SlideShare a Scribd company logo
1 of 15
Stabilization of TORA System: A Backstepping
Based Hierarchical Sliding Mode Approach with
             Disturbance Estimation


                          by
                 Shubhobrata Rudra
               Inspire Research Fellow
         Electrical Engineering Department
                 Jadavpur University
                        Kolkata
Content

A Few Words on TORA System
Adaptive Backstepping Sliding Mode Control
Hierarchical Sliding Mode Control
Control Law for TORA System
Simulation Results
Conclusions
A Few Words on TORA System


                                                        Degree of Freedom: 2
                                                θ       No of Control Input: 1

                                                    u
                      x




State Model of TORA System
             
             q1   p1                                              q1=x
             
             p1       k 3 q1
                                            2
                               k 2 sin q 2 p1   k 2 cos q 2 u     q2=θ
             
             q2   p2
             
             p2   u
Contd.
 Standard State Model of Underactuated System
                   
                   x1    x2
                   
                   x2     f1 X        b1 X u     d1 t
                   
                   x3     x4
                   
                   x4     f2 X        b2 X u        d2 t

                  x1      x, x2       
                                      x, x3         , x4   


                                                               2
                        f1 X          k 1 q1   k 2 sin q 2 p 2

                        b1 X          k 2 cos q 2

                        f2 X      0

                        b2 X      1
Adaptive Backstepping Sliding Mode Control
 Define 1st Error variable & its dynamic as:
                  e1 x1 x1d         &    
                                         e1 x 2                                
                                                                               x1d

 Stabilizing Function:
                                  1
                                               c1 e1      1    1



 Control Lyapunov Function (CLF) and its derivative
                                           1        2    1     2
                             V1                    1
                                                              e1
                                           2             2

 Define 2nd error variable e2 and its derivative as:

         e2    x2    
                     x1 d                      and       
                                                         e2        f1 X        b1 X u   d1 t   1 d
                                                                                               x       1
                                  1


 Define first-layer sliding surface s1 and new CLF as
                                                                               1
                    s1       e
                            1 1
                                      e2                and         V2    V1
                                                                                    2
                                                                                   s1
                                                                               2
Contd.
 Derivative of CLF:
                V2
                                     2
                      e1 e 2   c1 e1        s1   1
                                                     e2          c1 e1      1     1
                                                                                       f1 X      b1 X u       d1 t    1 d
                                                                                                                      x         1


 Control Input:
            1
  u1   b1        X         1
                               e2        c1 e1   1   1
                                                                 f1 X            d 1 M s at s1   1 d
                                                                                                 x       1   h1 s1       1
                                                                                                                              s at s1


 Augmented Lyapunov Function:

                                                     1            2
                                                                                                 
                                V3          V2               d   1M
                                                                         and d 1 M       d1M     d 1M
                                                 2       1



 Adaptation Law:
                                                         
                                                         
                                                         d1M                 s
                                                                           1 1
Hierarchical Sliding Mode Control
 Control Inputs:
          1
u1   b1       X     1
                        e2      c1 e1     1       1
                                                           f1 X             d 1 M s at s1                     1 d
                                                                                                              x         1     h1 s1    1
                                                                                                                                            s at s1

          1
u2   b2       X     1
                        e4     c 2 e3     2       2
                                                           f2 X             d 2 M s at s 2                    2 d
                                                                                                              x         2     h2 s 2       2
                                                                                                                                                s at s 2

                                    
                                                                      
 Adaptation Laws:                  d1M                s
                                                      1 1          and d 2M                               2
                                                                                                              s2


 Composite control law: u                            u1          u2        u sw


 Define 2nd Layer sliding surface:                                    S                   s
                                                                                          1 1             2
                                                                                                              s2

                                              b       X u2                  b2 X u1                     sat ( S )       K .S
 Coupling Law:              u sw
                                          1 1                           2

                                                                   b
                                                                  1 1
                                                                            X                 2
                                                                                                  b2 X



                                                            b     X u1                    b2 X u 2               sat ( S )   KS
 Composite Control Law:                      u
                                                            1 1                       2

                                                                                b
                                                                                1 1
                                                                                          X         2
                                                                                                        b2 X
Control Law for TORA System .
 Expression of Control Input for Translational Motion
        k1                                                                                                   2
                                                                                                                 
u1              1
                    e2       c1 e1          1   1
                                                        k 1 q1        1 d
                                                                      x            k 2 sin q 2 p             2
                                                                                                                 d1M          1   h1 s1   1
                                                                                                                                               sat ( s1 )
      cos q 2


 Expression of Control Input for Rotational Motion
                                                                      
          u2        2
                        e4     c 2 e3           2   2
                                                              2 d
                                                              x       d 2M            2          h2 s 2         2
                                                                                                                     sat ( s 2 )




 Coupling Control Law:
                                                         1
                                                             k 2 cos q 2 u 2             2
                                                                                             u1      sat ( S )        K .S
                                     u sw
                                                                              1
                                                                                  k 2 cos q 2            2




 Composite Control Law:
                                                        k cos q 2 u1
                                                        1 1                          2
                                                                                         u2         sat ( S )        KS
                                        u
                                                                          1 1
                                                                              k cos q 2              2
Simulation Results
 Initial Conditions:       q1   0 .2 5   and   p1   0




            Cart Position                            Cart Velocity
Contd.
Phase Portrait of q1-p1
Contd.
 Initial Conditions:        q2   pi / 3   and     p2   0




            Rotor Position                       Rotor Velocity
Contd.
Phase Portrait of q2-p2
Conclusions

 Another new method of addressing the stabilization problem for
  underactuated system.

 Can easily be extended to address the stabilization problem of other two
  degree of freedom underactuated mechanical systems.

 Chattering problem can be reduced with the introduction of second
  order sliding mode control.

 Proposed algorithm is applicable for only two-degree of freedom single
  input systems, research can be pursued to make the control algorithm
  more generalized such that it will able to address the control problem of
  any arbitrary underactuated system.
Reference
 G. Escobar, R. Ortega, and H. Sira-Ramirez, “Output-feedback global stabilization of a
  nonlinear benchmark system using a saturated passivity-based controller,” IEEE Trans. Contr.
  Syst. Technol., vol. 7, pp. 289–293, 1999
 M. Jankovic, D. Fontaine, and P. V. Kokotovic´, “TORA example: Cascade- and passivity-based
  control designs,” IEEE Trans. Contr. Syst. Technol., vol. 4, pp. 292–297, 1996.
 Z. P. Jiang, D. J. Hill, and Y. Guo, “Stabilization and tracking via output feedback for the
  nonlinear benchmark system,” Automatica, vol. 34, no.7, pp. 907–915, 1998.
 C.-J. Wan, D. S. Bernstein, and V. T. Coppola, “Global stabilization of the oscillating eccentric
  rotor,” Nonlinear Dynamics, vol. 10, pp. 49–62, 1996.
 W.Wang, J. Yi, D. Zhao, and D. Liu, “Design of a stable sliding-mode controller for a class of
  second-order underactuated systems,” IEE Proceedings: Control Theory and Applications, vol.
  151, no. 6, pp. 683–690, 2004.
 F. J. Lin, P. H. Shen, and S. P. Hsu, “Adaptive backstepping sliding mode control for linear
  induction motor drive,” Proc. Inst. Elect. Eng., Electr. Power Appl., vol. 149, no. 3, pp. 184–
  194, 2002.
 S. Sankaranarayanan and F. Khorrami, “Adaptive variable structure control and applications to
  friction compensation,” in Proc. IEEE CDC Conf. Rec., 1997, pp. 4159–4164.
 W. Wang, J. Yi, D. Zhao, and D. Liu, “Hierarchical sliding-mode control method for overhead
  cranes,” Acta Automatica Sinica, vol. 30, no. 5, pp. 784–788, 2004.
 H. H. Lee, Y. Liang, and S. Del, “A sliding-mode antiswing trajectory control for overhead
  cranes with high-speed load hoisting,” Journal of Dynamic Systems, Measurement and
  Control, Transactions of the ASME, vol. 128, no. 4, pp. 842–845, 2006.
Thank You

More Related Content

What's hot

Design of Nonlinear State Feedback Control Law for Underactuated TORA System:...
Design of Nonlinear State Feedback Control Law for Underactuated TORA System:...Design of Nonlinear State Feedback Control Law for Underactuated TORA System:...
Design of Nonlinear State Feedback Control Law for Underactuated TORA System:...Shubhobrata Rudra
 
Two port networks unit ii
Two port networks unit iiTwo port networks unit ii
Two port networks unit iimrecedu
 
Synchronous design process
Synchronous design processSynchronous design process
Synchronous design processAbhilash Nair
 
State Machine Design and Synthesis
State Machine Design and SynthesisState Machine Design and Synthesis
State Machine Design and SynthesisAbhilash Nair
 
Analysis of state machines
Analysis of state machinesAnalysis of state machines
Analysis of state machinesAbhilash Nair
 
Dee2034 chapter 4 flip flop for students part
Dee2034 chapter 4 flip flop  for students partDee2034 chapter 4 flip flop  for students part
Dee2034 chapter 4 flip flop for students partSITI SABARIAH SALIHIN
 
Designing State Machine
Designing State MachineDesigning State Machine
Designing State MachineAbhilash Nair
 
SPICE MODEL of uPC7812A in SPICE PARK
SPICE MODEL of uPC7812A in SPICE PARKSPICE MODEL of uPC7812A in SPICE PARK
SPICE MODEL of uPC7812A in SPICE PARKTsuyoshi Horigome
 
Designing Clocked Synchronous State Machine
Designing Clocked Synchronous State MachineDesigning Clocked Synchronous State Machine
Designing Clocked Synchronous State MachineAbhilash Nair
 
Chapter 4 flip flop for students
Chapter 4 flip flop for studentsChapter 4 flip flop for students
Chapter 4 flip flop for studentsCT Sabariah Salihin
 
Two Port Network Parameters
Two Port Network ParametersTwo Port Network Parameters
Two Port Network Parametersmmlodro
 
Flip flop’s state tables & diagrams
Flip flop’s state tables & diagramsFlip flop’s state tables & diagrams
Flip flop’s state tables & diagramsSunny Khatana
 
Two port networks
Two port networksTwo port networks
Two port networksJaved khan
 
SPICE MODEL of uPC7824A in SPICE PARK
SPICE MODEL of uPC7824A in SPICE PARKSPICE MODEL of uPC7824A in SPICE PARK
SPICE MODEL of uPC7824A in SPICE PARKTsuyoshi Horigome
 
Two port networks (y parameters)
Two port networks (y parameters)Two port networks (y parameters)
Two port networks (y parameters)bhupendra kumar
 
SPICE MODEL of uPC78N24H in SPICE PARK
SPICE MODEL of uPC78N24H in SPICE PARKSPICE MODEL of uPC78N24H in SPICE PARK
SPICE MODEL of uPC78N24H in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC78L15T in SPICE PARK
SPICE MODEL of uPC78L15T in SPICE PARKSPICE MODEL of uPC78L15T in SPICE PARK
SPICE MODEL of uPC78L15T in SPICE PARKTsuyoshi Horigome
 
synchronous state machine design
synchronous state machine designsynchronous state machine design
synchronous state machine designAdarsh Patel
 

What's hot (20)

Nityanand gopalika Patent1
Nityanand gopalika Patent1Nityanand gopalika Patent1
Nityanand gopalika Patent1
 
Design of Nonlinear State Feedback Control Law for Underactuated TORA System:...
Design of Nonlinear State Feedback Control Law for Underactuated TORA System:...Design of Nonlinear State Feedback Control Law for Underactuated TORA System:...
Design of Nonlinear State Feedback Control Law for Underactuated TORA System:...
 
Two port networks unit ii
Two port networks unit iiTwo port networks unit ii
Two port networks unit ii
 
Synchronous design process
Synchronous design processSynchronous design process
Synchronous design process
 
State Machine Design and Synthesis
State Machine Design and SynthesisState Machine Design and Synthesis
State Machine Design and Synthesis
 
Analysis of state machines
Analysis of state machinesAnalysis of state machines
Analysis of state machines
 
Dee2034 chapter 4 flip flop for students part
Dee2034 chapter 4 flip flop  for students partDee2034 chapter 4 flip flop  for students part
Dee2034 chapter 4 flip flop for students part
 
Designing State Machine
Designing State MachineDesigning State Machine
Designing State Machine
 
SPICE MODEL of uPC7812A in SPICE PARK
SPICE MODEL of uPC7812A in SPICE PARKSPICE MODEL of uPC7812A in SPICE PARK
SPICE MODEL of uPC7812A in SPICE PARK
 
Designing Clocked Synchronous State Machine
Designing Clocked Synchronous State MachineDesigning Clocked Synchronous State Machine
Designing Clocked Synchronous State Machine
 
Chapter 4 flip flop for students
Chapter 4 flip flop for studentsChapter 4 flip flop for students
Chapter 4 flip flop for students
 
Two Port Network Parameters
Two Port Network ParametersTwo Port Network Parameters
Two Port Network Parameters
 
Flip flop’s state tables & diagrams
Flip flop’s state tables & diagramsFlip flop’s state tables & diagrams
Flip flop’s state tables & diagrams
 
Two port network
Two port networkTwo port network
Two port network
 
Two port networks
Two port networksTwo port networks
Two port networks
 
SPICE MODEL of uPC7824A in SPICE PARK
SPICE MODEL of uPC7824A in SPICE PARKSPICE MODEL of uPC7824A in SPICE PARK
SPICE MODEL of uPC7824A in SPICE PARK
 
Two port networks (y parameters)
Two port networks (y parameters)Two port networks (y parameters)
Two port networks (y parameters)
 
SPICE MODEL of uPC78N24H in SPICE PARK
SPICE MODEL of uPC78N24H in SPICE PARKSPICE MODEL of uPC78N24H in SPICE PARK
SPICE MODEL of uPC78N24H in SPICE PARK
 
SPICE MODEL of uPC78L15T in SPICE PARK
SPICE MODEL of uPC78L15T in SPICE PARKSPICE MODEL of uPC78L15T in SPICE PARK
SPICE MODEL of uPC78L15T in SPICE PARK
 
synchronous state machine design
synchronous state machine designsynchronous state machine design
synchronous state machine design
 

Similar to Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode Approach with Disturbance Estimation

Robust adaptive integral backstepping control and its implementation on
Robust adaptive integral backstepping control and its implementation onRobust adaptive integral backstepping control and its implementation on
Robust adaptive integral backstepping control and its implementation onShubhobrata Rudra
 
Design of Nonlinear State Feedback Control Law for Rotating Pendulum System: ...
Design of Nonlinear State Feedback Control Law for Rotating Pendulum System: ...Design of Nonlinear State Feedback Control Law for Rotating Pendulum System: ...
Design of Nonlinear State Feedback Control Law for Rotating Pendulum System: ...Shubhobrata Rudra
 
ECNG 3015 Power System Protection
ECNG 3015    Power System ProtectionECNG 3015    Power System Protection
ECNG 3015 Power System ProtectionChandrabhan Sharma
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Septiko Aji
 
95414579 flip-flop
95414579 flip-flop95414579 flip-flop
95414579 flip-flopKyawthu Koko
 
Ee2 chapter12 flip_flop
Ee2 chapter12 flip_flopEe2 chapter12 flip_flop
Ee2 chapter12 flip_flopCK Yang
 
Ee443 phase locked loop - presentation - schwappach and brandy
Ee443   phase locked loop - presentation - schwappach and brandyEe443   phase locked loop - presentation - schwappach and brandy
Ee443 phase locked loop - presentation - schwappach and brandyLoren Schwappach
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Mohd Paub
 

Similar to Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode Approach with Disturbance Estimation (19)

Robust adaptive integral backstepping control and its implementation on
Robust adaptive integral backstepping control and its implementation onRobust adaptive integral backstepping control and its implementation on
Robust adaptive integral backstepping control and its implementation on
 
Design of Nonlinear State Feedback Control Law for Rotating Pendulum System: ...
Design of Nonlinear State Feedback Control Law for Rotating Pendulum System: ...Design of Nonlinear State Feedback Control Law for Rotating Pendulum System: ...
Design of Nonlinear State Feedback Control Law for Rotating Pendulum System: ...
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
1m electrostatics
1m electrostatics1m electrostatics
1m electrostatics
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Schrodingermaxwell
SchrodingermaxwellSchrodingermaxwell
Schrodingermaxwell
 
Lect21 Engin112
Lect21 Engin112Lect21 Engin112
Lect21 Engin112
 
1 ไฟฟ้าสถิตย์ physics4
1 ไฟฟ้าสถิตย์  physics41 ไฟฟ้าสถิตย์  physics4
1 ไฟฟ้าสถิตย์ physics4
 
ECNG 3015 Power System Protection
ECNG 3015    Power System ProtectionECNG 3015    Power System Protection
ECNG 3015 Power System Protection
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
 
95414579 flip-flop
95414579 flip-flop95414579 flip-flop
95414579 flip-flop
 
Chapter2
Chapter2Chapter2
Chapter2
 
Ee2 chapter12 flip_flop
Ee2 chapter12 flip_flopEe2 chapter12 flip_flop
Ee2 chapter12 flip_flop
 
Ee443 phase locked loop - presentation - schwappach and brandy
Ee443   phase locked loop - presentation - schwappach and brandyEe443   phase locked loop - presentation - schwappach and brandy
Ee443 phase locked loop - presentation - schwappach and brandy
 
FEC 512.07
FEC 512.07FEC 512.07
FEC 512.07
 
Chapter8
Chapter8Chapter8
Chapter8
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
 
Dsp lecture vol 5 design of iir
Dsp lecture vol 5 design of iirDsp lecture vol 5 design of iir
Dsp lecture vol 5 design of iir
 
ECNG 6503 #1
ECNG 6503 #1 ECNG 6503 #1
ECNG 6503 #1
 

Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode Approach with Disturbance Estimation

  • 1. Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode Approach with Disturbance Estimation by Shubhobrata Rudra Inspire Research Fellow Electrical Engineering Department Jadavpur University Kolkata
  • 2. Content A Few Words on TORA System Adaptive Backstepping Sliding Mode Control Hierarchical Sliding Mode Control Control Law for TORA System Simulation Results Conclusions
  • 3. A Few Words on TORA System Degree of Freedom: 2 θ No of Control Input: 1 u x State Model of TORA System  q1 p1 q1=x  p1 k 3 q1 2 k 2 sin q 2 p1 k 2 cos q 2 u q2=θ  q2 p2  p2 u
  • 4. Contd.  Standard State Model of Underactuated System  x1 x2  x2 f1 X b1 X u d1 t  x3 x4  x4 f2 X b2 X u d2 t x1 x, x2  x, x3 , x4  2 f1 X k 1 q1 k 2 sin q 2 p 2 b1 X k 2 cos q 2 f2 X 0 b2 X 1
  • 5. Adaptive Backstepping Sliding Mode Control  Define 1st Error variable & its dynamic as: e1 x1 x1d &  e1 x 2  x1d  Stabilizing Function: 1 c1 e1 1 1  Control Lyapunov Function (CLF) and its derivative 1 2 1 2 V1 1 e1 2 2  Define 2nd error variable e2 and its derivative as: e2 x2  x1 d and  e2 f1 X b1 X u d1 t 1 d x 1 1  Define first-layer sliding surface s1 and new CLF as 1 s1 e 1 1 e2 and V2 V1 2 s1 2
  • 6. Contd.  Derivative of CLF: V2 2 e1 e 2 c1 e1 s1 1 e2 c1 e1 1 1 f1 X b1 X u d1 t 1 d x 1  Control Input: 1 u1 b1 X 1 e2 c1 e1 1 1 f1 X d 1 M s at s1 1 d x 1 h1 s1 1 s at s1  Augmented Lyapunov Function: 1 2  V3 V2 d 1M and d 1 M d1M d 1M 2 1  Adaptation Law:   d1M s 1 1
  • 7. Hierarchical Sliding Mode Control  Control Inputs: 1 u1 b1 X 1 e2 c1 e1 1 1 f1 X d 1 M s at s1 1 d x 1 h1 s1 1 s at s1 1 u2 b2 X 1 e4 c 2 e3 2 2 f2 X d 2 M s at s 2 2 d x 2 h2 s 2 2 s at s 2     Adaptation Laws: d1M s 1 1 and d 2M 2 s2  Composite control law: u u1 u2 u sw  Define 2nd Layer sliding surface: S s 1 1 2 s2 b X u2 b2 X u1 sat ( S ) K .S  Coupling Law: u sw 1 1 2 b 1 1 X 2 b2 X b X u1 b2 X u 2 sat ( S ) KS  Composite Control Law: u 1 1 2 b 1 1 X 2 b2 X
  • 8. Control Law for TORA System .  Expression of Control Input for Translational Motion k1 2  u1 1 e2 c1 e1 1 1 k 1 q1 1 d x k 2 sin q 2 p 2 d1M 1 h1 s1 1 sat ( s1 ) cos q 2  Expression of Control Input for Rotational Motion  u2 2 e4 c 2 e3 2 2 2 d x d 2M 2 h2 s 2 2 sat ( s 2 )  Coupling Control Law: 1 k 2 cos q 2 u 2 2 u1 sat ( S ) K .S u sw 1 k 2 cos q 2 2  Composite Control Law: k cos q 2 u1 1 1 2 u2 sat ( S ) KS u 1 1 k cos q 2 2
  • 9. Simulation Results  Initial Conditions: q1 0 .2 5 and p1 0 Cart Position Cart Velocity
  • 11. Contd.  Initial Conditions: q2 pi / 3 and p2 0 Rotor Position Rotor Velocity
  • 13. Conclusions  Another new method of addressing the stabilization problem for underactuated system.  Can easily be extended to address the stabilization problem of other two degree of freedom underactuated mechanical systems.  Chattering problem can be reduced with the introduction of second order sliding mode control.  Proposed algorithm is applicable for only two-degree of freedom single input systems, research can be pursued to make the control algorithm more generalized such that it will able to address the control problem of any arbitrary underactuated system.
  • 14. Reference  G. Escobar, R. Ortega, and H. Sira-Ramirez, “Output-feedback global stabilization of a nonlinear benchmark system using a saturated passivity-based controller,” IEEE Trans. Contr. Syst. Technol., vol. 7, pp. 289–293, 1999  M. Jankovic, D. Fontaine, and P. V. Kokotovic´, “TORA example: Cascade- and passivity-based control designs,” IEEE Trans. Contr. Syst. Technol., vol. 4, pp. 292–297, 1996.  Z. P. Jiang, D. J. Hill, and Y. Guo, “Stabilization and tracking via output feedback for the nonlinear benchmark system,” Automatica, vol. 34, no.7, pp. 907–915, 1998.  C.-J. Wan, D. S. Bernstein, and V. T. Coppola, “Global stabilization of the oscillating eccentric rotor,” Nonlinear Dynamics, vol. 10, pp. 49–62, 1996.  W.Wang, J. Yi, D. Zhao, and D. Liu, “Design of a stable sliding-mode controller for a class of second-order underactuated systems,” IEE Proceedings: Control Theory and Applications, vol. 151, no. 6, pp. 683–690, 2004.  F. J. Lin, P. H. Shen, and S. P. Hsu, “Adaptive backstepping sliding mode control for linear induction motor drive,” Proc. Inst. Elect. Eng., Electr. Power Appl., vol. 149, no. 3, pp. 184– 194, 2002.  S. Sankaranarayanan and F. Khorrami, “Adaptive variable structure control and applications to friction compensation,” in Proc. IEEE CDC Conf. Rec., 1997, pp. 4159–4164.  W. Wang, J. Yi, D. Zhao, and D. Liu, “Hierarchical sliding-mode control method for overhead cranes,” Acta Automatica Sinica, vol. 30, no. 5, pp. 784–788, 2004.  H. H. Lee, Y. Liang, and S. Del, “A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 128, no. 4, pp. 842–845, 2006.