Scaling up Deep Learning Based Super
Resolution Algorithms
Xiaoyong Zhu
Microsoft Cloud AI Group
CNTK implementation
Let’s Enhance
Image Source
Image Source
because human vision is more sensitive to luminance (“black and white”) differences than
chromatic differences
A few milestones including SRCNN, VDSR, DRRN, SRGAN
• SRCNN (First to apply deep learning to Super Resolution, 2014)
• VDSR (Very Deep Convolutional Networks, 2015)
• DRRN (Deep Recursive Residual Network, CVPR 2017)
• SRGAN (Photo-Realistic using GANs, CVPR 2017)
• EDSR (Enhanced version using part of SRGAN’s work. Winner of
NTIRE2017 Super resolution challenge)
• NTIRE Challenge (New Trends in Image Restoration and Enhancement) is a
challenge in this area (http://www.vision.ee.ethz.ch/ntire17/)
Image Source
linear
bilinear bicubic
• Bicubic interpolation
• VDSR (Very Deep Convolutional Networks, 2015)
• DRRN (Deep Recursive Residual Network, CVPR 2017)
• SRGAN (Photo-Realistic using GANs, CVPR 2017)
• EDSR (Enhanced version using part of SRGAN’s work. Winner of
NTIRE2017 Super resolution challenge)
• NTIRE Challenge (New Trends in Image Restoration and Enhancement) is a
challenge in this area (http://www.vision.ee.ethz.ch/ntire17/)
http://cs231n.github.io/understanding-cnn/
Link to paper
Bicubic
SRCNN
• Bicubic interpolation
• SRCNN (First to apply deep learning to Super Resolution, 2014)
• DRRN (Deep Recursive Residual Network, CVPR 2017)
• SRGAN (Photo-Realistic using GANs, CVPR 2017)
• EDSR (Enhanced version using part of SRGAN’s work. Winner of
NTIRE2017 Super resolution challenge)
• NTIRE Challenge (New Trends in Image Restoration and Enhancement) is a
challenge in this area (http://www.vision.ee.ethz.ch/ntire17/)
ResNet architecture
Image frequency CNTK Code
Code available in CNTK
• Bicubic interpolation
• SRCNN (First to apply deep learning to Super Resolution, 2014)
• VDSR (Very Deep Convolutional Networks, 2015)
• SRGAN (Photo-Realistic using GANs, CVPR 2017)
• EDSR (Enhanced version using part of SRGAN’s work. Winner of
NTIRE2017 Super resolution challenge)
• NTIRE Challenge (New Trends in Image Restoration and Enhancement) is a
challenge in this area (http://www.vision.ee.ethz.ch/ntire17/)
The coolest idea in ML in the last twenty years - Yann Lecun
https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016
z
G(z)
D(x)
x
D(G(z))
G
D
http://people.eecs.berkeley.edu/~junyanz/projects/gvm/
Image source: http://kvfrans.com/visualizing-features-from-a-
convolutional-neural-network/
https://www.cntk.ai/pythondocs/CNTK_302A_Evaluation_of_Pretrained_Su
per-resolution_Models.html
Bicubic DRRN SRGAN
Bicubic DRRN SRGAN
https://www.cntk.ai/pythondocs/CNTK_302A_Evaluation_of_Pretrained_Su
per-resolution_Models.html
SRCNN
VDSR
DRRN
SRGAN
EDSR
here
here
Scalable Machine Learning using Kubernetes
• Slides: bit.ly/DLwithK8S
• Tutorial for deploying DL with K8S using acs_engine:
bit.ly/K8SwithACSEngine
• Tutorial for deploying DL with managed K8S: aka.ms/AKS_GPU
• Azure Machine Learning simplification to K8S: aka.ms/AMLtoACS
• Batch AI for training DL at scale: bit.ly/deepbait
Scaling up Deep Learning Based Super Resolution Algorithms

Scaling up Deep Learning Based Super Resolution Algorithms