsibility for possible consequences for breaking copyright laws. Chief editor: Petr Bohacek Managing editor: Michal Hudecek • Jiří Pospíšil (Organic and Medicinal Chemistry) Zentiva • Jaroslav Fähnrich (Organic Chemistry) Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic • Smirnova Oksana K., Doctor of Pedagogical Sciences, Professor, Department of History (Moscow, Russia); • Rasa Boháček – Ph.D. člen Česká zemědělská univerzita v Praze • Naumov Jaroslav S., MD, Ph.D., assistant professor of history of medicine and the social sciences and humanities. (Kiev, Ukraine) • Viktor Pour – Ph.D. člen Univerzita Pardubice • Petrenko Svyatoslav, PhD in geography, lecturer in social and economic geography. (Kharkov, Ukraine) • Karel Schwaninger – Ph.D. člen Vysoká škola báňská – Technická univerzita Ostrava • Kozachenko Artem Leonidovich, Doctor of Pedagogical Sciences, Professor, Department of History (Moscow, Russia); • Václav Pittner -Ph.D. člen Technická univerzita v Liberci • Dudnik Oleg Arturovich, Doctor of Physical and Mathematical Sciences, Professor, De- partment of Physical and Mathematical management methods. (Chernivtsi, Ukraine) • Konovalov Artem Nikolaevich, Doctor of Psychology, Professor, Chair of General Psy- chology and Pedagogy. (Minsk, Belarus) «Sciences of Europe» - Editorial office: Křižíkova 384/101 Karlín, 186 00 Praha E-mail: info@european-science.org Web: www.european-science.org
  • 2. CONTENT AGRICULTURAL SCIENCES Osipova R., Ghukasyan A., Ghazaryan R., Mkrtchyan A. APPLICATION OF COMPLEX MINERAL MICROFERTILIZER GUMAT + 7 ON LENTILS.................4 Zhuravel S., Zhuravel S., Polishchuk V., Smaglii O., Tkachenko V. TECHNOLOGICAL ASPECTS OF CULTIVATION OF NIGELLA SATIVA USING ORGANIC TECHNOLOGY ON POLISSYA UKRAINE......................................................7 Klymenko T., Binkivska N., Shulha K., Levkivskyi V., Shashchuk I. YIELD OF SOYBEAN IN THE CONDITIONS OF THE NORTHERN FOREST-STEPPE OF UKRAINE DEPENDS ON MINERAL FERTILIZERS AND SEED INOCULATIONS ...................................................................................12 ART Sarzhanov A., Saitova G. MODERN NATIONAL CHOREOGRAPHY ON THE STAGE OF THE «ASTANA OPERA».........................................14 BIOLOGICAL SCIENCES Aliyeva A. THE GENUS OF AETHIONEMA R. BR. SPREADING IN FLORA OF NAKCHIVAN AUTONOMOUS REPUBLIC OF AZERBAIJAN...............................................................17 ECONOMIC SCIENCES Ayyubova N., Mammadli A. ANALYSIS OF THE DYNAMICS OF INCOME AND COSTS OF THE POPULATION IN THE REPUBLIC OF AZERBAIJAN...............................................................20 Volynets І., Yanush Y. TRENDS CHANGES ANALYSIS IN SOCIAL RESPONSIBILITY MANAGEMENT OF HEALTH CARE INSTITUTIONS IN UKRAINE........................................29 GEOGRAPHICAL SCIENCES Nazarova G. ENDANGERED SPECIES OF SHEKI-ZAGATALA NATURE ..................................................................................34 HISTORICAL SCIENCES Akopov A., Hayrapetyan A. THE ISSUE OF TAYK’S ETHNIC IDENTITY AND THE SPREADING OF ORTHODOXY IN TAYK.......................39 MEDICAL SCIENCES Jafarov R., Aliyev V. THE PRINCIPLE OF PROSTHETICS OF PATIENTS WITH COMPLETE REMOVABLE DENTURES ON THE LOWER JAW ...........................................................................43 Panahov N., Aliyev T., Aliyev M. THE USE OF REINFORCING QUARTZ MESH IN THE MANUFACTURE OF PLATE REMOVABLE DENTURES .45 Musayev E., Babayeva N., Mahmudov T. SIGNIFICANCE OF TEMPORARY RESTORATIONS MADE OF SELF-CURING RESIN IN THE MANUFACTURE OF CERAMIC VENEERS....................................................47 Boitsaniuk S., Patskan L., Pogoretska K., Levkiv M. REVIEW OF CURRENT ENDODONTIC SEALERS ..........49 Makeyev O., Korotkov A., Satonkina O., Schumann E., Desyatova M. TRANSDIFFERENTIATION OF MULTIPOTENT MESENCHYMAL STROMAL CELLS BY GENETIC ENGINEERING METHODS TO OBTAIN HEPATOCYTES54 Voznjouk I., Polyakova A., Ponomarev G., Pushkin M. THE ROLE OF BIOMARKERS IN THE DIAGNOSIS AND REHABILITATION OF PATIENTS WITH STROKE ..........58 PEDAGOGICAL SCIENCES Slatvinska L., Zbyrannyk О. THE FORMATION OF PROFESSIONAL COMPETENCES OF BACHELORS IN TOURISM SPECIALISATION IN HIGHER EDUCATIONAL INSTITUTIONS OF UKRAINE .63
  • 3. PHILOLOGICAL SCIENCES Nuradin G., Adilbek B. PHILOSOPHY OF SOUND: WAVELET TRANSFORM FOR PROCESSING OF AUDIO SIGNAL................................71 PSYCHOLOGICAL SCIENCES Chorna N. CITATION THINKING IN LATIN AMERICAN POSTMODERN DISCOURSE .......................................78 SOCIAL SCIENCES Asagade Shola O. GOVERNMENT ACCOUNTABILITY IN PUBLIC ADMINISTRATION .....................................................83 TECHNICAL SCIENCES Issabayev K., Imansakipova N., Dzhangulova G. COMPARATIVE ANALYSIS OF METHODS FOR CALCULATING THE ATTENUATION COEFFICIENT OF TROPOSPHERIC RADIO COMMUNICATION...............92 Jafarova F., Gurbanov K., Tagıyeva Z., Huseynova S., Ahadova S., Hacıyeva V. INNOVATIVE METHOD OF GROWING PLANTS USING THE EFFECT OF HIGH VOLTAGE IMPULSE DISCHARGE .................................................................................107
  • 4. 4 Sciences of Europe # 106, (2022) AGRICULTURAL SCIENCES ПРИМЕНЕНИЕ КОМПЛЕКСНОГО МИНЕРАЛЬНОГО МИКРОУДОБРЕНИЯ ГУМАТ+7 НА ЧЕЧЕВИЦЕ Осипова Р.Г. Научный центр земледелия Мин. экономики Республики Армения к.б.н., старший научный сотрудник ORCID: https://orcid.org/0000-0002-6423-7432 Гукасян А.Г. Научный центр земледелия Мин. экономики Республики Армения к.э.н., директор ORCID: https://orcid.org/0000-0002-4632-2190 Казарян Р.Г. Научный центр земледелия Мин. экономики Республики Армения к.сх.н., ведущий научный сотрудник Мкртчян А.T. Научный центр земледелия Мин. экономики Республики Армения к.б.н., старший научный сотрудник ORCID: https://orcid.org/0000-0003-3242-4775 APPLICATION OF COMPLEX MINERAL MICROFERTILIZER GUMAT + 7 ON LENTILS Osipova R., The Scientific Center of Agriculture of RA PhD in Biology, Senior Researcher ORCID: https://orcid.org/0000-0002-6423-7432 Ghukasyan A., The Scientific Center of Agriculture of RA PhD in Economics, Director ORCID: https://orcid.org/0000-0002-4632-2190 Ghazaryan R., The Scientific Center of Agriculture of RA PhD in Agriculture, Lead Researcher Mkrtchyan A. The Scientific Center of Agriculture of RA PhD in Biology, Senior Researcher ORCID: https://orcid.org/0000-0003-3242-4775 DOI: 10.5281/zenodo.7408504 АННОТАЦИЯ В статье дана оценка действия водного раствора Гуматa+7 на урожайность нового сорта озимой чече- вицы Эребуни при фолиарном применении и при поливе в рядки. Показано, что при фолиарном примене- нии Гумата+7, урожайность чечевицы увеличилась на 28.5% по сравнению с контролем. В варианте полив в рядки урожайность на уровне контроля. Содержание сырого протеина в семенах чечевицы на 7.8% и сбор сырого протеина с 1га на 39% выше при фолиарной обработке по сравнению с контролем. ABSTRACT The article evaluates the effect of an aqueous solution of Gumat + 7 on the productivity of a new variety of winter lentils, Erebuni, when applied foliarly and when irrigated in rows. It was shown that with the foliar appli- cation of Gumate + 7, the productivity of lentils increased by 28.5% compared with the control. In the variant of watering in rows, the productivity is at the control level. The content of crude protein in lentil seeds is 7.8% and the collection of crude protein per 1 ha is 39% higher with foliar treatment compared to the control. Ключевые слова: чечевица, микроудобрение Гумат+7, фолиарная обработка, урожайность, белковая продуктивность. Keywords: lentil, microfertilizer Gumat+7, foliar treatment, yield, protein content. Введение Зернобобовые культуры имеют большое зна- чение как источник растительного белка в продук- тах питания людей и в кормах для сельскохозяй- ственных животных. Бобовые культуры являются источником поступления в почву азота и пополне- ния органическими веществами корнеобитаемого слоя, что оказывает положительное влияние на аг- роценозы [1]. Чечевица (Lens culinaris Medik) явля- ется одной из ценных зернобобовых культур, тра- диционно имеющая широкое использование в
  • 5. Sciences of Europe # 106, (2022) 5 пище, выращивается на зерно, которое содержит до 30% ценного легкоусвояемого белка, в состав кото- рого входят все незаменимые аминокислоты [2,3,4]. В нашей стране средняя урожайность чечевицы в пределах 12-13 ц/га, что не на много уступает уровню урожайности ведущих производителей зерна чечевицы. Учитывая ограниченные убороч- ные площади в нашей стране и вместе с тем необ- ходимость в обеспечении населения ценным расти- тельным белком, для повышения урожайности че- чевицы необходимо использовать новые высокоурожайные сорта и новые технологии возде- лывания. В современном сельскохозяйствевнном производстве применяют интенсивные технологии с использованием различных комплексных микро- удобрений, которые играют важную роль в росте урожая и повышении качества сельскохозяйствен- ных культур [5,6]. Гумат+7 микроэлементов -ком- плексное минеральное микроудобрение, которое является одновременно и удобрением и регулято- ром роста, мобилизует иммунную систему расте- ний, стимулирует развитие мощной корневой си- стемы, усиливает обменные процессы в раститель- ной клетке, повышает усвояемость растениями питательных веществ, что в конечном итоге ведет к росту урожайности и качества, применяется на всех культурах без ограничений. Гуминовые кислоты улучшают почву за счет того, что переводят поч- венные микроэлементы в хелаты, которые явля- ются единственными органическими элементами, доступными для усвоения растениями. Гумат+7 микроэлементов согласно описанию производи- теля (“Иркутские гуматы”) содержит (%) Гумат – 75, K – 5, Cu -0.2, Mn – 0.17, Zn – 0.2, Mo – 0.018, Co – 0.02, B – 0.2, Fe – 0.4. В связи с развитием производства высококон- центрированных растворимых удобрений и исполь- зованием их в виде спреев, возрастает интерес к применению фолиарной (некорневой) обработки растений. Фолиарное внесение удобрений является более экономичным и эффективным по сравнению с традиционными способами и рассматривается в ряду достижений в сельском хозяйстве [7]. При этом следует учитывать факторы, влияющие на эф- фективность фолиарного применения удобрений. К ним относятся – состав удобрений, условия окру- жающей среды, фенологическая фаза развития рас- тений [8]. Целью данной работы является оценка дей- ствия водного раствора гумата калия + 7 микроэле- ментов на урожайность озимой чечевицы Эребуни при фолиарном применении и при поливе под рас- тения в рядках. Материалы и методы Исследование проведено на озимой чечевице, сорт Эребуни, полученного методом индивидуаль- ного отбора из мировой коллекции (ICARDA) в эч- миадзинской экспериментальной базе Научного центра земледелия. Семена сорта Эребуни круп- ные, зеленые, тарелочного типа. Опытные участки Научного центра находятся в центре Араратской долины и относятся к орошаемым, луговым, бурым почвам [9], поэтому в течение вегетации прово- дится полив опытных делянок, кратность которых зависит от культуры и метеоусловий. В период дан- ной вегетации был произведен полив осенью, после посева, весной перед обработкой гуматом и дважды летом в период налива семян. Опыт заложен мето- дом организованных повторений, в четырехкрат- ной повторности. Размер делянки 4 м2 , учетной – 3.4 м2 . Посев произведен вручную, в каждом вари- анте десять линий, расстояние между линиями 25см, между вариантами 50см и повторностями 1м. В каждой линии по десять всхожих семян, расстоя- ние между семенами 15см. Обработка вегетирую- щих растений чечевицы произведена в фазе буто- низация-цветение 0.02%-ным раствором Гумата+7 двумя методами – фолиарным и поливом в рядки. Причем на полив в рядки ушло в восемь раз больше раствора Гумата+7, чем на опрыскивание вегетиру- ющих растений. Контроль опыта – необработанные растения. Уборка урожая также проведена вручную в конце июня. Урожайность чечевицы учитывали поделяночно. Для структурного анализа отобрано по десять растений с каждого варианта всех повтор- ностей. Результаты по урожайности обработаны методом дисперсионного анализа [10]. Содержание белка в семенах определяли микрометодом Кьель- даля. Схема опыта: 1. Контроль – без обработки, 2. Гумат+7 – фолиарная обработка, 3. Гумат+7 – полив в рядки. Результаты и обсуждения Результаты исследований – средние по всем повторностям, представлены в таблицах. В таблице 1 представлены данные по урожайности озимой че- чевицы Эребуни в зависимости от способа приме- нения Гумата+7 микроэлементов. При фолиарной обработке урожайность чечевицы по сравнению с контролем увеличилась на 28.5%. В варианте полив в рядки урожайность на уровне контроля. Таблица 1 Урожайность озимой чечевицы в зависимости от способа внесения Гумата+7 микроэлементов N Варианты Урожайность ц/га Прибавка к контролю ц/га % 1 Контроль 21.86 - - 2 Гумат+7микроэлементов (фолиарная обработка) 28.10 6.24 28.5 3 Гумат+7микроэлементов (полив в рядках) 21.67 - - НСР05 2.4 В таблице 2 представлены данные по показате- лям основных элементов структуры урожая озимой чечевицы при разных способах действия Гумата+7. Урожайность чечевицы увеличилась под влиянием фолиарной обработки за счет увеличения продук- тивных ветвей (12.3%), количества бобов (12%) и
  • 6. 6 Sciences of Europe # 106, (2022) семян (10.6%) и их массы (10.9%). Происходит уве- личение интенсивности ростовых процессов и накопления биомассы, что позволило получить урожай чечевицы на 6.24ц/га больше, чем в кон- троле. Таблица2 Эффективность действия Гумата+7 микроэлементов по показателям основных элементов структуры уро- жая озимой чечевицы N Варианты Высота растений (см) Количество стеблей (шт.) Количество ветвей (шт.) Количество бобов на одно растение (шт.) Количество семян на одно растение (шт.) Масса семян с одного расте- ния (г) Масса 1000 семян (г) 1 Контроль 45.9 3.2 7.3 116.6 122.7 8.2 66.8 2 Гумат+7микроэлементов (фолиарная обработка) 42.5 2.5 8.2 130.6 135.7 9.1 67.1 3 Гумат+7микроэлементов (полив в рядках) 41.8 2.4 6.9 107.3 113.5 7.9 70.2 НСР 0.5 0.4 3.6 3.18 0.7 3.2 Поскольку чечевица является ценным источником растительного белка, важно знать как влияют но- вые технологии возделования на качевство ее зерна. Таблица 3 Содержание сырого протеина в семенах (%) и белковая продуктивность (кг/га) чечевицы N Варианты Сырой протеин, % к сухой массе Сбор сырого проте- ина с 1га, кг/га Прибавка к контролю кг/га % 1 Контроль 21.7 473 - - 2 Гумат+7микроэлементов (фолиарная обработка) 23.4 658 185 39 3 Гумат+7микроэлементов (полив в рядках) 24.0 520 47 9.9 НСР 0.5 7.9 Действие Гумата+7 также положительно вли- яет на содержание сырого протеина в семенах и на сбор сырого протеина с одного гектара. Содержа- ние сырого протеина в семенах чечевицы увеличи- вается при фолиарной обработке Гуматом+7 на 7.8% и даже при поливе в рядки на 10.5%. При этом, сбор сырого протеина с 1 га при фолиарной обра- ботке на 39% выше, чем в контроле благодаря уве- личению урожайности. Таким образом Гумат+7, имеющий невысокую стоимость и небольшой расход, при фолиарной об- работке вегетирующих растений чечевицы в фазе бутонизация-цветение, положительно влияет и на урожайность, и на накопление сырого протеина в семенах. Литература 1. Зотиков В.И., Наумкина Т.С., Грядунова Н.В. и др. Зернобобовые культуры – важный фак- тор устойчивого экологически ориентированного сельского хозяйства//Зернобобовые и крупяные культуры, 2016, № 1 (17), с. 6. 2. Кондыков И.В. Культура чечевицы в мире и Российской Федерации (обзор)// Зернобобовые и крупяные культуры, 2012, № 2, с. 13-21. 3. Наумкина Т.С., Грядунова Н.В., Наумкин В.В. Чечевица ценная зернобобовая культура// Зер- нобобовые и крупяные культуры, 2015, № 2 (14), с. 42. 4. Ядчук П.В. Современное состояние произ- водства чечевицы// Зернобобовые и крупяные куль- туры, 2018, № 4 (28), с. 110-112, DOI:10.24411/2309-248x-2018-1058. 5. Литвинова А.Б., Литвинов Б.В. Эффектив- ность применения региляторов роста и микроэле- ментного комплекса Цитовит при выращивании моркови на дерново-подзолистой почве// Агрохи- мия, 2019, № 4, с. 46-53, DOI:10.1134/S000218811902008X. 6. Глазова З.И. Использование органомине- ральных агрохимикатов при возделовании чече- вицы// Зернобобовые и крупяные культуры, 2020, № 1 (33), с. 40-45, DOI:10.24411/2309-348x-2020- 11153. 7. Shabana Ehsan, Shahid Javed, Ifra Saleem, Fareeha Habib, Tahir Majeed. Effect of humic acid fo- liar spraying and nitrogen fertilizers management on wheat yield//International Journal of Agronomy and Agricultural research. - 2014. – vol. 4, № 4. – p. 28-33. 8. Егоров В.С., Дзержинская А.А. Фолиарное применение удобрений и механизм их поступлений в растения//Агрохимия, 2015, № 2, с. 51-57. 9. Айрапетян Э.М. Почвоведение. – Ереван, изд. Астгик, 2000. – 456 с. (на армянском языке) 10. Доспехов Б.А. Методика полевого опыта. – Москва, изд. Агропромиздат, 1985. – 357 с.
  • 7. Sciences of Europe # 106, (2022) 7 ТЕХНОЛОГІЧНІ АСПЕКТИ ВИРОЩУВАННЯ NIGELLA SATIVA ЗА ОРГАНІЧНОЇ ТЕХНОЛОГІЇ В УМОВАХ ПОЛІССЯ УКРАЇНИ Журавель С.В. кандидат с.г. наук Журавель С.С. викладач ЖАТФК Поліщук В.О. асистент Смаглій О.В., Ткаченко В.Д. магістри Поліський національний університет, Україна TECHNOLOGICAL ASPECTS OF CULTIVATION OF NIGELLA SATIVA USING ORGANIC TECHNOLOGY ON POLISSYA UKRAINE Zhuravel S., Candidate of Agricultural Sciences Zhuravel S., Lecturer ZATFK Polishchuk V., Assistant Smaglii O., Tkachenko V. Master’s degree Polissia National University, Ukraine DOI: 10.5281/zenodo.7408510 АНОТАЦІЯ Чорний кмин, або ще як його називають чорнушка, останнім часом набуває популярності у сільсько- господарських виробників в Україні. Масове промислове вирощування даної культури проводиться в Ірані, де вона набула високої популярності та широкого використання, зокрема в 93% усіх страв та напоїв присутній чорний кмин, який наділяють майже міфічними, фармакологічними властивостями. Тому неда- ремно і в Україні звернули увагу на дану культуру, однак переважно вирощують її як нішеву. Не зважаючи на те, що походить він з посушливих теплих регіонів, можливість вирощування його на території України та зокрема в Житомирській області є не лише можливим, але й економічно дуже привабливим. Насампе- ред, це пов’язано з тим, що на сьогоднішній час нашими дослідженнями не виявлено ураження даної ку- льтури, якимись типовими хворобами чи шкідниками, а отже це стає гарною запорукою можливості виро- щування цієї культури за органічною технологією. Проаналізвовано вплив ширини міжрядь на формування повноцінного насіння чорного кмину, так вирощувати дану культуру найкраще за ширини міжрядь 45 см. Схожість насіння чорного кмину (Nigella sativa L.) була найкращою при його яровізації 8 місяців та становила 94-96 %. Схожість насіння щодо терміну його зберігання, була найвищою в процентному співвідношенні на третьому році, де вона була практично рівнозначна 100 %. ABSTRACT Black cumin, or as it is also called black cumin, has recently been gaining popularity among agricultural producers in Ukraine. Mass industrial cultivation of this crop is carried out in Iran, where it has gained high pop- ularity and wide use, in particular, 93% of all dishes and drinks contain black cumin, which is endowed with almost mythical, pharmacological properties. Therefore, it is not for nothing that attention has been paid to this culture in Ukraine, but it is mainly grown as a niche crop. Despite the fact that it comes from arid warm regions, the possi- bility of growing it in the territory of Ukraine, and in particular in the Zhytomyr region, is not only possible, but also economically very attractive. First of all, this is due to the fact that to date, our research has not revealed damage to this culture by any typical diseases or pests, and therefore this becomes a good guarantee of the possi- bility of growing this culture using organic technology. The influence of the row width on the formation of full-fledged black cumin seeds was analyzed, so it is best to grow this culture with a row width of 45 cm. The similarity of black cumin seeds (Nigella sativa L.) was the best when it was vernalized for 8 months and was 94-96%. The similarity of the seed with regard to its storage period was the highest in percentage ratio in the third year, where it was practically equal to 100%. Ключові слова: урожайність, ширина міжрядь, чорний кмин, посіви, органічна технологія, ро- дючість, фаза розвитку.
  • 8. 8 Sciences of Europe # 106, (2022) Keywords: productivity, row spacing, black cumin, crops, organic technology, fertility, development phase. Постановка проблеми. На сьогоднішній час технологічні аспекти вирощування чорного кмину (Nigella sativa L.) в Україні практично не відпрацьо- вані, як з точки зору строків, норм, способів посіву, форми та виду добрив, та ряду інших чинників. Тому виникає нагальна необхідність проведення досліджень в даному напрямку. В зв’язку з цим нами на базі Поліського націо- нального університету, було проведено ряд дослі- джень щодо відпрацювання органічної промисло- вої технології вирощування чорного кмину (Nigella sativa L.). Адже дана рослина має значний попит у ланці бізнесу, а також таких сферах як: медицина, косметологія, кулінарія тощо. Особливістю є також те, що чорний кмин дуже гарно адаптується як до кліматичних, так і ґрунтових показників і як пока- зують наші дослідження може висіватися разом з ранніми ярими. Ще однією особливістю культури є достатньо короткий вегетаційний період, що ро- бить її універсальною з точки зору, як строків по- сіву так і строків збирання. Крім того чорний кмин (Nigella sativa L.) на сьогоднішній час практично не уражується шкідниками і хворобами, що дає мож- ливість вирощування його за органічною техноло- гією. За умов звичайної технології вирощування для забезпечення повноцінного врожаю потребує незначних норм внесення елементів живлення, зок- рема 30-40 кг діючої речовини NPK. Аналіз останніх досліджень та публікацій. Чорний кмин (Nigella sativa L.) родом із Середзем- номор’я, в якості дикороса зустрічається в країнах Європи, Азії, а також в Індії та на Кавказі. Як куль- турна рослина вирощується у Франції, Англії, Бель- гії, Голландії, Азії, Африці та ряді інших країн світу [4, 5]. В Україні чорний кмин вперше почали виро- щувати у 1985 році, а сьогодні його культивують як декоративну, лікарську та ефіроолійну рослину. Та- кож в науковій літературі є відомості, що насіння чорного кмину можна застосовувати для виготов- лення біопалива [1]. Чорний кмин (Nigella sativa L.) має цілющі вла- стивості, такі як: протизапальні, противірусні, ан- типаразитарні, поліпшує роботу шлунково-кишко- вого тракту, має фунгіцидну активність, посилює пам’ять та лактацію, полегшує дихання при астмі, поліпшує контроль над рівнем цукру в крові, лікує суглоби, профілактика сечокам’яної хвороби і ка- менів в жовчному міхурі, а також сприяє розши- ренню судин і покращує серцеву діяльність [2, 3, 4]. Чорний кмин (Nigella sativa L.) має дуже важливу лікувальну здатність ‒ протипухлинну дію, тобто широко використовується у боротьбі з онкологіч- ними захворюваннями, разом з тим було доведено і протирадіаційні властивості рослини [4, 5]. Зауважимо, що вчені Технологічного універ- ситету Сіднея (University of Technology Sydney, UTS) запропонували використовувати у боротьбі з COVID-19 чорний кмин (Nigella sativa L.). В резуль- таті модельних досліджень вчених було виявлено, що активний інгредієнт чорного кмину – тімохінон може “прилипати” до білка шипа вірусу SARS- CoV-2 і запобігати провокуванню легеневої інфек- ції. Тімохінон був вивчений в лабораторіях споча- тку на тваринах і дослідження показали, що дана речовина має позитивний вплив на імунну систему. Мета досліджень. В зоні Полісся технологія вирощування чорного кмину (Nigella sativa L.). мало апробована, при цьому господарств, що виро- щують значні площі немає. Насамперед це пов’язано з початковими етапами розвитку даної культури, де розвиток її відбувається досить пові- льно, сходи з’являються на 9-15 день, а у посушливі роки на 20-25 день, що спричиняє інтенсивне за- бур’янення міжрядь. Спеціалізованих хімічних за- собів захисту у боротьбі з бур’янами для чорного кмину (Nigella sativa L.) не розроблено, а з точки зору органічної технології – це ручна або механізо- вана прополка. В поданому нами матеріалі ми ана- лізуємо ширину міжрядь даної культури та її вплив безпосередньо на процеси росту, розвитку та фор- мування врожайності. Методика досліджень. Дослідження з органі- чної технології вирощування чорного кмину (Nigella sativa L.) проводилися в Поліському націо- нальному університеті в рамках проєкту ПМГ ПРООН-ГЕФ UKR/SGP/OP7/Y1/CORE/LD/2020/03 «Інноваційні агроекологічні рішення для сталого сільського господарства на деградованих землях Полісся». Місце впровадження досліджень та їх ви- вчення проходило в науково-дослідному господар- стві с. Велика Горбаша. Досліджувана ділянка займала площу 5 га, на якій проводилося вирощу- вання п’яти культур, таких як: амаранту (Amaránthus), ромашки лікарської (Matricaria recutita), чорного кмину (Nigella sativa L.), розторо- пши плямистої (Silybum marianum), коріандру (Coriandrum sativum). Тип ґрунту досліджуваної ді- лянки ясно сірий лісовий, що характеризується ни- зькою забезпеченістю елементами живлення, вміс- том гумусу 1,1-1,2 та слабо кислою реакцією ґрун- тового розчину рН 5,7. Схема досліду передбачала вивчення різних елементів технологічних прийомів вирощування чорного кмину (Nigella sativa L.), що включають такі компоненти, як ширину міжрядь, внесення до- брив, особливості догляду. Схема посіву визначе- них вище нішевих та лікарських рослин передба- чали ширину міжрядь – 15 та 45 см. Дослідження мали на меті оптимізувати органічні технології щодо вирощування чорного кмину (Nigella sativa L.) в умовах Житомирського Полісся. Результати досліджень. Дана культура фак- тично є дикоросом і має доволі специфічні біологі- чні особливості. Так, зокрема свіжозібране насіння має дуже низьку схожість, яка з часом практично зростає майже до 100 відсоткової – це відбувається з насінням, що пролежало в межах 2,5-3 років. Тому ми рекомендуємо з метою забезпечення вирівня- ного та якісного посіву використовувати насіння 2- 3 річної зборки.
  • 9. Sciences of Europe # 106, (2022) 9 Як видно з рис. 1, насіння чорного кмину (Nigella sativa L.) зібране за умов різної ширини мі- жрядь має мінімальні відмінності щодо проценту схожості. Однак більш кращі показники проявля- ються за умов посіву даної культури з міжряддям 45 см. На нашу думку, збільшення ширини міжрядь позитивно впливає на ростові процеси рослин, збі- льшує площу живлення кореневої системи, а отже формується більш повноцінне насіння. Найнижчою схожістю насіння характеризується свіжозібране насіння, так за ширини міжрядь 15 см, схожість ста- новить 28 %, за ширини міжрядь 45 см ‒ 31 %. За терміну 4 місяці схожість насіння коливається в ді- апазоні 53-58 % за різної ширини міжрядь. При чому варто зауважити, що практично за 8 місяців підвищується схожість насіння чорного кмину (Nigella sativa L.) до 94-96 %, тобто можна відмі- тити, що насіння даної культури потребує яровіза- ціїї (періоду спокою), що слід враховувати як при визначенні якісних показників свіжозібраного на- сіння, так і в подальшому насіннєвої придатності посівного матеріалу. Рис. 1. Особливості схожості свіжозібраного насіння чорного кмину (Nigella sativa L.) Нами також було проаналізовано динаміку які- сних показників чорного кмину (Nigella sativa L.), зокрема схожості насіння щодо терміну його збері- гання, та виявлено деяку закономірність (рис. 2). Чітко прослідковується збільшення в процентному співвідношенні схожість насіння на третьому році вона практично рівнозначна майже 100 %. При цьому варто зауважити, що на третій рік нівелю- ються показники схожості Nigella sativa, отриманої як при збиранні шириною міжрядь 15 см, так і ши- риною міжрядь 45 см. 28 53 94 31 58 96 0 20 40 60 80 100 120 свіжозібрані 4 місяці 8 місяці 15 см 45 см
  • 10. 10 Sciences of Europe # 106, (2022) Рис. 2. Вплив терміну зберігання на показники схожості насіння чорного кмину (Nigella sativa L.) Проаналізувавши отримані результати серед- ньозважених показників (рис. 3) в посівах чорного кмину (Nigella sativa L.) можна відмітити, що при ширині міжрядь 15 см на початкових етапах розви- тку культури, зокрема сходів, середньозважений показник кількості рослин на 1 м2 коливається в ме- жах 607 рослин, в той час за умов посіву з міжряд- дям 45 см всього 378. Однак на період збирання ми бачимо випадання, що в першому випадку (міжря- ддя 15 см) складає 35 рослин з м2 , в той час при мі- жрядді 45 см цей показник становить 52 рослини. На перший погляд кращі показники саме за умов вузькорядного посіву, але аналізуючи дані щодо формування коробочок на рослині, то на загущених посівах їх кількість складає 7 шт./м2 , в той час як при широкорядному способі – він становить 11 шт./м2 . Таким чином, ми бачимо, що при широко- рядному посіві чорного кмину (Nigella sativa L.) ро- звиток і продуктивність рослин відбувається більш інтенсивніше, ніж за умов вузькорядного. Рис. 3. Динаміка формування стеблостою в посівах чорного кмину (Nigella sativa L.) в залежності від ширини міжрядь(середній показник) 94 96 97 98 98 98 92 97 95 99 96 99 88 90 92 94 96 98 100 15 см 45 см 15 см 45 см 15 см 45 см 1рік 2 роки 3 роки Схожість насіння, % Відбір №1 Схожість насіння, % Відбір №2 607 572 7 4004 378 326 11 3586 0 1000 2000 3000 4000 5000 Кількість всходів, шт./м2 Кількість рослин в період збирання, шт./м2 Кількість коробочок на одній рослині, шт./м2 Кількість коробочок, шт./м2 45 см 15 см
  • 11. Sciences of Europe # 106, (2022) 11 Рис. 4. Зміна динаміки фітометричних показників чорного кмину (Nigella sativa L.) в залежності від ширини міжрядь при його посіві За умов широкорядного способу посіву (рис. 4) чорного кмину (Nigella sativa L.), рослини більш ви- сокорослі, при цьому на 3 дні подовжується вегета- ційний період, що нашу думку пов’язано з більшою кількістю коробочок на кожній рослині в даному варіанті. Однак варто зауважити, що показники урожайності даної культури вищі за умов вузькоря- дного способу посіву (15 см). Висновки. Проаналізувавши отримані резуль- тати, можна відмітити, що в залежності від подаль- шого призначення насіння чорного кмину (Nigella sativa L.) можна рекомендувати для вирощування ту чи іншу ширину міжрядь. Так при вирощуванні товарного насіння, що в подальшому буде перероб- лятися на насіння та шрот, краще використовувати вузькорядний спосіб посіву (15 см), де загальні по- казники урожайності будуть вищі в порівнянні з широкорядним. В той же час за умов закладання по- сівів чорного кмину (Nigella sativa L.) в якості ре- продуктивного матеріалу (насіннєві посіви), краще збільшити ширину міжрядь до 45 см. При цьому бу- дуть формуватися рослини з добре визрівшим на- сінням з високою схожістю, однак загальна проду- ктивність буде дещо нижча. Література 1. Воронцов В.Т., Опара Н.М., Опара М.М. Ку- льтурні рослини в раціональному харчуванні та оздоровленні. Полтава: РВВ Полтавської державної аграрної академії. 2007. С. 39-40. 2. Жарінов В.І., Остапенко А.І. Вирощування лікарських, ефіроолійних, пряносмакових рослин: Навчальний посібник. Київ: Вища школа. 1994. С. 230-231. 3. Лікарські рослини: Енциклопедичний довід- ник / За ред. А. М. Гродзінського. Київ: УРЕ. 1990. 544 с. 4. Лікарське рослинництво: Навч. посіб. / М.І. Бахмат, О.В. Кващук, В.Я. Хоміна, В.М. Комарні- цький. Кам’янець-Подільський: ПП «Медобори 2006». 2011. 256 с. 5. Мамчур Ф.І., Гладун Я.Д. Лікарські рослини на присадибній ділянці. Київ: Урожай. 1989. 196 с. 0,64 1,21 88 1,17 0,67 0,93 91 1,03 0 20 40 60 80 100 Висота рослин, см Суха надземна біомаса, т/га Довжина вегетаційного періоду, днів Урожайність насіння, т/га 45 см 15 см
  • 12. 12 Sciences of Europe # 106, (2022) YIELD OF SOYBEAN IN THE CONDITIONS OF THE NORTHERN FOREST-STEPPE OF UKRAINE DEPENDS ON MINERAL FERTILIZERS AND SEED INOCULATIONS Klymenko T., Candidate of Agricultural Sciences Binkivska N., Master Shulha K., Master Levkivskyi V., Master Shashchuk I. Master Polissia National University, Ukraine DOI: 10.5281/zenodo.7408512 ABSTRACT For production in the conditions of the northern Forest-Steppe, it is recommended to grow the Zolotista soy- bean variety with the use of mineral fertilizers at the rate of N40P45K60 and seed treatment with the inoculant Nitrofix - C at the rate of 1,6 kg per 1 ton of seeds. Keywords: variety, soybean, mineral fertilizers, inoculant, morphological indicators of plants, productivity. Formulation of the problem. Soy is a popular crop in the field of agriculture, it provides good yields, it is grown on different types of soil, except for sandy ones. The value of soybeans lies in the content of protein and oil. This culture is used in food production - flour, oil, soy milk soy sauce. An- other uniqueness of soy is that it is considered univer- sal. Various surrogates can be made from it, such as meat, milk, chocolate etc [1, 2]. In order to increase crop productivity, it is neces- sary to correctly and logically make a crop rotation of alternating crops and a fertilization system, which changes the quality and content of protein and oil in the seeds of the crop. The growth and development of plants also de- pends on the water-heat balance of air and soil, variety, hybrid, sowing time, tillage, phytosanitary state of crops [3]. Analysis of recent research and publications. An important point in the cultivation of soybeans is the appropriate depth of fertilizer application, be- cause it is the nutrients contained in the fertilizer that are easily subject to water and wind erosion. Fertilizer rates for soybeans are calculated accord- ing to the soil and climatic conditions of the growing zone. The standard amount of fertilizers depends on the content of nutrients in the fertilizer, the mobile forms of nutrients in the soil and the planned yield [1, 5]. Regarding the fertilization of crops in crop rota- tion, soybean responds well to the introduction of or- ganic fertilizers under the predecessor. Since the after- effect of organic fertilizers (manure, compost) has a du- ration of 3-4 years, crops are less weedy, since manure contains a large number of weed seeds [3]. Leguminous crops, including soybeans, also need bacterial fertilizers-inoculants, which are used to treat seeds directly on the day of sowing [2]. Soybean is con- sidered a fastidious crop and therefore requires careful crop care and certain capital investments [4]. The purpose and tasks of the research. The purpose of this work was to investigate the in- fluence of the recommended rates of mineral fertilizers in combination with the inoculant Nitrofix - C on the growth and development of plants and the yield of soy- beans of the Zolotista variety. Research methods. General scientific and special research methods: field (selection of soil and plant samples); laboratory (determination of the main agroecological parameters of the soil and the dynamics of plant growth and devel- opment). Research was conducted during 2020-2021 at the "Vertokyivka" farm of the Zhytomyr district of the Zhytomyr region. The territory of the farm belongs to the temperate soil and climate zone. The soil is medium-loamy with a lumpy structure, the density is 1,3-1,5 g/cm3 . The arable layer has the following indicators: humus content – 2,9 – 4,2 %, al- kaline hydrolyzed nitrogen - 66-80 mg/kg, mobile phosphorus according to Chirkov - 140-250 mg/kg of soil, exchangeable potassium - 80-99 mg/kg soil, soil acidity – 5,5 – 6,9. When growing soybeans, generally accepted agri- cultural techniques for the region of the Northern Forest Steppe were used. The seed sowing rate is 650-700 thousand pcs. /ha. Options for soybean fertilization: 1. Control - N40P45K60 2. N40P45K60 + Nitrofix - C (inoculant) - 1.6 kg per 1 ton of seeds. Mid-early soybean variety Zolotista was used in the research. Suitable for cultivation in all climatic zones (Forest-Steppe, Polissia, Steppe). Vegetation pe- riod - 105-120 days. The main feature of the variety is the number of beans on the plant and the number of seeds in the beans. Resistant to drought, lodging and shedding of seeds. From germination to flowering - 30-35 days. Re- quires active temperatures at the level of 2230° С. The height of the plant is 80-110 centimeters, 10-15 nodes
  • 13. Sciences of Europe # 106, (2022) 13 are formed on the stem. The weight of 1000 seeds is 150-165 grams. The protein content varies between 39,3-41,0 %, and the oil content - 20-22 %. Nitrofix - C inoculant was used for seed treatment. Seed inoculation was carried out by evenly applying the drug to soybean seeds with full seed coverage. Research results. The main technological factors affecting the growth and development of soybean plants include mineral nutrition of plants and seed inoculation (ta- ble 1). Table 1 Morphological indicators of plants of the Zolotista soybean variety depending on fertilizer, average for 2020-2021 Fertilization Plant height, cm Stem diameter, cm Weight of plants, g Control - N40P45K60 83,7 1,2 1025 N40P45K60 + Nitrofix - C 87,5 1,4 1129 The results of the research showed that the appli- cation of N40P45K60 + Nitrofix - C (inoculant) contrib- uted to the improvement of the morphological indica- tors of soybean plants, and the height of the plants in- creased by 3,8 cm, the diameter of the stem by 0,2 cm, and the weight of the plants by 104 grams. Also, the use of mineral fertilizers in combination with the inoculant improved the characteristics of the indicators of soybeans (table 2). At the same time, the number of seeds (1 pc.), the uniformity of seeds (0,2 %), the weight of 1000 pcs. increased soybean seeds (7 g). Table 2 Characteristics of indicators of soybeans of the Zolotista variety, average for 2020-2021 Fertilization Number of seeds, pcs. Seed uniformity, % Weight 1000 pcs. soybean seeds, g Control - N40P45K60 2 94 153 N40P45K60 + Nitrofix - C 3 96 160 The use of mineral fertilizers and inoculant had a positive effect on improving the morphological character- istics of plants and soybeans, which, in turn, increased the yield of soybean seeds(table 3). Table 3 The yield of the Zolotysta soybean seeds, depending on the fertilizer average for 2020-2021 Fertilization Productivity, t/ha Increase in yield t/hа % Control - N40P45K60 2,3 - - N40P45K60 + Nitrofix - C 2,6 0,3 112 NIR05 , t/hа 0,2 If in the control for the application of only mineral fertilizers, the yield was obtained at the level of 2,3 t/ha, then with the additional application of inoculant to min- eral fertilizers, the yield increased to 2,6 t/ha, or by 0,3 t/ha. Such an increase in yield is reliable at the NIR05 level of 0,2 t/ha. Conclusion. When growing soybean seeds of the Zolotista va- riety, the application of mineral fertilizers at the rate of N40P45K60 in combination with the inoculant Nitrofix - C1,6 kg per 1 ton of seeds in the soil-climatic zone of the northern Forest-Steppe is sufficient to significantly improve the morphological indicators of plants and ob- tain a seed yield at the level of 2,6 t/ha. References 1. Petrosyan T.O. Agricultural cultures and min- eral nutrition / T.O. Petrosyan // K.: Raccoon, 2010. P. 200. 2. Luhova K.Yu. The quality of soybean grain due to the use of inoculation and foliar feeding / K.Yu. Lugova // Tavrii Scientific Bulletin. - T.: 2015. No. 11. P. 44-48. 3. Organic fertilizers: teaching. manual / S. V. Zhuravel et al. Polisky University Publishing House, 2020. P. 200. 4. Kirpa M. Soybeans: features of harvesting, pro- cessing and preservation of the seed crop / M. Kirpa // Proposal, 2015. No. 9. P. 58–61. 5. Buchko O.P. cultivation of agricultural plants with the use of organo-mineral fertilizer / O.P. Buchko // Visn. agrarian science, 2015. No. 4. P. 33-138.
  • 14. 14 Sciences of Europe # 106, (2022) ART MODERN NATIONAL CHOREOGRAPHY ON THE STAGE OF THE «ASTANA OPERA» Sarzhanov A., The Kazakh National Academy of Choreography Master student Faculty of Arts Saitova G. The Kazakh National Academy of Choreography, professor, Ph.D. in History of Arts Faculty of Arts DOI: 10.5281/zenodo.7408521 ABSTRACT The article deals with the creation of the national ballet “Call of the Steppe” staged by the French choreogra- pher Patrick de Bana and his interesting, creative idea for the Kazakh historical value in abstract images of an eagle, wolf and horse. The author studies the work of the Western production group with Kazakhstan art workers and their symbiosis in the creation of modern national ballet, their achievement and promotion of the final product of both East and West. Keywords: French choreographer, theater, interpretation, stage, modern choreography. Introduction. Patrick de Bana is a French chore- ographer and a citizen of the world. His collaboration and creative ideas with numerous world stars in various areas of theatrical art plunges into amazement. In such vectors of art as dramaturgy or cinematography, visual and musical art, scenography and, of course, choreog- raphy, we can fully enjoy the versatility of Patrick de Bain. Aim: to determine the individual hand and style of the choreographer Patrick de Bana in the process of staging the ballet “Call of the Steppe” on the stage of the Kazakhstan Theater “Astana Opera”. Research methods: - method of structural analysis and synthesis; - method of observation and interviewing; - empirical method Our versatile hero was born in the north of Ger- many in the city of Hamburg in an international family. His mother is German by nationality, and his father is a native of the West African Federal Republic of Nigeria. His extraordinary origins most likely influenced his ability to express his feelings in the language of dance. Perhaps the ancestors of Patrick de Bana are African sorcerers, and when creating his choreographic text, he seems to enter a trance, where the mysterious magic of dance is born. An extraordinary personality: “he stud- ied at the choreographic school at the Hamburg Ballet under the direction of John Neumeier and Truman Fin- ney” [1]. Patrick de Bana received a good school in modern German dance and subsequently developed his innate talent from the venerable choreographer Maurice Béjart. Under the direction of M. Bejart in the troupe “Ballet de Lausanne” Patrick de Bana rose to the posi- tion of leading soloist. Thereafter, “he moved to the Spanish National Dance Company under the direction of Nacho Duato, where he remained the premiere for over ten years and danced in productions by Nacho Du- ato, Jiri Kilian, Ohad Naarin, William Forsythe, Mats Ek, Hans van Manen and others” [1]. Work on the ballet “Call of the Steppe” went on for a long time. Firstly, the idea of origin and the search for a choreographer who could embody what was con- ceived and bring something new into the performance of a national character is not a piece of cake. The ac- quaintance of Patrick de Ban with the dancers of the ballet troupe of the Astana Opera and the preliminary rehearsal began in the second half of 2019. According to the plan, work ought to be continued in the first half of 2020. However, there is the second factor of obsta- cles, the global pandemic of the COVID-19 Virus, which has introduced its own adjustments in all areas of the life of all mankind. Thirdly, just before the prem- iere of the performance, unflattering, contradictory claims flared up around the use of the author’s music by the Kazakh composer Tles Kazhgaliyev. As it is seen, the birth of this performance experi- enced ups and downs, nevertheless, the premiere of the ballet “Call of the Steppe” took place on December 15 and 16, 2020. It was symbolic since it was dedicated to the Independence Day of the Republic of Kazakhstan, evoking patriotic feelings of joy for the national prod- uct that was created by the joint efforts of a Kazakh and foreign team. The libretto for the ballet was written by Kazakh film director, screenwriter and poet Bakhyt Kairbekov, who has recently been working closely with the Astana Ballet Theatre. But the adaptation of the choreographic libretto was provided by the French spe- cialist Jean Francois Vazel. Initially, Patrick de Bana conceived to intertwine organically the traditional elements of Kazakh dance with modern choreography. “The idea of the continuity of traditions and connection with the roots is the con- necting thread between the choreography and the story- line of the ballet” [2], - notes the information portal Kapital.kz. Continuing the idea and plot of the ballet, he emphasizes that “it is respect for one’s own history and veneration of ancestors that gives the heroes the strength to move confidently into the future” [2]. Once again, the irrefutable truth is confirmed - there is no future without the past or everything new is well-forgotten old. Also, you cannot argue with these
  • 15. Sciences of Europe # 106, (2022) 15 statements. The very name “Call of the Steppe” con- tains the ancient postulates of the truth of our ancestors, which we must adhere to, honor and propagate to the masses. It should be noted that the Kapital.kz article talks about the interweaving of traditional elements of folk dance with modern choreography, although in the ballet itself the techniques of Kazakh dance are not traced at all. In the costumes of the Father and Mother, glimpses of national color are visible and nothing more or in a Shaman costume, the uniform of which consists of the attributes of the Kazakh shapan and tymak. In the setting of the stage space there is a sacred place - the Mausoleum of the Ancestors. That's all the positioning with national symbols in this performance. I would like to note that: “Earlier, Patrick de Bana worked on national ballets in China, Turkey, Japan and Bahrain” [2]. Thus, holding extensive experience in creating national ballets, the French choreographer de- cided to stage the Kazakh ballet in the light of his vi- sion. This is the story of a simple family dreaming of having a child. Parents ask the Almighty and pray for the birth of a baby. Here, it was very important to show a new look at the Kazakh culture, mentality and way of life, which is embodied in a modern interpretation. As mentioned above, work on the performance be- gan even before the global pandemic. The plot of the ballet “Call of the Steppe” echoes a series of films about the first president of the Republic of Kazakhstan. The narration of the story comes from the Shaman char- acter, deeply revered by the people, closer to the Ka- zakh culture of Baksy. Why did they leave the more common terminology of the Sorcerer? It is most likely that it is easier for the Western team to work in the di- rection of Orientalism. The catch is not in the name of the character, but what he represents. The young tal- ented artist Gumar Sultanbek was entrusted with mak- ing the Shaman a reality. Its plasticity and flexibility of the body subjugates easily the gaze of the audience, as if bewitching and transferring human consciousness to another dimension. Sultanbek has a great sense of im- provisation and hears the musical component of this performance subtly. The shaman is the only character in the ballet who practically never leaves the stage. Speaking to the audience in the language of modern Western choreography superimposed on folk music, modified with elements of electronic sound inserts. Sul- tanbek admits that working with Patrick de Bana was exciting. The French choreographer is an excellent mo- tivator and his requirements are clear to everyone, since we speak the same language, the language of dance. A shaman is a mediator between the worlds and a chosen one of spirits, who has the ability to see a dif- ferent reality. In this performance, the Shaman is a guide to another universe, to the world of dreams and dreaming. Throughout the action, abstract images of an eagle, a wolf and a horse obey him. In the mythological consciousness of the Kazakh people, the eagle had the ability to disperse unclean forces. Thus, during child- birth in women, this sacred bird protected the woman in labor from the evil influence: the evil eye, slander. In the projection on a person, the eagle gives him signifi- cant character traits of courage, determination and lead- ership. For Kazakhstan, the eagle plays an important role as a symbol of love of freedom, because Kazakh from ancient Turkic means a free nomad. It is not for nothing that the eagle is depicted on the flag of the re- public with widely spread wings. From time immemorial, the Kazakh people led a nomadic lifestyle, and for a free nomad and warrior, a horse is an obligatory animal. The horse is a true friend of man in this world. During the tengrism, after the death of its owner, the horse accompanied him on his way to heaven. It is known that in folklore - the wolf represents ferocity, deceit, cruelty and evil, all the negative criteria of human character. But in this ballet, the wolf person- ified courage and victory. In certain circumstances, the wolf could become a powerful protector of helpless creatures, and in this production, the wolf assists the main character. The protagonist, who embodies all the positive as- pects of the human character, throughout the perfor- mance, transforming himself, goes through all types of psychological maturation of a person: the youth, the son and the master. He must go through his life. “Hav- ing come into this world, he, the future architect, be- comes the main character of the work, around which all further events unfold. The fight against envious people, meeting with his beloved, building a city and much more awaits him on the path of life” [3]. The performer of the main part Nurmukhamet Galymzhan for the first time tried on the role of the leading part in the perfor- mance. It should be noted that the artist coped with the task, because there was nothing difficult for the artist in the choreography. According to Galymzhan, at the time of studying at the AHU. A. V. Seleznev, their course took the program "Modern Dance", so he did not have any difficulties in mastering modern choreography on a national theme presented by the French production. As with all literary works, there must be conflict in the plot. Conflict of interests of good and evil, black and white. This conflict occurred between the antipode of the protagonist of the Man in Black. This character was embodied by Bekzat Orynbaev, who is like the ex- act opposite reflection of the main character. Bekzat de- scribed his version of the Man in Black as a zealous leader with his own internal unresolved psychological problems. Bekzat studied together with Galymzhan on the same course, respectively, the innovative produc- tion of the French choreographer did not cause any dif- ficulties for him. Why innovative production? Because any chore- ographer has his own style, and Patrick de Bana has such a style. According to Bekzat, the only thing that did not bring comfort in the role was the life drive in which the Man in Black should be. By nature, Bekzat is phlegmatic and thus he did not fit his character. The physical body of the performer must be hardy and ready for various overloads. An artist is an artist because he must be ready for different roles. Bekzat is the only bal- let dancer who was involved in two groups of perform- ers. Patrick de Bana, first worked with the young ballet troupe of the capital’s theater. Talking about the pro- cess of creating a national ballet, the choreographer em-
  • 16. 16 Sciences of Europe # 106, (2022) phasized: “... for myself I decided not to make a repro- duction of the Kazakh dance, for this the viewer just needs to go and watch the performance of the national creative team. Everything that I do, I do with great re- spect for the land on which I am, because I am a guest” [3]. Thereby, the first act of the ballet reminds us more of the past, and above all, emphasizes the forces and significance of nature: the sounds of the wind, the mur- mur of water and the howl of wolves. Abstract sacred animals were portrayed by young, promising ballet dancers such as Akhmetov Zhanserik in the role of the Eagle, Akarys Beybarys - the wolf, Saukymbekov Zhaksylyk - the horse. It is noteworthy that all these characters, including the Shaman, perform their dances with a naked torso, showing the beauty of their upper body. Moving to the beat of the music, simultaneously improvising, everyone revealed their images. Espe- cially in their solo performances, where there is no mu- sical introduction. The dance is accompanied by elec- tronic music in the synthesis of various folk instru- ments. The second act is our modern world, where the steppe life is being transformed in the context of mod- ern society. As mentioned above, “The main idea of this whole story is that moving forward is impossible with- out awareness of one's roots and respect for the past, for one's ancestors” [3]. Initially, the musical basis of this national performance was the work of the talented Ka- zakh composer Tles Kazhgaliyev. Unfortunately, un- foreseen circumstances occurred, the directors were forced to abandon the music of the Kazakh composer. And in a short period of time, the modern composer Re- nat Gaysin contributed his musical component to the performance. The unique folklore group “Turan” made a great contribution to the development of the national ballet “Air Nomad”, then continued its partnership in the play "Call of the Steppe". In the first act of the ballet, “composer-arranger Carlos Pino-Quintana created a compilation of sound picture, built from music of his own composition, as well as music of Kazakh authors” [4]. Uniting under the slogan “Beauty saves the world”, the joint work on the national performance emphasized the creative style of the French choreographer Patrick de Bana, revealed the performance potential of the Astana Opera ballet danc- ers. The results of the foreseen study showed that the artistic director of the ballet troupe Altynai Ab- duakhimovna Asylmuratova with many years of expe- rience in the West and high aesthetic taste chose Patrick de Bana as the choreographer for this national produc- tion. Since the French choreographer continued the pro- fessional development of ballet dancers in modern dance. He gave the ballet dancers the opportunity to get to know and touch the European school, modern chore- ography more closely as well as to gain deep and mean- ingful experience in the little-studied style of the cho- reographer. As a result, we saw another facet of the Ka- zakh dance heritage through the prism of the Western choreographer. Without offending anyone, having pushed aside the old blurry stereotype of perception of Kazakh dance, we continue to search for our own style with the help of Western choreographers. Conclusion Taking above mentioned facets into consideration, we can say that a new meeting of the Kazakh public with a ballet on a national theme, staged in modern cho- reography, has strengthened the ranks of fans of ballet art. The vividly tangible emotional and expressive world of movements in the ballet “The Call of the Steppe” by Patrick de Bana gave impetus to the work of the Astana Opera ballet troupe. The modern ballet art of Kazakhstan lives largely because of the powerful impulse of talented choreographers, librettists, artists, conductors and artists as well [4]. References 1. The Call of the Steppe – [B.M.]: [B.I.], 2021. 2. The world premiere of the ballet "The Call of the Steppe" took place in the capital - https://kapital.kz/lifestyle/91979/v-stolitse-sostoyalas- mirovaya-prem-yera-baleta-zov-stepi.html 3. The National Ballet "The Call of the Steppe" can become the hallmark of the culture of Kazakhstan - https://www.zakon.kz/5048187-natsionalnyy-balet- zov-stepi-mozhet.html 4. "The Call of the Steppe": The world premiere took place on the stage of the Astana Opera - https://tengrinews.kz/news/zov-stepi-mirovaya- premera-proshla-na-stsene- astana-opera-423358/
  • 17. Sciences of Europe # 106, (2022) 17 BIOLOGICAL SCIENCES THE GENUS OF AETHIONEMA R. BR. SPREADING IN FLORA OF NAKCHIVAN AUTONOMOUS REPUBLIC OF AZERBAIJAN Aliyeva A. PhD in Biological Sciences University lecturer, Nakhchivan State University, Nakhchivan, Azerbaijan DOI: 10.5281/zenodo.7408525 ABSTRACT Article Brassicaceae Burnett distributed in Nakhchivan flora. belonging to the family Aethionema R.Br. It talks about sexual types. Here, the bioecological characteristics of species - phenophase, life form, ecological group, altitude zone, ecological environment are explained in detail. Aethionema R.Br. It was also mentioned about the subendemic plant of the flora of Azerbaijan, spreading in the flora of the Nakhchivan Autonomous Republic of the genus. The characteristic species of the genus for the Nakhchivan flora of Azerbaijan are reported. Keywords: cruciferous family, genus, species, subendemic, ecology, phenophase, formation, geographical range. INTRODUCTION. Brassicaceae Burnett. - species of the cruciferous family is widespread in the world (especially in the Northern Hemisphere). The family includes annuals, biennials, perennials and shrubs. There are decorative, economically important oil-bearing, fruit-bearing, food species of such plants. The family includes both wild and cultivated species. These species are distributed throughout the world and in all ecological environments (mainly in temperature climates) except Antarctica. OBJECTIVES AND METHODS: Boyahmad area of Julfa district was selected as the research area. The research object is Aethionema pulchellum Boiss. & Huet. and other species belonging to the genus Aethionema R.Br. of the Brassicaceae Burnett family. During expeditions and free itineraries to the area (03 June - 15 July 2022) distribution area and ecological environment of Aethionema pulchellum Boiss. & Huet. specie of Aethionema R.Br. have been specified. [Qurbanov E.M., Cabbarov M.T.. 2017.; 8, s. 1042- 1054; 9, s. 1-66]. Altitude zones and coordinates of the research area have been determined. Researches were carried out in areas with an altitude above sea level (DSH) of 2175 - 2223 m, coordinates - 390 15ʹ 31ʺ N, 450 52ʹ 12ʺ E. RESULTS AND ANALYSIS Plants were collected and herbarium in the research area. Species have been identified using various determinants. During the expedition to the territories, Aethionema R.Br. The distribution area and ecological environment of the species of the genus have been specified. The species composition of the formation in which the plant is included has been studied. The Brassicaceae Burnett. family has a special placement in the diversity of the flora of the Nakhchivan Autonomous Republic. It is known that there are more than 3 thousand species belonging to 350 genus of the cruciferous family. [Ə.M Talıbov T.H., İbrahimov Ə.Ş., İbrahimov, Герман Д. А. 2022]. 165 species collected in 67 genus of the family grow in Nakhchivan Autonomous Republic. [Nəbiyeva F., 2013; Talıbov T.H., İbrahimov Ə.Ş., İbrahimov Ə.M., 2021]. Aethionema R.Br. (Puljugluot genus) is one of the genus belonging to the cruciferous family. Aethionema originates from the ancient Greek words "to clarify, to connect, to thread". In English, it means "stone salt". This name was given to the plant because it grows in stony places. 8 species (5%) of the genus are distributed in the flora of the Nakhchivan Autonomous Republic: Genus: Aethionema R.Br. Aethionema arabicum (L.) Lipsky Aethionema cardiophyllum Boiss. & Heldr. Aethionema cordatum (Desf.) Boiss. Aethionema diastrophis Bunge Aethionema edentulum N.Busch Aethionema fimbriatum Boiss. Aethionema pulchellum Boiss. & Huet. Aethionema Szowitsii Boiss. (A. elengatum auct.) Aethionema R.Br. cinsinin Aethionema cardiophyllum Boiss. & Heldr., Aethionema cordatum (Desf.) Boiss., Aethionema diastrophis Bunge, Aethionema edentulum N.Busch, Aethionema fimbriatum Boiss., Aethionema pulchellum Boiss. & Huet. are typical for the Nakhchivan flora of Azerbaijan, Aethionema edentulum N.Busch. species is also a subendemic plant of Azerbaijan flora.
  • 18. 18 Sciences of Europe # 106, (2022) Aethionema pulchellum Boiss. & Huet. Aethionema pulchellum Boiss. & Huet. is one of the plants belonging to the genus Aethionema R.Br. Aethionema pulchellum Boiss. & Huet. is a multi- stemmed semibush plant with a height of 15-30 cm. The green leaves are linear and oblong in shape. Green calyx leaves are sometimes dark, pink petals are 6 mm long. It is short columnar. The plant blooms in the 5th month and bears fruit in the 6th month. It is distributed on the dry, stony, rocky slopes of the lower to middle mountain belt. Due to its beautiful leaves and pink flowers, it is very valuable from a decorative point of view. (Decorative species of the genus Aethionema R.Br., Julfa district - Boyahmad village 09. VI. 2022). Boyahmad village is located 62 km northeast of Julfa district center, on the left bank of Alinja river. During the expedition to the area, the species Aethionema pulchellum Boiss. & Huet. was found. The plant is located in Boyahmed village, altitude 2175 - 2223 m. spread at high altitude. The botanical and ecological characteristics of the species belonging to the genus Aethionema R.Br. – Pulcugluot are mentioned in the table below: Table 1 Botanical and ecological characteristics of species of the genus Aethionema R.Br. № Species Altitude Phenophase Life form Height belt Ecological environment 1. Aethionema arabicum (L.) 5-25cm V-VI, VI (VII) Annual grass Middle mountain belt Dry, stony, gravelly places and spills 2. Aethionema cardiophyllum Boiss. & Heldr. 15-25cm V-VI, VI-VII semibush Middle mountain belt Dry, stony, gravelly places 3. Aethionema cordatum (Desf.) Boiss. 10-30cm V-VI, VI-VII semibush Middle mountain belt Dry, gravelly places 4. Aethionema diastrophis Bunge 15-25cm V-VI, VII-VIII semibush Middle mountain belt Stony, gravelly places 5. Aethionema edentulum N.Busch 25-35cm V, VII-VIII semibush Middle mountain belt Dry, stony, gravelly places 6. Aethionema fimbriatum Boiss. 25-40cm VIII semibush Middle mountain belt Rocky places
  • 19. Sciences of Europe # 106, (2022) 19 7. Aethionema pulchellum Boiss. & Huet. 15-30cm V, VI semibush Middle mountain belt Rocky, gravelly places 8. Aethionema Szowitsii Boiss. (A. elengatum auct.) 20-40cm V-VI, V semibush Middle mountain belt Rocky, mostly calcareus places As can be seen from the table, Aethionema R.Br. The species belonging to the genus are mainly semi-bush due to their life form. Most of these plants are distributed in the middle mountain belt and on dry, stony slopes. The plants of the genus Aethionema R.Br are subendemic of the flora of Azerbaijan, and there are species characteristic of the Nakhchivan flora of Azerbaijan. These types and other information are listed in the table below. Table 2 Subendemic species and other characteristics of the species of the genus Aethionema R.Br belonging to the Nakhchivan flora of Azerbaijan № Species Species of Nakhchivan`s flora Subendemic species of Azerbaijan`s Flora Geographic area type Useful features 1. Aethionema arabicum (L.) Lipsky Front Asia Decorative, fodder 2. Aethionema cardiophyllum Boiss. & Heldr. - + Asia Minor Decorative, fodder 3. Aethionema cordatum (Desf.) Boiss. + Asia Minor Decorative 4. Aethionema diastrophis Bunge + Atropatan 5. Aethionema edentulum N.Busch + + Atropatan 6. Aethionema fimbriatum Boiss. + Atropatan 7. Aethionema pulchellum Boiss. & Huet. + Iran Decorative, pharmaceptual 8. Aethionema Szowitsii Boiss. (A. elengatum auct.) Atropatan Decorative CONCLUSION As can be seen from the data in the table, 6 of the 8 species of the Puljugluot genus distributed in the flora of Nakhchivan Autonomous Republic (75%) are typical for the flora of Nakhchivan of Azerbaijan and one species (Aethionema edentulum N.Busch) is a subendemic plant. Half of the species of the genus belong to the geographical area type Atropatan. Also, most of the species belonging to the Pulcugluot genus (5 species, 62%) are of decorative importance. References 1. Askerov A. Flora of Azerbaijan. Baku; TEAS Press, 2016, p. 183-198 2. Kurbanov E.M., Jabbarov M.T. Geobotany. Baku, Baku State University Publishing House, 2017, 320 p. 3. Red Book of the Nakhchivan Autonomous Republic (Higher spore, gymnosperms and angiosperms), volume 2, Nakhchivan: "Ajami" 2010, p. 322-330 4. Nabieva F. Useful properties of plants of the family Brassicaceae Burnett common in Shahbuz region // Bulletin of the Nakhchivan branch of the National Academy of Sciences of Azerbaijan. Series of natural and technical sciences, vol. 9, no. 4, 2013, p. 122-132 5. Talybov T.G., Ibragimov A.Sh., Ibragimov A.M. Taxonomic spectrum of the flora of the Nakhchivan Autonomous Republic (Higher spore, gymnosperms and angiosperms), 2nd ed., Nakhchivan, 2021, p. 147-157 6. German D. A. To the species composition of cruciferous plants (Cruciferae) in Russia and some neighboring countries, // Altai State University, prosp. Lenina, d. 61, 656049, Barnaul, Russia, Turczaninowia 25, 1: 146–152 (2022) 7. Flora of Azerbaijan, volume IV, publishing house of the Academy of Sciences of the Azerbaijan SSR, Baku, 1953, art. 169-182 8. Mohammadin S, Peterse K, van de Kerke S.J, Chatrou L.W, Dönmez A.A et al. Anatolian origins and diversification of Aethionema, the sister lineage of the core Brassicaceae. American Journal of Botany 104 (7): 2017, pp. 1042–1054 9. Yıldırımlı Ş, Kılıç Ö. New infrageneric taxa and species of Aethionema W.T. Aiton (Brassicaceae) and their current key from Turkey. The Herb Journal of Systematic Botany 23 (1-2), 2016, pp. 1–6
  • 20. 20 Sciences of Europe # 106, (2022) ECONOMIC SCIENCES ANALYSIS OF THE DYNAMICS OF INCOME AND COSTS OF THE POPULATION IN THE REPUBLIC OF AZERBAIJAN Ayyubova N., Ph.D in Economics. Associate Professor of “Mathematical Economy” department of Baku State University, Republic of Azerbaijan https://orcid.org/0000-0003-3225-389X Mammadli A. Master student of “Mathematical Economy” department of Baku State University, Republic of Azerbaijan DOI: 10.5281/zenodo.7408529 ABSTRACT In the presented work, a statistical analysis of the distribution of income indicators and costs of the population was carried out, the distribution of the population's income and the degree of stratification of the society were investigated based on the Gini and Lorenz indices. An extensive empirical analysis of the time series according to the income and costs indicators of the population was carried out, descriptive statistics were determined, the normal distribution of the series based on the Jarque-Bera test, stationarity was investigated based on the autocorrelation function and the Dickey-Fuller test, White, Cusum tests were checked. AR models with first and second order differences were established, it was determined that the AR(1) model for income is not stationary, the AR(2) model satisfies the stationarity conditions, and the AR(1) time series for costs is stationary. The conducted research can be evaluated as the basis of studies on extensive empirical analysis, modeling and forecasting of the income and cost of the population in the Republic of Azerbaijan and create wide opportunities for prospective studies. The statistical information used in the study was obtained from the official website of the State Statistical Institute and covers the years 1995-2021. The obtained data were processed in Excel and Eviews application software packages. Keywords: empirical analysis of income and cost indicators of the population, Jarque-Bera test, AR models, Cusum test, autocorrelation, stationarity. Introduction. In modern periods, the statistical study of the income and costs of the population across countries is of great importance. Accordingly, to ana- lyze the standard of living of the population, to develop a socio-economic policy and, most importantly, to or- ganize the social protection of individual population groups, it is necessary to collect and statistical analyze objective data about income. Income is an important economic indicator reflecting social development. If the distribution of income is fair, the social welfare in the country will increase, the poverty level will de- crease and there will be optimistic expectations about the future. Currently, the change in the economic situa- tion in a number of countries has a significant impact on the living standards of the population and its sepa- rate strata, as well as the level and structure of their in- come and costs to one degree or another. The popula- tion's standard of living has seriously decreased, the number of unemployed and those living in poverty has increased, the process of stratification has intensified, such cases increase the importance of the statistical study of income and expenses of the population based on the MHS concept, justifies the relevance of the topic of the research. It is important to collect objective information about the income and costs of the population, to analyze the general state of the economy and the standard of living of the population, to develop the social policy of the state and to implement concrete measures to organ- ize. Systematized information on the income of the population can be used to assess the possibilities of ex- panding investment processes through the mobilization of internal resources. Despite the statistical analysis, modeling of macroeconomic indicators [5,14] that shape and determine the standard of living of the pop- ulation in domestic and foreign literature [3,4,7,9,16,17], as well as work designed to investigate and solve other problems, the relevance of the issue considered, the application of these economic for re- search studies is important [1,2,6,12,13]. A number of scientific articles are devoted to these problems, taking into account regional characteristics in the process of transformation of national economies, and are devoted to the analysis of integration processes between individual countries and groups of countries of the post-Soviet space. The main part of research. The statistical data re- quired to conduct an econometric analysis of the une- ven distribution of income and cost of the population in the Republic of Azerbaijan were obtained from the of- ficial website[15] of the State Statistical Committee of the Republic of Azerbaijan and presented in Table 1. The statistical information in Table 1 indicates In- come(Y1) - the income of the population, Absolute rate of change (Y2) - the rate of absolute change of income, Costs (Y3) - the cost of the population. The absolute rate of change of income was determined by calculating the ratio of the difference between the current level and the previous level to the previous level according to the in- come in the Excel software package.
  • 21. Sciences of Europe # 106, (2022) 21 Table 1. Income and cost indicators of the population for the years 1995-2021 (in current prices, in million manats) Years Income(Y1) Absolute rate of change (Y2) Costs (Y3) 1995 1,340.5 - 1,275.8 1996 1,905.1 0.42 1,853.1 1997 2,473.4 0.30 2,411.3 1998 2,884.8 0.17 2,932.6 1999 3,687.7 0.28 3031.4 2000 4,047.3 0.10 3,272.2 2001 4,301.6 0.06 3,498.4 2002 5,018.6 0.17 4,171.2 2003 5,738.1 0.14 4,793.8 2004 6,595.1 0.15 5,549.9 2005 8,063.6 0.22 6,508.7 2006 10,198.5 0.26 8,208.1 2007 14,558.2 0.43 11,249.7 2008 20,735.4 0.42 15,891.9 2009 22,601.1 0.09 17,417.6 2010 25,607.0 0.13 19,251.5 2011 30,524.6 0.19 22,184.0 2012 34,769.5 0.14 24,564.0 2013 37,562.0 0.08 28,021.2 2014 39,472.2 0.05 30,799.6 2015 41,744.8 0.06 34,963.4 2016 45,395.1 0.09 39,775.0 2017 49,187.9 0.08 44,498.4 2018 53,103.7 0.08 47,557.2 2019 56,769.0 0.07 51,927.4 2020 55,754.1 -0.02 49,744.0 2021 57,181.5 0.03 55201.5 Source: Prepared by the authors based on the data obtained from the State Statistical Committee. The results of descriptive statistics are important in time series analysis. Table 2. Results of descriptive statistics on incomes and costs of the population, absolute rate of change of income Income (Y1) (23748.90) Absolute rate of change(Y2) (0.161280) Costs (Y3) (20020.48) Median 20735.40 0.136031 15891.90 Maximum 57181.50 0.427484 55201.50 Minimum 1340.500 -0.017878 1275.800 Std.Dev 20260.34 0.123748 18141.79 Skewness 0.395810 0.970919 0.644498 Kurtosis 1.619909 3.022570 1.981182 Jarque-Bera statistic 2.847730 4.085511 3.036940 Probability 0.240782 0.129671 0.219047 Sum 641220.4 4.193279 540552.9 Sum Sq.Dev 1.07E+10 0.382837 8.56E+09 Observations 27 26 27 In Table 2 represents average indicators, mean square deviations, excess, asymmetry and other charac- teristics of time series on income, absolute rate of change of income and costs. Satisfactory results were obtained for all three series for both excess and asym- metry. In this way, for these mentioned characteristics, the calculated results in all cases are small and very close to 0, they satisfy the conditions for the signifi- cance of asymmetry and excess. The distribution of the time series follows a normal distribution in all three cases. The results of the Jarque-Bera test also confirm this. JBY1=2.847730, prob.=0.240>0.05; since JBY2=4.085511, prob.=0.12>0.05 and JBY3=3.036940, prob.=0.21>0.05, the hypotheses of normal distribu- tion are accepted. Note that the average values for Y1, Y2 and Y3 are listed in parentheses in Table 2. Results according to the autocorrelation function (ACF) and specific autocorrelation function (PACF), their graphs and the results of the ADF test with both primary and first and second order differences can char- acterize the stationarity of time series [8,10,11,14]. In the next step of the research, the autocorrelation functions for the incomes and costs of the population were investigated.
  • 22. 22 Sciences of Europe # 106, (2022) The presence of autocorrelation among the residuals in the autoregression model indicates that there is correlation between the levels of the time series. This dependence causes cyclical fluctuations in the levels of the series, which leads to the low quality and inefficiency of the forecasts formed on the basis of the autoregression model, because deviations of a cyclical nature, in general, are not random and can create a trend. The analysis of dynamic results and the constructed autocorrelation and special autocorrelation functions of the considered time series can form an opinion whether the series Y1 and Y3 are stationary or non-stationary according to the initial data. Thus, in the autocorrelation analysis conducted on population incomes, probabilities less than 0.05 for all levels determine that the series is non-stationary, and the H0 hypothesis is rejected (see Picture1). Picture 1. ACF and PACF for the order Y1 according to the income of the population. In picture 2 presents the results of the autocorrelation analysis on population costs. In this case, the probabilities are equal to 0.00 for all levels of the series, and the hypothesis H1 is accepted as an alternative hypothesis to H0 about the non-stationarity of the considered series. Picture 2. ACF and PACF for the Y3 row according to population cost. According to the results in Picture-1 and Picture- 2, we can conclude that ACF decreases for series Y1 and Y3, and PACF has the highest autocorrelation coefficient for series Y1 for first order and for series Y3 for first and third order. Functions for other levels do not have significant autocorrelation coefficients. In the conducted research, the capabilities of the Dickey-Fuller test were used to eliminate the non- stationarity of the studied time series based on the primary data. Let's examine the ADF test results using the Eviews application software package. According to the test, the hypothesis that the time series has a single root is accepted if the probability of the t-statistic is less than 5% (significance level of 0.05). For the time series to be stationary, the value of the Dickey-Fuller test should be smaller than the critical value at the 1%, 5%, 10% significance levels. The test results are presented in Table 3:
  • 23. Sciences of Europe # 106, (2022) 23 Table 3. Dickey-Fuller test results Variable T-statistic Critical values: 1% Critical values: 5% Critical values: 10% Prob. First difference, trend and constant Income (Y1) Absolute rate of change (Y2) Costs (Y3) -2.666340 -5.152159 -5.217134 -4.374307 -4.416345 -4.374307 -3.603202 -3.622033 -3.603202 -3.238054 -3.248592 -3.238054 0.2573 0.0021 0.0015 Second difference, trend and constant Income (Y1) Absolute rate of change (Y2) Costs (Y3) -5.170003 -7.392002 -9.236511 -4.416345 -4.440739 -4.394309 -3.622033 -3.632896 -3.612199 -3.248592 -3.254671 -3.243079 0.0020 0.0000 0.0000 In Table 3, because the probability level for Income (Y1) is greater than 0.05, the time series is trending and stationary with the first difference, and the absolute rate of change of income (Y2) is less than 0.05, and the t-statistic value is 1% , 5%, is smaller than the significance level value of 10%, so the H0-hypothesis is rejected and the time series is stationary in the case of trend constant with the first difference. When we look at cost (Y3), since the probability level is less than 0.05, and also the value of t-statistic is smaller than the value of 1%, 5%, 10% significance level, the time series is assumed to be stationary in the case of trend constant with first order difference. The probability level of Income (Y1) with the second design difference is less than 0.05 and the value of the t-statistic is smaller than the value of the significance level of 1%, 5%, 10%, so the H0-hypothesis is rejected and the trend with the second design differences is stationary. Since the absolute rate of change of income (Y2) is smaller than the 5% probability level and the 1%, 5%, 10% significance level, the second formulation is considered stationary in the case of a trend constant with the difference, and also the cost (Y3) is less than the 5% probability level and the 1%, 5%, 1%, 5%, since it is smaller than the 10% significance level, the second formulation is stationary with the trend constant. White's test was used to check the heteroskedasticity and the result is given in Table-4 for income, Table-5 for absolute rate of change of income, and Table-6 for cost. nR2 =Obz*R2 , the number of observations was taken n=26 in both cases. It received value R2 =3.506367 for income, R2 =1.264556 for absolute rate of change of income, and R2 =4.729267 for cost. As the probability level for all three values is greater than 0.05, heteroscedasticity is not detected in the model, and the hypothesis H0 about homoscedasticity is accepted. Table 4. White test results (Income Y1) F-statistic 1.792650 Prob (2,23) 0.1890 Obs*R- squared 3.506367 Prob. Chi-Square (2) 0.1732 Table 5. White test results (Absolute rate of change Y2) F-statistic 0.587917 Prob(2,23) 0.5636 Obs*R- squared 1.264556 Prob. Chi-Square (2) 0.5314 Table 6. White test results (Costs Y3) F-statistic 2.548241 Prob(2,24) 0.0992 Obs*R- squared 4.729267 Prob.Chi-Square(2) 0.0940 It is used to evaluate the stability of the parameters of the model. These tests are based on the calculation of the cumulative sum of the recursive residuals and the cumulative sum of the squares of the recursive residuals and the evaluation of the corresponding equations. Test results are analyzed according to 95% confidence intervals. If the recursive estimates of the residuals deviate from the critical limits, then this indicates instability of the model parameters. Graphically, if the blue line is located between the red lines and does not intersect with them, it confirms the Н0 hypothesis about the stability of the parameters, otherwise, if the blue line intersects with the red lines, then the H1 hypothesis about the instability of the parameters relative to the length of the time interval is accepted. The results of the CUSUM test are shown in Picture-3 for income, Picture-4 for the absolute rate of change of income, and Picture-5 for cost.
  • 24. 24 Sciences of Europe # 106, (2022) -20 -10 0 10 20 30 40 98 00 02 04 06 08 10 12 14 16 18 20 CUSUM 5% Significance -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 96 98 00 02 04 06 08 10 12 14 16 18 20 Standardized Residuals Picture 3. Cusum test and standardized residuals (income Y1) -15 -10 -5 0 5 10 15 98 00 02 04 06 08 10 12 14 16 18 20 CUSUM 5% Significance -2 -1 0 1 2 3 96 98 00 02 04 06 08 10 12 14 16 18 20 Standardized Residuals Picture 4. Cusum test and standardized residuals (Absolute rate of change Y2) -15 -10 -5 0 5 10 15 98 00 02 04 06 08 10 12 14 16 18 20 CUSUM 5% Significance -3 -2 -1 0 1 2 3 96 98 00 02 04 06 08 10 12 14 16 18 20 Standardized Residuals Picture 5. Cusum test and standardized residuals (costs Y3) According to the results of the CUSUM test for the income of the population (Y1), the instability of its parameter is observed because it does not meet the required conditions. As the level indicators of the results of the CUSUM test on the absolute rate of change of income (Y2) are close to each other, they do not change and give the impression of stable dynamics on a straight line, and since the blue line is located between the red lines, it is assumed that the Y2- parameter is stable or steady. Also presented in Picture 4 is a representation of the standardized residuals, and in this graphical representation, the recursive values of residuals (CUSUM) and the recursive values of squares of residuals (CUSUM of Squares) do not deviate from the 95% confidence interval. According to the results of the CUSUM test on cost (Y3) in figure 5, the cost parameters can be considered stable and steady. Let's consider autoregression models with first and second order differences to characterize the dependencies between economic indicators.