SlideShare a Scribd company logo
Full name 1: Mohammed Alasmar
Email: M.ALASMAR@SUSSEX.AC.UK
GENERAL INFORMATION
Problem & Approaches to Solutions
MATHS CHALLENGE1
http://users.sussex.ac.uk/~gg44/rep2rep/1
The problems that have been solved:
Problem 1 - Two Integers
Problem 3 - City Grid
1
09/12/2018
Full name 2: Alexander Jeffery
Email: A.P.Jeffery@SUSSEX.AC.UK
2
Problem 1 - Two Integers
Two different integers between 1 and 10 are chosen at random. What is the
probability that they are consecutive?
Problem 3 - City Grid
You and your friend live in a grid-like city. Every edge of the grid is a road. The distance from
your place to your friend's place is n roads north and m roads east. You and your friend
decide to visit each other but both of you leave at the same time and walk at the same
speed. If both of you take 'optimal paths' (minimising the length of the paths), what's the
probability that you will meet on your way?
Q1
3
4
Index Number 1 Number 2
1 1 2
2 1 3
3 1 4
4 1 5
5 1 6
6 1 7
7 1 8
8 1 9
9 1 10
10 2 1
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 2 8
17 2 9
18 2 10
19 3 1
20 3 2
21 3 4
22 3 5
23 3 6
24 3 7
25 3 8
26 3 9
27 3 10
28 4 1
29 4 2
30 4 3
31 4 5
32 4 6
33 4 7
34 4 8
35 4 9
36 4 10
37 5 1
38 5 2
39 5 3
40 5 4
41 5 6
42 5 7
43 5 8
44 5 9
45 5 10
46 6 1
47 6 2
48 6 3
49 6 4
50 6 5
51 6 7
52 6 8
53 6 9
54 6 10
55 7 1
56 7 2
57 7 3
58 7 4
59 7 5
60 7 6
61 7 8
62 7 9
63 7 10
64 8 1
65 8 2
66 8 3
67 8 4
68 8 5
69 8 6
70 8 7
71 8 9
72 8 10
73 9 1
74 9 2
75 9 3
76 9 4
77 9 5
78 9 6
79 9 7
80 9 8
81 9 10
82 10 1
83 10 2
84 10 3
85 10 4
86 10 5
87 10 6
88 10 7
89 10 8
90 10 9
Case 1:
Permutations without replacement i.e., the two numbers are
different and order is considered, for example (1,2) and (2,1) should
be taken in the outcome.
We define the consecutive numbers as the numbers which follow
each other in order, without gaps, from smallest to largest.
Picking two different number between [1,10] gives 90 possible
outcomes, where 9 of them represent the cases of getting
consecutive numbers, as shown in Fig.1 (the yellow cells).
Hence, the probability that the two numbers are consecutive can be
found as follows:
! =
9
90
= #. %
Fig.1
5
1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10
1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10
Case 1:
We define the consecutive numbers
as the numbers which follow each
other in order, without gaps, from
smallest to largest.
Fig.2(a) shows are the possible
outcomes from picking two
different number between [1,10].
These are represented by the black
squares in the figure, which are 90
squares. The cases of consecutive
numbers are represented by the
yellow squares in Fig.2(b), which are
9 squares.
Hence, the probability that the two
numbers are consecutive can be
found as follows:
All outcomes (the black squares = 90) The cases of consecutive numbers
(the yellow squares = 9)
! =
number of yellow squares
number of black squares
=
9
90
= #. %
Fig.2
Fig.2(a)
Fig.2(b)
Number 1 Number 1
Number2
Number2
6
2
3
4
5
1 6
7
8
9
10
1
3
4
5
2 6
7
8
9
10
1/9
1/10
1/10
1
2
4
5
3 6
7
8
9
10
1
2
3
5
4 6
7
8
9
10
1/10
1/10
1
2
3
4
5 6
7
8
9
10
1
5
3
4
6 5
7
8
9
10
1/10
1/10
1
2
3
4
7 5
6
8
9
10
1
2
3
4
8 5
6
7
9
10
1/10
1/10
1
2
3
4
9 5
6
7
8
10
1
2
3
4
10 5
6
7
8
9
1/10
1/10
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/9
Case 1:
The tree diagram is used in this solution (see below). The first stage in this tree (picking the first number at random) contains ten outcomes: [1:10], so the probability of each one of these
outcomes is 1/10. In the second stage, 9 possible numbers can be selected at random. Only one of these 9 numbers is a consecutive number to the number that was selected at the first stage
except for number 10 which does not have any consecutive number.
Thus, the probability that the two numbers are consecutive can be found as follows: ! = #×
1
10
×
%
#
=
1
10
= &. %
7
The Permutation is defined as a selection of numbers in which the order of the numbers matters, and there is no
replacement. This is the case of this question i.e., we solve it with order and without replacement. Hence, we can use
the permutation formula to find the total number of possible outcomes, as follows:
!(#, %) = # % =
#!
# − % !
10 2 =
10!
10 − 2 !
= 90
Now, the number of choices with consecutive numbers = # − 1 = 10 − 1 = 9
This is because each number has a consecutive but not the last number (this is based on our definition of consecutive
numbers, i.e., the consecutive numbers are the numbers which follow each other in order, without gaps, from smallest
to largest)
Therefore, the probability of choosing consecutive numbers is
Case 1:
! =
# − 1
#!
# − % !
=
10 − 1
10!
10 − 2 !
=
9
90
= 0.1
8
If we want to pick 2 different numbers from
the set of numbers [1:10], then there are 10
options to pick from for the first number and
9 options for the second number, as shown
in Fig.3.
Thus, the total number of selections =
number of available values for number 1 x
number of available values for number 2 =
10 × 9 = 90
Now, for the first picked number there is
only one consecutive number expect for the
largest number, which does not have any
consecutive number (see Fig.4). This means
that there are 9 possibilities of getting
consecutive numbers.
Therefore, the probability of choosing
consecutive numbers is
& =
9
90
= '. )
10 9 8 7 6 5 4 3 2 1
123456789
Case 1:
Fig.3 the number of available numbers for picking
10 available
Pick number 1 Pick number 2
9 available
Fig.4 each number has a consecutive but not 10
No consecutive
9
clc,close all
x = 1:10;
y = 1:10;
counterAll = 0;
counterCons = 0;
for i=1:10
for j = 1:10
if y(j)==x(i)+1
plot(x(i),y(j),'rs','LineWidth', 15)
counterCons = counterCons+1;
end
hold on
if x(i)~=y(j)
plot(x(i),y(j),'bd','LineWidth', 4)
counterAll = counterAll+1;
end
end
end
grid on,xlabel('number 1'), ylabel('number 2')
set(gca,'fontsize',15)
legend('consecutive','all outcomes')
prob = counterCons/counterAll
prob = 0.1000
Running the code gives the probability value and Fig.5.
By using the following Matlab code.
Fig.5
10
The second number is bigger than the first. If the first number is k (which happens with probability 1/n), then
the probability the second number is 1/(n-1).
Case 1
! = #
$%&
'(&
1
*
×
1
* − 1
! = #
$%&
&-(&
1
10
×
1
9
= 9×
1
10
×
1
9
=
1
10
= 0.1
11
Case 2:
Solving the problem using combination, i.e.,
there is no replacement and order is not
important, for example, we just take one of
these groups (1,2) and (2,1).
We define the consecutive numbers as the
numbers which follow each other in order,
without gaps, from smallest to largest.
Picking two different number between
[1,10] gives 90 possible outcomes, where 9
of them represent the cases of getting
consecutive numbers, as shown in Fig.6 (the
yellow cells).
Hence, the probability that the two
numbers are consecutive can be found as
follows:
! =
9
45
= #. %
Fig.6
Index Number 1 Number 2
1 1 2
2 1 3
3 1 4
4 1 5
5 1 6
6 1 7
7 1 8
8 1 9
9 1 10
10 2 3
11 2 4
12 2 5
13 2 6
14 2 7
15 2 8
16 2 9
17 2 10
18 3 4
19 3 5
20 3 6
21 3 7
22 3 8
23 3 9
24 3 10
25 4 5
26 4 6
27 4 7
28 4 8
29 4 9
30 4 10
31 5 6
32 5 7
33 5 8
34 5 9
35 5 10
36 6 7
37 6 8
38 6 9
39 6 10
40 7 8
41 7 9
42 7 10
43 8 9
44 8 10
45 9 10
12
1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10
Case 2:
We define the consecutive numbers
as the numbers which follow each
other in order, without gaps, from
smallest to largest.
Fig.7(a) shows are the possible
outcomes from picking two different
number between [1,10].
These are represented by the black
squares in the figure, which are 45
squares. The cases of consecutive
numbers are represented by the
yellow squares in Fig.7(b), which are
9 squares.
Hence, the probability that the two
numbers are consecutive can be
found as follows:
All outcomes (the black squares = 45) The cases of consecutive numbers
(the yellow squares = 9)
! =
number of yellow squares
number of black squares
=
9
45
= #. %
Fig.7
Fig.7(a)
Fig.7(b)
Number 1 Number 1
Number2
Number2
1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10
13
2
3
4
5
1 6
7
8
9
10
3
4
5
2 6
7
8
9
10
4
5
3 6
7
8
9
10
5
4 6
7
8
9
10
5 6
7
8
9
10
6
7
8
9
10
7
8
9
10
8
9
10
9
10
Case 2:
The tree diagram is used in this solution. The first stage in this tree (picking the first number at random) contains ten outcomes: [1:10], so the probability of each of these outcomes is 1/10. In the
second stage, 9 possible numbers can be selected at random. Only one of these 9 numbers is a consecutive number to the number that was selected at the first stage except for number 10 which
does not have any consecutive number. Now, the probability that the two numbers are consecutive can be found as follows:
! =
number of consecutives
total number of possible outcome
=
3
45
= 6. 8
14
The Combination is defined as a selection of numbers in which the order of the numbers does not matter,
and there is no replacement. This is the case of this question i.e., without order and without replacement.
Hence, we can use the Combination formula to find the total number of possible outcomes, as follows:
! ", $ =
"
$
=
"!
" − $ ! $!
10
2
=
10!
10 − 2 ! 2!
= 45
Now, the number of choices with consecutive numbers = " − 1 = 10 − 1 = 9
This is because each number has a consecutive but not the last number (this is based on our definition of
consecutive numbers, i.e., the consecutive numbers are the numbers which follow each other in order,
without gaps, from smallest to largest)
Therefore, the probability of choosing consecutive numbers is
Case 2:
. =
" − 1
"
$
=
" − 1
"
2
=
10 − 1
10
2
=
9
10!
10 − 2 ! 2!
=
9
45
= 0.2
15
If we want to pick 2 different numbers from
the set of numbers [1:10], then there are 10
options to pick from for the first number
and 9 options for the second number, as
shown in Fig.8.
Thus, the total number of selections =
10
2
= 45
Now, for the first picked number there is
only one consecutive number expect for the
largest number, which does not have any
consecutive number (see Fig.9). This means
that there are 9 possibilities of getting
consecutive numbers.
Therefore, the probability of choosing
consecutive numbers is
' =
9
45
= 0.2
10 9 8 7 6 5 4 3 2 1
123456789
Case 2:
Fig.8 the number of available numbers for picking
10 available
Pick 2 numbers randomly without replacement
Fig.9
16
clc,close all
x = 1:10; y = 1:10;
counterAll = 0; counterCons = 0;
for i=1:10
for j = i:10
if y(j)==x(i)+1
plot(x(i),y(j),'rs','LineWidth', 15)
counterCons = counterCons+1;
end
hold on
if x(i)~=y(j)
plot(x(i),y(j),'bd','LineWidth', 4)
counterAll = counterAll+1;
end
end
end
grid on,xlabel('number 1'), ylabel('number 2')
set(gca,'fontsize',15)
legend('consecutive','all outcomes')
prob = counterCons/counterAll
prob = 0.2000
Running the code gives the probability value and Fig.10.
Fig.10
Q2
17
18
• My friend and I each walk towards each other’s houses on an optimal path.
• Since we walk at the same speed, we will always meet at a point equidistant from each of our houses.
• We call such a point a ‘midpoint’.
• There are many possible paths we each could choose, but as long as we choose paths that have a midpoint, we will
meet each other.
• So to calculate the probability, we must know:
1. how many midpoints there are for all optimal paths (k)
2. how many ways there are to reach each midpoint
• The probability we meet can then be given by:
! =
δ
$
=
number of ways to meet at the midpoints
total number of ways to all midpoints
19
• We continue with an example, where n = 4 and m = 2.
• In this grid, there are three midpoints {A, B and C}.
• By using tree diagram, we can show all the possible paths for
both persons.
• Person P1 walks either to the right (R) or up (U), while person P2
walks either to the left (L) or down (D)
• At each step we get one of these options for both persons:
(P1,P2) = {(Up,Left), (Up,Down), (Right,Left) or (Right,Down)}
Left
Down
Right
Up
• We continue with an example, where n = 4 and m = 2.
• In this grid, there are three midpoints {A, B and C}.
For the first person P1:
• There are 3 ways to reach A from P1 • There is 1 way to reach C from P1• There are 3 ways to reach B from P1
Now, the total ways P1 can go to reach the midpoints is given as:
3 + 3 + 1 = %
Example: solution 1
20
21
• And the total ways P2 can go to reach the midpoints is given as:
1 + 3 + 3 = 7
Similarly, for the second person P2:
• There is 1 way to reach A from P2 • There are 3 ways to reach B from P2 • There are 3 ways to reach C from P2
• Therefore, the total number of ways both persons can reach the midpoints is & = 49 (i.e. 7*7).
• And the number of those ways in which the two persons choose the same midpoint (i.e.,
number of ways to meet at the midpoints ) is given by (see the next slide):
• δ = 9:;< =>?@ A1 B? C × 9:;< =>?@ A2 B? C + 9:;< =>?@ A1 B? F × 9:;< =>?@ A2 B? F + 9:;< =>?@ A1 B? G × 9:;< =>?@ A2 B? G = 3×1 + 3×3 + 1×3 = 15
• Hence, the probability we meet can then be given by:
A =
δ
&
=
number of ways to meet at the midpoints
total number of ways to all midpoints
=
15
49
= 0.3061
22
A
A
B
B
C
C
!"#$ %&'( )1 +' , × !"#$ %&'( )2 +' , + !"#$ %&'( )1 +' 0 × !"#$ %&'( )2 +' 0 + !"#$ %&'( )1 +' 1 × !"#$ %&'( )2 +' 1
3 × 1 + 3 × 3 + 1 × 3 = 15 = δ
23
• We continue with an example, where n = 4 and m = 2.
• In this grid, there are three midpoints {A, B and C}.
• By using tree diagram, we can show all the possible paths for
both persons.
• Person P1 walks either to the right (R) or up (U), while person P2
walks either to the left (L) or down (D)
• At each step we get one of these options for both persons:
(P1,P2) = {(Up,Left), (Up,Down), (Right,Left) or (Right,Down)}
Left
Down
Right
Up
Up è Up è Right
Up è Right è Up
Right è Up èUp
Up è Right è Right
Right è Right è Up
Right è Up è Right
Right è Right èRight
Left è Left è Left
Left è Left è Down
Left è Down è Left
Down è Left è Left
Down è Down è Left
Down è Left è Down
Left è Down è Down
Example: solution 2
24
Up è Up è Right
Up è Right è Up
Right è Up èUp
Up è Right è Right
Right è Right è Up
Right è Up è Right
Right è Right èRight
Left è Left è Left
Left è Left è Down
Left è Down è Left
Down è Left è Left
Down è Down è Left
Down è Left è Down
Left è Down è Down
We can generate a tree diagram from these possible outcomes, as follows:
They meet
at A
They don’t
meet
1 out of 7
Subtree1
25
Up è Up è Right
Up è Right è Up
Right è Up èUp
Up è Right è Right
Right è Right è Up
Right è Up è Right
Right è Right èRight
Left è Left è Left
Left è Left è Down
Left è Down è Left
Down è Left è Left
Down è Down è Left
Down è Left è Down
Left è Down è Down
They meet
at A
They don’t
meet
1 out of 7
Subtree2
26
Up è Up è Right
Up è Right è Up
Right è Up èUp
Up è Right è Right
Right è Right è Up
Right è Up è Right
Right è Right èRight
Left è Left è Left
Left è Left è Down
Left è Down è Left
Down è Left è Left
Down è Down è Left
Down è Left è Down
Left è Down è Down
They meet
at A
They don’t
meet
1 out of 7
Subtree3
27
Up è Up è Right
Up è Right è Up
Right è Up èUp
Up è Right è Right
Right è Right è Up
Right è Up è Right
Right è Right èRight
Left è Left è Left
Left è Left è Down
Left è Down è Left
Down è Left è Left
Down è Down è Left
Down è Left è Down
Left è Down è Down
They meet
at B
They don’t
meet
They don’t
meet
3 out of 7
Subtree4
28
Up è Up è Right
Up è Right è Up
Right è Up èUp
Up è Right è Right
Right è Right è Up
Right è Up è Right
Right è Right èRight
Left è Left è Left
Left è Left è Down
Left è Down è Left
Down è Left è Left
Down è Down è Left
Down è Left è Down
Left è Down è Down
They meet
at B
They don’t
meet
They don’t
meet
3 out of 7
Subtree5
29
Up è Up è Right
Up è Right è Up
Right è Up èUp
Up è Right è Right
Right è Right è Up
Right è Up è Right
Right è Right èRight
Left è Left è Left
Left è Left è Down
Left è Down è Left
Down è Left è Left
Down è Down è Left
Down è Left è Down
Left è Down è Down
They meet
at B
They don’t
meet
They don’t
meet
3 out of 7
Subtree6
30
Up è Up è Right
Up è Right è Up
Right è Up èUp
Up è Right è Right
Right è Right è Up
Right è Up è Right
Right è Right èRight
Left è Left è Left
Left è Left è Down
Left è Down è Left
Down è Left è Left
Down è Down è Left
Down è Left è Down
Left è Down è Down
They meet
at C
They don’t
meet
They don’t
meet
3 out of 7
Subtree7
31
Hence, from this tree diagram we can calculate the total number of outcomes
1. The number of ways they meet at a midpoint in Subtree1 equals: 1 out of 7
2. The number of ways they meet at a midpoint in Subtree2 equals: 1 out of 7
3. The number of ways they meet at a midpoint in Subtree3 equals: 1 out of 7
4. The number of ways they meet at a midpoint in Subtree4 equals: 3 out of 7
5. The number of ways they meet at a midpoint in Subtree5 equals: 3 out of 7
6. The number of ways they meet at a midpoint in Subtree6 equals: 3 out of 7
7. The number of ways they meet at a midpoint in Subtree7 equals: 3 out of 7
Thus, the number of ways they meet at the midpoints is given as: 15 out 49
The probability they meet can is given by:
! =
#
$
=
%&'()* +, -./0 1+ '))1 .1 12) '345+3%10
1+1.6 %&'()* +, -./0 1+ .66 '345+3%10
= 15/49 = 0.3061
32
• We continue with an example, where n = 4 and m = 2.
• In this grid, there are three midpoints {A, B and C}.
• By using tree diagram, we can show all the possible paths for
both persons.
• Person P1 walks either to the right (R) or up (U), while person P2
walks either to the left (L) or down (D)
• At each step we get one of these options for both persons:
(P1,P2) = {(Up,Left), (Up,Down), (Right,Left) or (Right,Down)}
Left
Down
Right
Up
Up è Up è Right
Up è Right è Up
Right è Up èUp
Up è Right è Right
Right è Right è Up
Right è Up è Right
Right è Right èRight
Left è Left è Left
Left è Left è Down
Left è Down è Left
Down è Left è Left
Down è Down è Left
Down è Left è Down
Left è Down è Down
Example: solution 3
The following table
shows all the possible
outcomes from these
options. It is clear that
we will get 7*7 = 49
outcomes.
33
Step 1 Step 2 Step 3
P1 P2 P1 P2 P1 P2
Step 1 Step 2 Step 3
P1 P2 P1 P2 P1 P2
Step 1 Step 2 Step 3
P1 P2 P1 P2 P1 P2
The yellow cells represent the cases
when P1 and P2 meet at a midpoint,
which are 15 out of 49 outcomes. Thus,
the probability they meet is 15/49 =
0.3061
34
Generalising the solution
to work for any grid size
• The probability we meet is given by:
number of ways to meet at the midpoints
total number of ways to all midpoints
=
?
?
56789: ;< =>?@ A; 799A >A AB9 7CDE;C5A@
total number of ways to all midpoints
F =
G
H
=
35
Generally speaking we can use the
combination formula to calculate the
number of ways we can meet at a
midpoint.
For a grid of size m by n the number of
ways we can meet at a midpoint is given
by:
In the example of 2*4 grid,
6
4
=
6!
2! 4!
= 15
( + *
*
6!
4! 2!
+,-./0 12 3456 71 -//7 47 78/ -9:;19+76
+,-./0 12 3456 71 -//7 47 78/ -9:;19+76 =
δ
= δ
36
We now turn to generalising the total number of ways to all midpoints. We first need to define the following
parameters:
S = number of steps to midpoint, which can be found as:
! =
# + %
2
k = number of midpoints, which is calculated as:
' = min #, % + 1
In our 2*4 grid example, ! =
-./
/
= 3 12341, and ' = min 2,4 + 1 = 3
total number of ways to all midpoints
3
= 3
3
1
= 3
3
0
= 1
Note that all the
equations here work
with a gird of an even
sum of its dimension,
e.g., 2*4 not 2*3. We
will explain the case of
the odd sum later.
E
37
Hence, the total number of ways one can reach a midpoint is given by:
!
"#$
%&'
(
)
= !
"#$
+&'
3
)
=
3
0
+
3
1
+
3
2
= 1 + 3 + 3 = 7
3
2
3
1
3
0
This is the same value for the second person P2.
3
0
3
1
3
2
1
3
3
38
The same applies for the other person. We therefore square this value to get the total number of ways we
cab each go to a midpoint without necessarily meeting.
!
"#$
%&'
(
)
*
total number of ways to all midpoints =
• The probability we meet is given by:
=
= + ?
?
∑A#B
C&D E
A
F
GHIJKL MN OPQR SM IKKS PS STK IUVWMUGSR
total number of ways to all midpoints
….. (*)
X =
Y
Z
=
= [
39
Now, let’s run some examples using equation(*).
Example 1:
! = # $%& % = '
S = number of steps to midpoint, which can be found as:
( =
) + +
2
=
6
2
= 3
k = number of midpoints, which is calculated as:
/ = min ), + + 1 = 2 + 1 = 3
The probability we meet =
! + %
%
∑678
9:; <
6
#
=
=
'
∑678
# >
6
# =
;?
'@
= 8. >8=;
40
Example 2:
! = # $%& % = '
S = number of steps to midpoint, which can be found as:
( =
) + +
2
=
10
2
= 5
k = number of midpoints, which is calculated as:
0 = min ), + + 1 = 4 + 1 = 5
The probability we meet =
! + %
%
∑789
:;< =
7
>
=
<9
'
∑789
# ?
7
> =
><9
@'<
= 9. ><B?
41
Example 3:
! = # $%& % = '
S = number of steps to midpoint, which can be found as:
( =
) + +
2
=
10
2
= 5
k = number of midpoints, which is calculated as:
0 = min ), + + 1 = 3 + 1 = 4
The probability we meet =
! + %
%
∑89:
;<= >
8
?
=
=:
'
∑89:
# @
8
? =
=?:
A'A
= :. =''@
42
Example 4:
! = # $%& % = '#
S = number of steps to midpoint, which can be found as:
( =
) + +
2
=
20
2
= 10
k = number of midpoints, which is calculated as:
/ = min ), + + 1 = 5 + 1 = 6
The probability we meet =
! + %
%
∑789
:;' <
7
=
=
=9
'#
∑789
# '9
7
= =
'##9>
>9?9>>
= 9. 9AB'
43
Example 5:
! = #$ %&' & = ($
S = number of steps to midpoint, which can be found as:
) =
* + ,
2
=
50
2
= 25
k = number of midpoints, which is calculated as:
0 = min *, , + 1 = 20 + 1 = 21
The probability we meet =
! + &
&
∑78$
9:; <
7
(
=
=$
($
∑78$
($ (=
7
( =
>. @;(AB + ;#
;. ;(>AB + ;=
= $. $>;A
44
Note that all the
equations here work
with a gird of an even
sum of its dimension,
e.g., 2*4 not 2*3. We
will explain the case of
the odd sum later.
Now, we show how to
deal with a grid that has
an odd sum of its
dimension.
• Again, we need to find the probability we meet:
= ?
45
2*3 (odd sum)
Example, !′= number of midpoints = 5
!′ = 2×min ), + + 1 = 4 + 1 = 5
1
2
1
2
2
1
1
In this example, there are 5 midpoints and each walker needs 2.5 steps to reach a midpoint.
The figure below shows the number of ways that walker 1 needs to reach each midpoint.
46
2*3 (odd sum)2*4 (even sum)
!"#$%& '( )*+, -' #%%- *- -.% #/01'/!-, =
= 3×5 + 3×3 + 3×5 = 57
Or				
; + <
<
=
=
>
= 57
3
3
1
1 1
1
2
2
2
1
1
2
1
= 5×5 + ?×3 + ?×? + 5×? + 5×5 = 5@
Or				
; + <
<
=
7
3
= 5@
δ
Hence, the formula
! + #
#
is valid for both cases (even and odd sums), which
is used to find the $%&'() *+ ,-./ 0* &((0 -0 01( &234*2$0/.
The challenging part is finding total number of ways to all midpoints. Instead
of deriving a new formula for the odd sum, we can observe that the β value is
same for both 2*4 and 2*3, as shown below.
β = 3 + 3 + 1 × 1 + 3 + 3 = 7×7 = MN β = 1 + 2 + 2 + 1 + 1 × 1 + 1 + 2 + 2 + 1 = 7×7 = MN
48
The β value of m*n grid with odd sum m+n equals the β value of m*(n+1), which is an even sum. This
means we still can use the derived formulas of the even sum for the odd sum but we need to add one to the
n value. Note that is just to find β not ".
Let’s apply this conclusion to the same example that we use here:
Even sum(m,n)
"
=
$ + &
&
Number of steps to
midpoints:
' =
$ + &
(
Number of midpoints:
) = *+, $, & + . / = 0
1=2
)−.
'
1
(
Example: m = 2, n =
4
" =
4
5
= .6
7 =
2 + 4
2
= 3
; = 2 + 1 = 3
/ = 5=
> =
"
/
=
15
49
Odd sum(m,n) A =
* + ,
,
Number of steps to
midpoints:
B =
* + ,
(
Number of midpoints:
)C = (×$1& $, & + .
We still need the k value for the
summation:
) = $1& $, & + .
/ = 0
+=2
E−.
B
+
(
Example: m = 2, n =
3
" =
6
F
= .2
7 =
2 + 3
2
= 3
;′ = 2×2 + 1 = 5
; = 2 + 1 = 3 / = 5=
> =
"
/
=
10
49
49
Now, let’s run some examples using equation(*).
Example 1:
! = # $%& % = '
S = number of steps to midpoint, which can be found as:
( =
) + +
#
= #. - = 3
K’ = number of midpoints, which is calculated as:
/′ = #×)2+ ), + + 4 = #×# + 4 = -
/ = )2+ ), + + 4 = # + 4 = '
The probability we meet =
! + %
%
∑678
9:4 ;
6
#
=
-
'
∑678
# '
6
# =
48
<=
= 8. '8>4
50
Now, let’s run some examples using equation(*).
Example 1:
! = # $%& % = '
S = number of steps to midpoint, which can be found as:
( =
) + +
#
= ,. ' = .
K’ = number of midpoints, which is calculated as:
/′ = #×)2+ ), + + 4 = #×# + 4 = '
/ = )2+ ), + + 4 = # + 4 = ,
The probability we meet =
! + %
%
∑678
9:4 ;
6
#
=
<
'
∑678
# .
6
# =
#4
4#4
= 8. 4<,=
51
Example 2:
! = # $%& % = '
S = number of steps to midpoint, which can be found as:
( =
) + +
,
= #. ' = '
K’ = number of midpoints, which is calculated as:
./ = ,×)1+ ), + + 3 = ,×# + 3 = 4
. = )1+ ), + + 3 = # + 3 = '
The probability we meet =
! + %
%
∑678
9:3 ;
6
,
=
4
'
∑678
# '
6
, =
3,<
4<3
= 8. 3=33
52
Example 3:
! = # $%& % = '
S = number of steps to midpoint, which can be found as:
( =
) + +
,
= -. / = /
K’ = number of midpoints, which is calculated as:
01 = ,×)3+ ), + + 5 = ,×# + 5 = 6
0 = )3+ ), + + 5 = # + 5 = -
The probability we meet =
! + %
%
∑89:
;<5 =
8
,
=
>
'
∑89:
# /
8
, =
?-
'6'
= :. 5,-#
53
Example 4:
! = # $%& % = '(
S = number of steps to midpoint, which can be found as:
) =
* + ,
-
= .. # = '0
K’ = number of midpoints, which is calculated as:
1′ = -×*4, *, , + ' = -×# + ' = ''
1 = *4, *, , + ' = # + ' = 6
The probability we meet =
! + %
%
∑890
:;' <
8
-
=
'.
'(
∑890
# '0
8
- =
''6-=
(0>0((
= 0. 0-=6
54
Example 5:
! = #$ %&' & = #(
S = number of steps to midpoint, which can be found as:
) =
* + ,
#
= #-. / = #/
K’ = number of midpoints, which is calculated as:
0′ = #×*3, *, , + 5 = #×#( + 5 = -5
0 = *3, *, , + 5 = #( + 5 = #5
The probability we meet =
! + &
&
∑78(
9:5 ;
7
#
=
-$
#(
∑78(
#5 #/
7
# =
#. <#=<> + 5?
5. 5#-$> + 5/
= (. (#/5
55
Example 6:
! = # $%& % = '
S = number of steps to midpoint, which can be found as:
( =
) + +
,
= ,. . = /
K’ = number of midpoints, which is calculated as:
0′ = ,×)3+ ), + + # = ,×# + # = /
0 = )3+ ), + + # = # + # = ,
The probability we meet =
! + %
%
∑678
9:# ;
6
,
=
.
'
∑678
# /
6
, =
.
#<
= 8. /#,.
56
%% city grid - meeting at midpoint
% @Mohammed Alasmar 2018
clc, clear,close all
n = 5;
m = 1;
if ( mod((m+n),2) == 0 )
numSteps = ceil((m+n)/2);
numMidPoints = min(m,n) + 1;
halfStep = 1;
for i = 1:numMidPoints
scores(i) = nchoosek(numSteps , i-1) ;
end
else
numSteps = ((m+n)/2);
numMidPoints =2*min(m,n) + 1;
halfStep = 0.5;
scores = zeros(1,numMidPoints);
for i = 1: min(m,n) + 1
scores(i) = nchoosek(ceil((m+n)/2) , i-1);
end
end
x = 1:m+1; y = 1:n+1; [X,Y] = meshgrid(x,y);
figure, plot(X,Y, '-ob', 'MarkerSize',10), hold on , plot(X',Y', '-ob', 'MarkerSize',10)
view(2), set(gca,'xtick',[]) , set(gca,'ytick',[])
if m<=n
ax = 1;
ay = numSteps+1;
xStep = 1;
yStep = -1;
end
if m>n
ax = numSteps+1;
ay = 1;
xStep = -1;
yStep = 1;
end
for i = 1:numMidPoints
hold on
plot(ax,ay, 'ro' ,'MarkerSize',14 , 'MarkerFaceColor' , 'r')
score = num2str(scores(i));
text(ax-0.07,ay-0.07,score, 'FontSize',11);
ax = ax + xStep*halfStep;
ay = ay + yStep*halfStep;
end
chancesOfMeetingAtMidpoint = nchoosek(m+n ,n)
totalNumOfWaysToMidpoint = sum(scores)^2
prob = chancesOfMeetingAtMidpoint /totalNumOfWaysToMidpoint
% figure, bar3(prob), xlabel('dim m'), ylabel('dim n'), zlabel('probToMeet')
Change the values m and n, then run the program to get
the required probability
57
For fun, we run the program the we to find the probability to meet at different dimensions m = 1:30
and n = 1:30
This will give 30*30 = 900 probability values, as shown in the figure.
It is noticed that if the two friends would like to increase the chances of meeting on the way, then
they need to live in a city grid of equal dimensions.
58
100*100

More Related Content

What's hot

Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
salvie alvaro
 
Nov. 16 Quadratic Inequalities
Nov. 16 Quadratic InequalitiesNov. 16 Quadratic Inequalities
Nov. 16 Quadratic InequalitiesRyanWatt
 
Synthetic Division
Synthetic DivisionSynthetic Division
Synthetic Division
Jimbo Lamb
 
Nov. 17 Rational Inequalities
Nov. 17 Rational InequalitiesNov. 17 Rational Inequalities
Nov. 17 Rational InequalitiesRyanWatt
 
Completing the Square
Completing the SquareCompleting the Square
Completing the Squaretoni dimella
 
D.E.V. Project
D.E.V. ProjectD.E.V. Project
D.E.V. Projectaulawr14
 
2008 worldfinalsproblemset
2008 worldfinalsproblemset2008 worldfinalsproblemset
2008 worldfinalsproblemset
Luca Zannini
 
Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1Harsh Arora
 
Straight line graphs
Straight line graphsStraight line graphs
Straight line graphs
SajidPervez2
 
Multiplying & dividing rational expressions
Multiplying & dividing rational expressionsMultiplying & dividing rational expressions
Multiplying & dividing rational expressionsDaisyListening
 
primary maths p5- igcse collection
primary maths  p5- igcse collectionprimary maths  p5- igcse collection
primary maths p5- igcse collection
8008975725
 
New approaches in linear inequalities
New approaches in linear inequalitiesNew approaches in linear inequalities
New approaches in linear inequalitiesTarun Gehlot
 
Remainder & Factor Theorems
Remainder & Factor TheoremsRemainder & Factor Theorems
Remainder & Factor TheoremsLori Rapp
 
Punnett squares presentation teachership academy
Punnett squares presentation teachership academyPunnett squares presentation teachership academy
Punnett squares presentation teachership academy
Beth819
 
C language numanal
C language numanalC language numanal
C language numanal
aluavi
 

What's hot (19)

Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
 
coloring problems
coloring problemscoloring problems
coloring problems
 
Nov. 16 Quadratic Inequalities
Nov. 16 Quadratic InequalitiesNov. 16 Quadratic Inequalities
Nov. 16 Quadratic Inequalities
 
Synthetic Division
Synthetic DivisionSynthetic Division
Synthetic Division
 
Nov. 17 Rational Inequalities
Nov. 17 Rational InequalitiesNov. 17 Rational Inequalities
Nov. 17 Rational Inequalities
 
Completing the Square
Completing the SquareCompleting the Square
Completing the Square
 
D.E.V. Project
D.E.V. ProjectD.E.V. Project
D.E.V. Project
 
Sol12
Sol12Sol12
Sol12
 
2008 worldfinalsproblemset
2008 worldfinalsproblemset2008 worldfinalsproblemset
2008 worldfinalsproblemset
 
Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1
 
Straight line graphs
Straight line graphsStraight line graphs
Straight line graphs
 
10.6
10.610.6
10.6
 
Multiplying & dividing rational expressions
Multiplying & dividing rational expressionsMultiplying & dividing rational expressions
Multiplying & dividing rational expressions
 
primary maths p5- igcse collection
primary maths  p5- igcse collectionprimary maths  p5- igcse collection
primary maths p5- igcse collection
 
Aieee Mathematics 2006
Aieee Mathematics   2006Aieee Mathematics   2006
Aieee Mathematics 2006
 
New approaches in linear inequalities
New approaches in linear inequalitiesNew approaches in linear inequalities
New approaches in linear inequalities
 
Remainder & Factor Theorems
Remainder & Factor TheoremsRemainder & Factor Theorems
Remainder & Factor Theorems
 
Punnett squares presentation teachership academy
Punnett squares presentation teachership academyPunnett squares presentation teachership academy
Punnett squares presentation teachership academy
 
C language numanal
C language numanalC language numanal
C language numanal
 

Similar to Round2: Maths Challenge organised by ‘rep2rep’ research group at Sussex&Cambridge universities

Upcat math 2014 solution
Upcat math 2014 solutionUpcat math 2014 solution
Upcat math 2014 solutionMark Garrido
 
Mathematical Statistics Homework Help
Mathematical Statistics Homework HelpMathematical Statistics Homework Help
Mathematical Statistics Homework Help
Statistics Homework Helper
 
Mathematical Statistics Assignment Help
Mathematical Statistics Assignment HelpMathematical Statistics Assignment Help
Mathematical Statistics Assignment Help
Excel Homework Help
 
The complete book_of_number_system1
The complete book_of_number_system1The complete book_of_number_system1
The complete book_of_number_system1
abhi_abhi22
 
Mathematical Statistics Assignment Help
Mathematical Statistics Assignment HelpMathematical Statistics Assignment Help
Mathematical Statistics Assignment Help
Statistics Homework Helper
 
MFCS UNIT-III.pptx
MFCS UNIT-III.pptxMFCS UNIT-III.pptx
MFCS UNIT-III.pptx
CM003ShanthanAbboju
 
Higher nov 2008_p1old
Higher nov 2008_p1oldHigher nov 2008_p1old
Higher nov 2008_p1oldybamary
 
Mathematical Statistics Homework Help
Mathematical Statistics Homework HelpMathematical Statistics Homework Help
Mathematical Statistics Homework Help
Excel Homework Help
 
Prime Number Validator
Prime Number ValidatorPrime Number Validator
Prime Number Validator
Mohammad Hefny
 
counting principle.ppt
counting principle.pptcounting principle.ppt
counting principle.ppt
RizaCatli2
 
On Power Tower of Integers
On Power Tower of IntegersOn Power Tower of Integers
On Power Tower of Integers
inventionjournals
 
Mathematical Statistics Assignment Help
Mathematical Statistics Assignment HelpMathematical Statistics Assignment Help
Mathematical Statistics Assignment Help
Excel Homework Help
 
Pay For Statistics Assignment
Pay For Statistics AssignmentPay For Statistics Assignment
Pay For Statistics Assignment
Statistics Assignment Help
 
Number system
Number systemNumber system
Number system
Diksha Shivpure
 
AptitudeTestBook www.mechengg.net.pdf
AptitudeTestBook www.mechengg.net.pdfAptitudeTestBook www.mechengg.net.pdf
AptitudeTestBook www.mechengg.net.pdf
HitendraThakur4
 
1. basic concepts (1)
1. basic concepts (1)1. basic concepts (1)
1. basic concepts (1)
Prashanth Halemani
 
Math ia analysis
Math ia analysisMath ia analysis
Math ia analysis12903
 
Gmat Math Tough Problems
Gmat Math Tough ProblemsGmat Math Tough Problems
Gmat Math Tough ProblemsVijay Thakkar
 

Similar to Round2: Maths Challenge organised by ‘rep2rep’ research group at Sussex&Cambridge universities (20)

Upcat math 2014 solution
Upcat math 2014 solutionUpcat math 2014 solution
Upcat math 2014 solution
 
Mathematical Statistics Homework Help
Mathematical Statistics Homework HelpMathematical Statistics Homework Help
Mathematical Statistics Homework Help
 
Marh algebra lesson
Marh algebra lessonMarh algebra lesson
Marh algebra lesson
 
Mathematical Statistics Assignment Help
Mathematical Statistics Assignment HelpMathematical Statistics Assignment Help
Mathematical Statistics Assignment Help
 
The complete book_of_number_system1
The complete book_of_number_system1The complete book_of_number_system1
The complete book_of_number_system1
 
Mathematical Statistics Assignment Help
Mathematical Statistics Assignment HelpMathematical Statistics Assignment Help
Mathematical Statistics Assignment Help
 
MFCS UNIT-III.pptx
MFCS UNIT-III.pptxMFCS UNIT-III.pptx
MFCS UNIT-III.pptx
 
Higher nov 2008_p1old
Higher nov 2008_p1oldHigher nov 2008_p1old
Higher nov 2008_p1old
 
Mathematical Statistics Homework Help
Mathematical Statistics Homework HelpMathematical Statistics Homework Help
Mathematical Statistics Homework Help
 
Prime Number Validator
Prime Number ValidatorPrime Number Validator
Prime Number Validator
 
counting principle.ppt
counting principle.pptcounting principle.ppt
counting principle.ppt
 
On Power Tower of Integers
On Power Tower of IntegersOn Power Tower of Integers
On Power Tower of Integers
 
Mathematical Statistics Assignment Help
Mathematical Statistics Assignment HelpMathematical Statistics Assignment Help
Mathematical Statistics Assignment Help
 
Pay For Statistics Assignment
Pay For Statistics AssignmentPay For Statistics Assignment
Pay For Statistics Assignment
 
Number system
Number systemNumber system
Number system
 
AptitudeTestBook www.mechengg.net.pdf
AptitudeTestBook www.mechengg.net.pdfAptitudeTestBook www.mechengg.net.pdf
AptitudeTestBook www.mechengg.net.pdf
 
1. basic concepts (1)
1. basic concepts (1)1. basic concepts (1)
1. basic concepts (1)
 
Math ia analysis
Math ia analysisMath ia analysis
Math ia analysis
 
Gmat Math Tough Problems
Gmat Math Tough ProblemsGmat Math Tough Problems
Gmat Math Tough Problems
 
Tough Quant
Tough QuantTough Quant
Tough Quant
 

Recently uploaded

Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 

Recently uploaded (20)

Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 

Round2: Maths Challenge organised by ‘rep2rep’ research group at Sussex&Cambridge universities

  • 1. Full name 1: Mohammed Alasmar Email: M.ALASMAR@SUSSEX.AC.UK GENERAL INFORMATION Problem & Approaches to Solutions MATHS CHALLENGE1 http://users.sussex.ac.uk/~gg44/rep2rep/1 The problems that have been solved: Problem 1 - Two Integers Problem 3 - City Grid 1 09/12/2018 Full name 2: Alexander Jeffery Email: A.P.Jeffery@SUSSEX.AC.UK
  • 2. 2 Problem 1 - Two Integers Two different integers between 1 and 10 are chosen at random. What is the probability that they are consecutive? Problem 3 - City Grid You and your friend live in a grid-like city. Every edge of the grid is a road. The distance from your place to your friend's place is n roads north and m roads east. You and your friend decide to visit each other but both of you leave at the same time and walk at the same speed. If both of you take 'optimal paths' (minimising the length of the paths), what's the probability that you will meet on your way?
  • 4. 4 Index Number 1 Number 2 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 2 1 11 2 3 12 2 4 13 2 5 14 2 6 15 2 7 16 2 8 17 2 9 18 2 10 19 3 1 20 3 2 21 3 4 22 3 5 23 3 6 24 3 7 25 3 8 26 3 9 27 3 10 28 4 1 29 4 2 30 4 3 31 4 5 32 4 6 33 4 7 34 4 8 35 4 9 36 4 10 37 5 1 38 5 2 39 5 3 40 5 4 41 5 6 42 5 7 43 5 8 44 5 9 45 5 10 46 6 1 47 6 2 48 6 3 49 6 4 50 6 5 51 6 7 52 6 8 53 6 9 54 6 10 55 7 1 56 7 2 57 7 3 58 7 4 59 7 5 60 7 6 61 7 8 62 7 9 63 7 10 64 8 1 65 8 2 66 8 3 67 8 4 68 8 5 69 8 6 70 8 7 71 8 9 72 8 10 73 9 1 74 9 2 75 9 3 76 9 4 77 9 5 78 9 6 79 9 7 80 9 8 81 9 10 82 10 1 83 10 2 84 10 3 85 10 4 86 10 5 87 10 6 88 10 7 89 10 8 90 10 9 Case 1: Permutations without replacement i.e., the two numbers are different and order is considered, for example (1,2) and (2,1) should be taken in the outcome. We define the consecutive numbers as the numbers which follow each other in order, without gaps, from smallest to largest. Picking two different number between [1,10] gives 90 possible outcomes, where 9 of them represent the cases of getting consecutive numbers, as shown in Fig.1 (the yellow cells). Hence, the probability that the two numbers are consecutive can be found as follows: ! = 9 90 = #. % Fig.1
  • 5. 5 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Case 1: We define the consecutive numbers as the numbers which follow each other in order, without gaps, from smallest to largest. Fig.2(a) shows are the possible outcomes from picking two different number between [1,10]. These are represented by the black squares in the figure, which are 90 squares. The cases of consecutive numbers are represented by the yellow squares in Fig.2(b), which are 9 squares. Hence, the probability that the two numbers are consecutive can be found as follows: All outcomes (the black squares = 90) The cases of consecutive numbers (the yellow squares = 9) ! = number of yellow squares number of black squares = 9 90 = #. % Fig.2 Fig.2(a) Fig.2(b) Number 1 Number 1 Number2 Number2
  • 6. 6 2 3 4 5 1 6 7 8 9 10 1 3 4 5 2 6 7 8 9 10 1/9 1/10 1/10 1 2 4 5 3 6 7 8 9 10 1 2 3 5 4 6 7 8 9 10 1/10 1/10 1 2 3 4 5 6 7 8 9 10 1 5 3 4 6 5 7 8 9 10 1/10 1/10 1 2 3 4 7 5 6 8 9 10 1 2 3 4 8 5 6 7 9 10 1/10 1/10 1 2 3 4 9 5 6 7 8 10 1 2 3 4 10 5 6 7 8 9 1/10 1/10 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 Case 1: The tree diagram is used in this solution (see below). The first stage in this tree (picking the first number at random) contains ten outcomes: [1:10], so the probability of each one of these outcomes is 1/10. In the second stage, 9 possible numbers can be selected at random. Only one of these 9 numbers is a consecutive number to the number that was selected at the first stage except for number 10 which does not have any consecutive number. Thus, the probability that the two numbers are consecutive can be found as follows: ! = #× 1 10 × % # = 1 10 = &. %
  • 7. 7 The Permutation is defined as a selection of numbers in which the order of the numbers matters, and there is no replacement. This is the case of this question i.e., we solve it with order and without replacement. Hence, we can use the permutation formula to find the total number of possible outcomes, as follows: !(#, %) = # % = #! # − % ! 10 2 = 10! 10 − 2 ! = 90 Now, the number of choices with consecutive numbers = # − 1 = 10 − 1 = 9 This is because each number has a consecutive but not the last number (this is based on our definition of consecutive numbers, i.e., the consecutive numbers are the numbers which follow each other in order, without gaps, from smallest to largest) Therefore, the probability of choosing consecutive numbers is Case 1: ! = # − 1 #! # − % ! = 10 − 1 10! 10 − 2 ! = 9 90 = 0.1
  • 8. 8 If we want to pick 2 different numbers from the set of numbers [1:10], then there are 10 options to pick from for the first number and 9 options for the second number, as shown in Fig.3. Thus, the total number of selections = number of available values for number 1 x number of available values for number 2 = 10 × 9 = 90 Now, for the first picked number there is only one consecutive number expect for the largest number, which does not have any consecutive number (see Fig.4). This means that there are 9 possibilities of getting consecutive numbers. Therefore, the probability of choosing consecutive numbers is & = 9 90 = '. ) 10 9 8 7 6 5 4 3 2 1 123456789 Case 1: Fig.3 the number of available numbers for picking 10 available Pick number 1 Pick number 2 9 available Fig.4 each number has a consecutive but not 10 No consecutive
  • 9. 9 clc,close all x = 1:10; y = 1:10; counterAll = 0; counterCons = 0; for i=1:10 for j = 1:10 if y(j)==x(i)+1 plot(x(i),y(j),'rs','LineWidth', 15) counterCons = counterCons+1; end hold on if x(i)~=y(j) plot(x(i),y(j),'bd','LineWidth', 4) counterAll = counterAll+1; end end end grid on,xlabel('number 1'), ylabel('number 2') set(gca,'fontsize',15) legend('consecutive','all outcomes') prob = counterCons/counterAll prob = 0.1000 Running the code gives the probability value and Fig.5. By using the following Matlab code. Fig.5
  • 10. 10 The second number is bigger than the first. If the first number is k (which happens with probability 1/n), then the probability the second number is 1/(n-1). Case 1 ! = # $%& '(& 1 * × 1 * − 1 ! = # $%& &-(& 1 10 × 1 9 = 9× 1 10 × 1 9 = 1 10 = 0.1
  • 11. 11 Case 2: Solving the problem using combination, i.e., there is no replacement and order is not important, for example, we just take one of these groups (1,2) and (2,1). We define the consecutive numbers as the numbers which follow each other in order, without gaps, from smallest to largest. Picking two different number between [1,10] gives 90 possible outcomes, where 9 of them represent the cases of getting consecutive numbers, as shown in Fig.6 (the yellow cells). Hence, the probability that the two numbers are consecutive can be found as follows: ! = 9 45 = #. % Fig.6 Index Number 1 Number 2 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 2 3 11 2 4 12 2 5 13 2 6 14 2 7 15 2 8 16 2 9 17 2 10 18 3 4 19 3 5 20 3 6 21 3 7 22 3 8 23 3 9 24 3 10 25 4 5 26 4 6 27 4 7 28 4 8 29 4 9 30 4 10 31 5 6 32 5 7 33 5 8 34 5 9 35 5 10 36 6 7 37 6 8 38 6 9 39 6 10 40 7 8 41 7 9 42 7 10 43 8 9 44 8 10 45 9 10
  • 12. 12 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Case 2: We define the consecutive numbers as the numbers which follow each other in order, without gaps, from smallest to largest. Fig.7(a) shows are the possible outcomes from picking two different number between [1,10]. These are represented by the black squares in the figure, which are 45 squares. The cases of consecutive numbers are represented by the yellow squares in Fig.7(b), which are 9 squares. Hence, the probability that the two numbers are consecutive can be found as follows: All outcomes (the black squares = 45) The cases of consecutive numbers (the yellow squares = 9) ! = number of yellow squares number of black squares = 9 45 = #. % Fig.7 Fig.7(a) Fig.7(b) Number 1 Number 1 Number2 Number2 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
  • 13. 13 2 3 4 5 1 6 7 8 9 10 3 4 5 2 6 7 8 9 10 4 5 3 6 7 8 9 10 5 4 6 7 8 9 10 5 6 7 8 9 10 6 7 8 9 10 7 8 9 10 8 9 10 9 10 Case 2: The tree diagram is used in this solution. The first stage in this tree (picking the first number at random) contains ten outcomes: [1:10], so the probability of each of these outcomes is 1/10. In the second stage, 9 possible numbers can be selected at random. Only one of these 9 numbers is a consecutive number to the number that was selected at the first stage except for number 10 which does not have any consecutive number. Now, the probability that the two numbers are consecutive can be found as follows: ! = number of consecutives total number of possible outcome = 3 45 = 6. 8
  • 14. 14 The Combination is defined as a selection of numbers in which the order of the numbers does not matter, and there is no replacement. This is the case of this question i.e., without order and without replacement. Hence, we can use the Combination formula to find the total number of possible outcomes, as follows: ! ", $ = " $ = "! " − $ ! $! 10 2 = 10! 10 − 2 ! 2! = 45 Now, the number of choices with consecutive numbers = " − 1 = 10 − 1 = 9 This is because each number has a consecutive but not the last number (this is based on our definition of consecutive numbers, i.e., the consecutive numbers are the numbers which follow each other in order, without gaps, from smallest to largest) Therefore, the probability of choosing consecutive numbers is Case 2: . = " − 1 " $ = " − 1 " 2 = 10 − 1 10 2 = 9 10! 10 − 2 ! 2! = 9 45 = 0.2
  • 15. 15 If we want to pick 2 different numbers from the set of numbers [1:10], then there are 10 options to pick from for the first number and 9 options for the second number, as shown in Fig.8. Thus, the total number of selections = 10 2 = 45 Now, for the first picked number there is only one consecutive number expect for the largest number, which does not have any consecutive number (see Fig.9). This means that there are 9 possibilities of getting consecutive numbers. Therefore, the probability of choosing consecutive numbers is ' = 9 45 = 0.2 10 9 8 7 6 5 4 3 2 1 123456789 Case 2: Fig.8 the number of available numbers for picking 10 available Pick 2 numbers randomly without replacement Fig.9
  • 16. 16 clc,close all x = 1:10; y = 1:10; counterAll = 0; counterCons = 0; for i=1:10 for j = i:10 if y(j)==x(i)+1 plot(x(i),y(j),'rs','LineWidth', 15) counterCons = counterCons+1; end hold on if x(i)~=y(j) plot(x(i),y(j),'bd','LineWidth', 4) counterAll = counterAll+1; end end end grid on,xlabel('number 1'), ylabel('number 2') set(gca,'fontsize',15) legend('consecutive','all outcomes') prob = counterCons/counterAll prob = 0.2000 Running the code gives the probability value and Fig.10. Fig.10
  • 17. Q2 17
  • 18. 18 • My friend and I each walk towards each other’s houses on an optimal path. • Since we walk at the same speed, we will always meet at a point equidistant from each of our houses. • We call such a point a ‘midpoint’. • There are many possible paths we each could choose, but as long as we choose paths that have a midpoint, we will meet each other. • So to calculate the probability, we must know: 1. how many midpoints there are for all optimal paths (k) 2. how many ways there are to reach each midpoint • The probability we meet can then be given by: ! = δ $ = number of ways to meet at the midpoints total number of ways to all midpoints
  • 19. 19 • We continue with an example, where n = 4 and m = 2. • In this grid, there are three midpoints {A, B and C}. • By using tree diagram, we can show all the possible paths for both persons. • Person P1 walks either to the right (R) or up (U), while person P2 walks either to the left (L) or down (D) • At each step we get one of these options for both persons: (P1,P2) = {(Up,Left), (Up,Down), (Right,Left) or (Right,Down)} Left Down Right Up
  • 20. • We continue with an example, where n = 4 and m = 2. • In this grid, there are three midpoints {A, B and C}. For the first person P1: • There are 3 ways to reach A from P1 • There is 1 way to reach C from P1• There are 3 ways to reach B from P1 Now, the total ways P1 can go to reach the midpoints is given as: 3 + 3 + 1 = % Example: solution 1 20
  • 21. 21 • And the total ways P2 can go to reach the midpoints is given as: 1 + 3 + 3 = 7 Similarly, for the second person P2: • There is 1 way to reach A from P2 • There are 3 ways to reach B from P2 • There are 3 ways to reach C from P2 • Therefore, the total number of ways both persons can reach the midpoints is & = 49 (i.e. 7*7). • And the number of those ways in which the two persons choose the same midpoint (i.e., number of ways to meet at the midpoints ) is given by (see the next slide): • δ = 9:;< =>?@ A1 B? C × 9:;< =>?@ A2 B? C + 9:;< =>?@ A1 B? F × 9:;< =>?@ A2 B? F + 9:;< =>?@ A1 B? G × 9:;< =>?@ A2 B? G = 3×1 + 3×3 + 1×3 = 15 • Hence, the probability we meet can then be given by: A = δ & = number of ways to meet at the midpoints total number of ways to all midpoints = 15 49 = 0.3061
  • 22. 22 A A B B C C !"#$ %&'( )1 +' , × !"#$ %&'( )2 +' , + !"#$ %&'( )1 +' 0 × !"#$ %&'( )2 +' 0 + !"#$ %&'( )1 +' 1 × !"#$ %&'( )2 +' 1 3 × 1 + 3 × 3 + 1 × 3 = 15 = δ
  • 23. 23 • We continue with an example, where n = 4 and m = 2. • In this grid, there are three midpoints {A, B and C}. • By using tree diagram, we can show all the possible paths for both persons. • Person P1 walks either to the right (R) or up (U), while person P2 walks either to the left (L) or down (D) • At each step we get one of these options for both persons: (P1,P2) = {(Up,Left), (Up,Down), (Right,Left) or (Right,Down)} Left Down Right Up Up è Up è Right Up è Right è Up Right è Up èUp Up è Right è Right Right è Right è Up Right è Up è Right Right è Right èRight Left è Left è Left Left è Left è Down Left è Down è Left Down è Left è Left Down è Down è Left Down è Left è Down Left è Down è Down Example: solution 2
  • 24. 24 Up è Up è Right Up è Right è Up Right è Up èUp Up è Right è Right Right è Right è Up Right è Up è Right Right è Right èRight Left è Left è Left Left è Left è Down Left è Down è Left Down è Left è Left Down è Down è Left Down è Left è Down Left è Down è Down We can generate a tree diagram from these possible outcomes, as follows: They meet at A They don’t meet 1 out of 7 Subtree1
  • 25. 25 Up è Up è Right Up è Right è Up Right è Up èUp Up è Right è Right Right è Right è Up Right è Up è Right Right è Right èRight Left è Left è Left Left è Left è Down Left è Down è Left Down è Left è Left Down è Down è Left Down è Left è Down Left è Down è Down They meet at A They don’t meet 1 out of 7 Subtree2
  • 26. 26 Up è Up è Right Up è Right è Up Right è Up èUp Up è Right è Right Right è Right è Up Right è Up è Right Right è Right èRight Left è Left è Left Left è Left è Down Left è Down è Left Down è Left è Left Down è Down è Left Down è Left è Down Left è Down è Down They meet at A They don’t meet 1 out of 7 Subtree3
  • 27. 27 Up è Up è Right Up è Right è Up Right è Up èUp Up è Right è Right Right è Right è Up Right è Up è Right Right è Right èRight Left è Left è Left Left è Left è Down Left è Down è Left Down è Left è Left Down è Down è Left Down è Left è Down Left è Down è Down They meet at B They don’t meet They don’t meet 3 out of 7 Subtree4
  • 28. 28 Up è Up è Right Up è Right è Up Right è Up èUp Up è Right è Right Right è Right è Up Right è Up è Right Right è Right èRight Left è Left è Left Left è Left è Down Left è Down è Left Down è Left è Left Down è Down è Left Down è Left è Down Left è Down è Down They meet at B They don’t meet They don’t meet 3 out of 7 Subtree5
  • 29. 29 Up è Up è Right Up è Right è Up Right è Up èUp Up è Right è Right Right è Right è Up Right è Up è Right Right è Right èRight Left è Left è Left Left è Left è Down Left è Down è Left Down è Left è Left Down è Down è Left Down è Left è Down Left è Down è Down They meet at B They don’t meet They don’t meet 3 out of 7 Subtree6
  • 30. 30 Up è Up è Right Up è Right è Up Right è Up èUp Up è Right è Right Right è Right è Up Right è Up è Right Right è Right èRight Left è Left è Left Left è Left è Down Left è Down è Left Down è Left è Left Down è Down è Left Down è Left è Down Left è Down è Down They meet at C They don’t meet They don’t meet 3 out of 7 Subtree7
  • 31. 31 Hence, from this tree diagram we can calculate the total number of outcomes 1. The number of ways they meet at a midpoint in Subtree1 equals: 1 out of 7 2. The number of ways they meet at a midpoint in Subtree2 equals: 1 out of 7 3. The number of ways they meet at a midpoint in Subtree3 equals: 1 out of 7 4. The number of ways they meet at a midpoint in Subtree4 equals: 3 out of 7 5. The number of ways they meet at a midpoint in Subtree5 equals: 3 out of 7 6. The number of ways they meet at a midpoint in Subtree6 equals: 3 out of 7 7. The number of ways they meet at a midpoint in Subtree7 equals: 3 out of 7 Thus, the number of ways they meet at the midpoints is given as: 15 out 49 The probability they meet can is given by: ! = # $ = %&'()* +, -./0 1+ '))1 .1 12) '345+3%10 1+1.6 %&'()* +, -./0 1+ .66 '345+3%10 = 15/49 = 0.3061
  • 32. 32 • We continue with an example, where n = 4 and m = 2. • In this grid, there are three midpoints {A, B and C}. • By using tree diagram, we can show all the possible paths for both persons. • Person P1 walks either to the right (R) or up (U), while person P2 walks either to the left (L) or down (D) • At each step we get one of these options for both persons: (P1,P2) = {(Up,Left), (Up,Down), (Right,Left) or (Right,Down)} Left Down Right Up Up è Up è Right Up è Right è Up Right è Up èUp Up è Right è Right Right è Right è Up Right è Up è Right Right è Right èRight Left è Left è Left Left è Left è Down Left è Down è Left Down è Left è Left Down è Down è Left Down è Left è Down Left è Down è Down Example: solution 3 The following table shows all the possible outcomes from these options. It is clear that we will get 7*7 = 49 outcomes.
  • 33. 33 Step 1 Step 2 Step 3 P1 P2 P1 P2 P1 P2 Step 1 Step 2 Step 3 P1 P2 P1 P2 P1 P2 Step 1 Step 2 Step 3 P1 P2 P1 P2 P1 P2 The yellow cells represent the cases when P1 and P2 meet at a midpoint, which are 15 out of 49 outcomes. Thus, the probability they meet is 15/49 = 0.3061
  • 34. 34 Generalising the solution to work for any grid size • The probability we meet is given by: number of ways to meet at the midpoints total number of ways to all midpoints = ? ? 56789: ;< =>?@ A; 799A >A AB9 7CDE;C5A@ total number of ways to all midpoints F = G H =
  • 35. 35 Generally speaking we can use the combination formula to calculate the number of ways we can meet at a midpoint. For a grid of size m by n the number of ways we can meet at a midpoint is given by: In the example of 2*4 grid, 6 4 = 6! 2! 4! = 15 ( + * * 6! 4! 2! +,-./0 12 3456 71 -//7 47 78/ -9:;19+76 +,-./0 12 3456 71 -//7 47 78/ -9:;19+76 = δ = δ
  • 36. 36 We now turn to generalising the total number of ways to all midpoints. We first need to define the following parameters: S = number of steps to midpoint, which can be found as: ! = # + % 2 k = number of midpoints, which is calculated as: ' = min #, % + 1 In our 2*4 grid example, ! = -./ / = 3 12341, and ' = min 2,4 + 1 = 3 total number of ways to all midpoints 3 = 3 3 1 = 3 3 0 = 1 Note that all the equations here work with a gird of an even sum of its dimension, e.g., 2*4 not 2*3. We will explain the case of the odd sum later. E
  • 37. 37 Hence, the total number of ways one can reach a midpoint is given by: ! "#$ %&' ( ) = ! "#$ +&' 3 ) = 3 0 + 3 1 + 3 2 = 1 + 3 + 3 = 7 3 2 3 1 3 0 This is the same value for the second person P2. 3 0 3 1 3 2 1 3 3
  • 38. 38 The same applies for the other person. We therefore square this value to get the total number of ways we cab each go to a midpoint without necessarily meeting. ! "#$ %&' ( ) * total number of ways to all midpoints = • The probability we meet is given by: = = + ? ? ∑A#B C&D E A F GHIJKL MN OPQR SM IKKS PS STK IUVWMUGSR total number of ways to all midpoints ….. (*) X = Y Z = = [
  • 39. 39 Now, let’s run some examples using equation(*). Example 1: ! = # $%& % = ' S = number of steps to midpoint, which can be found as: ( = ) + + 2 = 6 2 = 3 k = number of midpoints, which is calculated as: / = min ), + + 1 = 2 + 1 = 3 The probability we meet = ! + % % ∑678 9:; < 6 # = = ' ∑678 # > 6 # = ;? '@ = 8. >8=;
  • 40. 40 Example 2: ! = # $%& % = ' S = number of steps to midpoint, which can be found as: ( = ) + + 2 = 10 2 = 5 k = number of midpoints, which is calculated as: 0 = min ), + + 1 = 4 + 1 = 5 The probability we meet = ! + % % ∑789 :;< = 7 > = <9 ' ∑789 # ? 7 > = ><9 @'< = 9. ><B?
  • 41. 41 Example 3: ! = # $%& % = ' S = number of steps to midpoint, which can be found as: ( = ) + + 2 = 10 2 = 5 k = number of midpoints, which is calculated as: 0 = min ), + + 1 = 3 + 1 = 4 The probability we meet = ! + % % ∑89: ;<= > 8 ? = =: ' ∑89: # @ 8 ? = =?: A'A = :. =''@
  • 42. 42 Example 4: ! = # $%& % = '# S = number of steps to midpoint, which can be found as: ( = ) + + 2 = 20 2 = 10 k = number of midpoints, which is calculated as: / = min ), + + 1 = 5 + 1 = 6 The probability we meet = ! + % % ∑789 :;' < 7 = = =9 '# ∑789 # '9 7 = = '##9> >9?9>> = 9. 9AB'
  • 43. 43 Example 5: ! = #$ %&' & = ($ S = number of steps to midpoint, which can be found as: ) = * + , 2 = 50 2 = 25 k = number of midpoints, which is calculated as: 0 = min *, , + 1 = 20 + 1 = 21 The probability we meet = ! + & & ∑78$ 9:; < 7 ( = =$ ($ ∑78$ ($ (= 7 ( = >. @;(AB + ;# ;. ;(>AB + ;= = $. $>;A
  • 44. 44 Note that all the equations here work with a gird of an even sum of its dimension, e.g., 2*4 not 2*3. We will explain the case of the odd sum later. Now, we show how to deal with a grid that has an odd sum of its dimension. • Again, we need to find the probability we meet: = ?
  • 45. 45 2*3 (odd sum) Example, !′= number of midpoints = 5 !′ = 2×min ), + + 1 = 4 + 1 = 5 1 2 1 2 2 1 1 In this example, there are 5 midpoints and each walker needs 2.5 steps to reach a midpoint. The figure below shows the number of ways that walker 1 needs to reach each midpoint.
  • 46. 46 2*3 (odd sum)2*4 (even sum) !"#$%& '( )*+, -' #%%- *- -.% #/01'/!-, = = 3×5 + 3×3 + 3×5 = 57 Or ; + < < = = > = 57 3 3 1 1 1 1 2 2 2 1 1 2 1 = 5×5 + ?×3 + ?×? + 5×? + 5×5 = 5@ Or ; + < < = 7 3 = 5@ δ
  • 47. Hence, the formula ! + # # is valid for both cases (even and odd sums), which is used to find the $%&'() *+ ,-./ 0* &((0 -0 01( &234*2$0/. The challenging part is finding total number of ways to all midpoints. Instead of deriving a new formula for the odd sum, we can observe that the β value is same for both 2*4 and 2*3, as shown below. β = 3 + 3 + 1 × 1 + 3 + 3 = 7×7 = MN β = 1 + 2 + 2 + 1 + 1 × 1 + 1 + 2 + 2 + 1 = 7×7 = MN
  • 48. 48 The β value of m*n grid with odd sum m+n equals the β value of m*(n+1), which is an even sum. This means we still can use the derived formulas of the even sum for the odd sum but we need to add one to the n value. Note that is just to find β not ". Let’s apply this conclusion to the same example that we use here: Even sum(m,n) " = $ + & & Number of steps to midpoints: ' = $ + & ( Number of midpoints: ) = *+, $, & + . / = 0 1=2 )−. ' 1 ( Example: m = 2, n = 4 " = 4 5 = .6 7 = 2 + 4 2 = 3 ; = 2 + 1 = 3 / = 5= > = " / = 15 49 Odd sum(m,n) A = * + , , Number of steps to midpoints: B = * + , ( Number of midpoints: )C = (×$1& $, & + . We still need the k value for the summation: ) = $1& $, & + . / = 0 +=2 E−. B + ( Example: m = 2, n = 3 " = 6 F = .2 7 = 2 + 3 2 = 3 ;′ = 2×2 + 1 = 5 ; = 2 + 1 = 3 / = 5= > = " / = 10 49
  • 49. 49 Now, let’s run some examples using equation(*). Example 1: ! = # $%& % = ' S = number of steps to midpoint, which can be found as: ( = ) + + # = #. - = 3 K’ = number of midpoints, which is calculated as: /′ = #×)2+ ), + + 4 = #×# + 4 = - / = )2+ ), + + 4 = # + 4 = ' The probability we meet = ! + % % ∑678 9:4 ; 6 # = - ' ∑678 # ' 6 # = 48 <= = 8. '8>4
  • 50. 50 Now, let’s run some examples using equation(*). Example 1: ! = # $%& % = ' S = number of steps to midpoint, which can be found as: ( = ) + + # = ,. ' = . K’ = number of midpoints, which is calculated as: /′ = #×)2+ ), + + 4 = #×# + 4 = ' / = )2+ ), + + 4 = # + 4 = , The probability we meet = ! + % % ∑678 9:4 ; 6 # = < ' ∑678 # . 6 # = #4 4#4 = 8. 4<,=
  • 51. 51 Example 2: ! = # $%& % = ' S = number of steps to midpoint, which can be found as: ( = ) + + , = #. ' = ' K’ = number of midpoints, which is calculated as: ./ = ,×)1+ ), + + 3 = ,×# + 3 = 4 . = )1+ ), + + 3 = # + 3 = ' The probability we meet = ! + % % ∑678 9:3 ; 6 , = 4 ' ∑678 # ' 6 , = 3,< 4<3 = 8. 3=33
  • 52. 52 Example 3: ! = # $%& % = ' S = number of steps to midpoint, which can be found as: ( = ) + + , = -. / = / K’ = number of midpoints, which is calculated as: 01 = ,×)3+ ), + + 5 = ,×# + 5 = 6 0 = )3+ ), + + 5 = # + 5 = - The probability we meet = ! + % % ∑89: ;<5 = 8 , = > ' ∑89: # / 8 , = ?- '6' = :. 5,-#
  • 53. 53 Example 4: ! = # $%& % = '( S = number of steps to midpoint, which can be found as: ) = * + , - = .. # = '0 K’ = number of midpoints, which is calculated as: 1′ = -×*4, *, , + ' = -×# + ' = '' 1 = *4, *, , + ' = # + ' = 6 The probability we meet = ! + % % ∑890 :;' < 8 - = '. '( ∑890 # '0 8 - = ''6-= (0>0(( = 0. 0-=6
  • 54. 54 Example 5: ! = #$ %&' & = #( S = number of steps to midpoint, which can be found as: ) = * + , # = #-. / = #/ K’ = number of midpoints, which is calculated as: 0′ = #×*3, *, , + 5 = #×#( + 5 = -5 0 = *3, *, , + 5 = #( + 5 = #5 The probability we meet = ! + & & ∑78( 9:5 ; 7 # = -$ #( ∑78( #5 #/ 7 # = #. <#=<> + 5? 5. 5#-$> + 5/ = (. (#/5
  • 55. 55 Example 6: ! = # $%& % = ' S = number of steps to midpoint, which can be found as: ( = ) + + , = ,. . = / K’ = number of midpoints, which is calculated as: 0′ = ,×)3+ ), + + # = ,×# + # = / 0 = )3+ ), + + # = # + # = , The probability we meet = ! + % % ∑678 9:# ; 6 , = . ' ∑678 # / 6 , = . #< = 8. /#,.
  • 56. 56 %% city grid - meeting at midpoint % @Mohammed Alasmar 2018 clc, clear,close all n = 5; m = 1; if ( mod((m+n),2) == 0 ) numSteps = ceil((m+n)/2); numMidPoints = min(m,n) + 1; halfStep = 1; for i = 1:numMidPoints scores(i) = nchoosek(numSteps , i-1) ; end else numSteps = ((m+n)/2); numMidPoints =2*min(m,n) + 1; halfStep = 0.5; scores = zeros(1,numMidPoints); for i = 1: min(m,n) + 1 scores(i) = nchoosek(ceil((m+n)/2) , i-1); end end x = 1:m+1; y = 1:n+1; [X,Y] = meshgrid(x,y); figure, plot(X,Y, '-ob', 'MarkerSize',10), hold on , plot(X',Y', '-ob', 'MarkerSize',10) view(2), set(gca,'xtick',[]) , set(gca,'ytick',[]) if m<=n ax = 1; ay = numSteps+1; xStep = 1; yStep = -1; end if m>n ax = numSteps+1; ay = 1; xStep = -1; yStep = 1; end for i = 1:numMidPoints hold on plot(ax,ay, 'ro' ,'MarkerSize',14 , 'MarkerFaceColor' , 'r') score = num2str(scores(i)); text(ax-0.07,ay-0.07,score, 'FontSize',11); ax = ax + xStep*halfStep; ay = ay + yStep*halfStep; end chancesOfMeetingAtMidpoint = nchoosek(m+n ,n) totalNumOfWaysToMidpoint = sum(scores)^2 prob = chancesOfMeetingAtMidpoint /totalNumOfWaysToMidpoint % figure, bar3(prob), xlabel('dim m'), ylabel('dim n'), zlabel('probToMeet') Change the values m and n, then run the program to get the required probability
  • 57. 57 For fun, we run the program the we to find the probability to meet at different dimensions m = 1:30 and n = 1:30 This will give 30*30 = 900 probability values, as shown in the figure. It is noticed that if the two friends would like to increase the chances of meeting on the way, then they need to live in a city grid of equal dimensions.