SAMPLING PROCESS
SAMPLING THEOREM (THIRD PHASE)
 A bandlimited signal can be reconstructed exactly if it is
sampled at a rate at least twice of the maximum
frequency component present in the signal (fs > 2fm).
Sampled analog
waveform
t
Ts
Ts
 
t
sampled
S
m(t)
t
Sampler
Product modulator
 
s
T
n
t 

t
0 Ts 2Ts 3Ts
-Ts
-2Ts
1
CONTINUED…
 
 s
T
n
t
 t
nw
b
t
nw
a
a o
n
o
n
n
n
o 







1
1
sin
cos
Fourier series representation of train impulse signal is
given as:
bn = 0; because train impulse signal is an even signal
s
s
s
s
o
T
dt
nT
t
T
a
T
1
)
(
1




s
s
o
s
s
n
T
tdt
nw
nT
t
T
a
T
2
cos
)
(
2




 
 s
T
n
t
 t
nw
T
T
s
s
s
n




1
cos
2
1
CONTINUED…
  )
(2
cos
2
)
(
cos
2
1
.
.
.









t
T
t
T
T
T
n
t s
s
s
s
s
n
s 


 
)
(2
cos
)
(
2
)
(
cos
)
(
2
)
(
1
.
.
.



 t
t
m
t
t
m
t
m
T
s
s
s


 
t
sampled
S
Spectrum
m(t)
fm
-fm
Modulation by
cos(s t)
Modulation by cos(2 s t)
 ]
)[
( 




n
s
T
n
t
t
m 
  
t
sampled
S
CONTINUED…
Spectrum
ws
-ws
   ]
[
cos s
s
s w
w
w
w
t
nw
FT



 


 
)
(2
cos
)
(
2
)
(
cos
)
(
2
)
(
1
.
.
.



 t
t
m
t
t
m
t
m
T
s
s
s


 
t
sampled
S
Spectrum
fm
-fm fs-fm fs
-fs fs+fm
-fs+fm
-fs+fm
…
…
CONTINUED…
fm
-fm fs-fm fs
-fs fs+fm
-fs+fm
-fs+fm
…
…
Gaurd band
Gaurd band = GB= fs – fm – fm = fs – 2fm
There are basically three different cases on guard band;
1. GB = 0 fs = 2fm
2. GB > 0 fs > 2fm
3. GB < 0 fs < 2fm
CONTINUED…
Ideal condition, practically message can not be recover back
Case 1. fs = 2fm Nyquist Rate
…
…
Case 2. fs > 2fm Over sampling
Full reconstruction of message signal is possible in this case
…
…
Ideal filter
Practical filter
Ideal filter
Practical filter
CONTINUED…
…
…
Case 3. fs < 2fm Aliasing effect
Interference of high frequency components
Recovery of original message signal is not possible
Ideal filter
Practical filter
APPLICATIONS
 Audio sampling
Video sampling
Communication systems
Digital signal processing
Speech sampling
 3D sampling
Digital Storage Oscilloscope (DSO)
THANK YOU

Sampling Theorem: A Comprehensive Overview Introduction

  • 1.
  • 2.
    SAMPLING THEOREM (THIRDPHASE)  A bandlimited signal can be reconstructed exactly if it is sampled at a rate at least twice of the maximum frequency component present in the signal (fs > 2fm). Sampled analog waveform t Ts Ts   t sampled S m(t) t Sampler Product modulator   s T n t   t 0 Ts 2Ts 3Ts -Ts -2Ts 1
  • 3.
    CONTINUED…    s T n t t nw b t nw a a o n o n n n o         1 1 sin cos Fourier series representation of train impulse signal is given as: bn = 0; because train impulse signal is an even signal s s s s o T dt nT t T a T 1 ) ( 1     s s o s s n T tdt nw nT t T a T 2 cos ) ( 2        s T n t  t nw T T s s s n     1 cos 2 1
  • 4.
    CONTINUED…   ) (2 cos 2 ) ( cos 2 1 . . .          t T t T T T n ts s s s s n s      ) (2 cos ) ( 2 ) ( cos ) ( 2 ) ( 1 . . .     t t m t t m t m T s s s     t sampled S Spectrum m(t) fm -fm Modulation by cos(s t) Modulation by cos(2 s t)  ] )[ (      n s T n t t m     t sampled S
  • 5.
    CONTINUED… Spectrum ws -ws   ] [ cos s s s w w w w t nw FT          ) (2 cos ) ( 2 ) ( cos ) ( 2 ) ( 1 . . .     t t m t t m t m T s s s     t sampled S Spectrum fm -fm fs-fm fs -fs fs+fm -fs+fm -fs+fm … …
  • 6.
    CONTINUED… fm -fm fs-fm fs -fsfs+fm -fs+fm -fs+fm … … Gaurd band Gaurd band = GB= fs – fm – fm = fs – 2fm There are basically three different cases on guard band; 1. GB = 0 fs = 2fm 2. GB > 0 fs > 2fm 3. GB < 0 fs < 2fm
  • 7.
    CONTINUED… Ideal condition, practicallymessage can not be recover back Case 1. fs = 2fm Nyquist Rate … … Case 2. fs > 2fm Over sampling Full reconstruction of message signal is possible in this case … … Ideal filter Practical filter Ideal filter Practical filter
  • 8.
    CONTINUED… … … Case 3. fs< 2fm Aliasing effect Interference of high frequency components Recovery of original message signal is not possible Ideal filter Practical filter
  • 9.
    APPLICATIONS  Audio sampling Videosampling Communication systems Digital signal processing Speech sampling  3D sampling Digital Storage Oscilloscope (DSO)
  • 10.