Reticulate evolution in yeasts and its industrial
applications
David Peris, Postdoctoral Researcher
Biotechnology Department, SBYBI (IATA-CSIC)
18th October 2019
@djperis
Overview
Source of incongruence in the Saccharomyces genus
Hybridization as mechanism of domestication
Mining genomic diversity for industrial applications
Yeast life cycle
MAT MATa MAT/MATa
Haploid (n) Haploid (n) Diploid (2n)
2 Sexual types (MAT locus)
Mating competent cells can mate
MAT MATa
Haploid (n) Haploid (n)
MAT MATa
X
MAT/MATa
schmoo
MATa MAT
A diploid gets sexual competent by sporulation
MAT/MATa
Diploid (2n)
MAT MATa
X
MAT/MATa


a
a
Heteroplasmic state
MAT MATa
X
Uniparental inheritance of the mitochondrial genome
MAT MATa
X
rhoA
Birky et al 2001 Ann Rev Gen
Uniparental inheritance of the mitochondrial genome
MAT MATa
X
rhoA
rhoB
Homoplasmic state is quickly reached
MAT MATa
X
rhoA rhoAxB
rhoB
MAT
X
MAT/MATa
MATa
Biological species concept
MAT/MATa


a
MAT/MATa
a


a
a
MAT
X
MAT/MATa
MATa


a
a
x x x x
x x x x
x x x x
x x x x
x x x x
x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x
x x x x
x x x x
x x x x
x x x x
x x x
x x x x
x x x x
x x x x
x x x x
x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x: No growth
4/128 = 3.1%
Biological species concept
MAT/MATa


a
MAT/MATa
a


a
a
Saccharomyces genomes 1.0
S. paradoxus
S. mikatae
S. kudriavzevii
S. uvarum
S. cerevisiae
Scannell et al 2011
Signals of phylogenetic incongruence
S. paradoxus
S. mikatae
S. kudriavzevii
S. uvarum
S. cerevisiae
Rokas et al 2003 Nature
New strains and species
Libkind et al 2011
Liti et al 2013
Leducq et al 2016
Naseeb et al 2018
Peter et al 2018
Duan et al 2018
Peris et al In preparation
Aims
Peris et al In preparation
Complete the phylogenetic relationship among
Saccharomyces strains
What is the source of phylogenetic incongruence
Saccharomyces Genomes 2.0
Peris et al In preparation
Saccharomyces Genomes 2.0
Peris et al In preparation
What is the source of
phylogenetic incongruence?
Most of the incongruence is due to ILS
Peris et al In preparation
Nuclear gene flow mostly limited within species: mosaics/admixed
Gene flow
Peris et al In preparation
Kuang et al 2016 eLife
Legras et al 2018 MBE
Peris et al In preparation
How does introgression impact
on the phenotypes?
The Saccharomyces kudriavzevii populations
Hittinger et al 2010 Nature
Peris et al In preparation
Genome scans and phylogenetic networks show gene flow
Hittinger et al 2010 Nature
Peris et al In preparation
11.93%
Most European S. kudriavzevii can grow in galactose
EU1
Hittinger et al 2010 Nature
MM + 2% Galactose
S. cerevisiae
S. paradoxus
S. mikatae
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Balancing selection of a complete network
Asia A
Asia B
EU1
Hittinger et al 2010 Nature
MM + 2% Galactose
S. cerevisiae
S. paradoxus
S. mikatae
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
EU1
MM + 2% Galactose
Gene flow promotes loss or gain of a trait
EU2
Asia A
Asia B
Peris et al In preparation
S. cerevisiae
S. paradoxus
S. mikatae
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Transgressive phenotypes by hybridization
Stelkens et al 2014 JEB
Low frequency of wild hybrids
Barbosa et al 2016 GBE
S. cerevisiae
S. paradoxus
S. mikatae
S. jurei
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Species
S. cerevisiae
S. paradoxus
S. mikatae
S. jurei
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Species
Hybridization as a domestication mechanism
Langdon, Peris et al Accepted Nat Ecol & Evol
Pontes et al 2019 Front Gen
Peris et al 2018 Yeast
Almeida et al 2014
Erny et al 2012 AEM
Peris et al 2012 Yeast
Peris et al 2012 BMC Genomics
Peris et al 2012 PloS One
S. cerevisiae
S. paradoxus
S. mikatae
S. jurei
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Species
Alpechin/olive hybrids
Pontes et al 2019 Front Gen
S. cerevisiae
S. paradoxus
S. mikatae
S. jurei
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Species
Lager brewing hybrids: S. pastorianus
Langdon, Peris et al Accepted Nat Ecol & Evol
Peris et al 2016 PloS Gen
Saaz/Group I
Frohberg/Group II
S. cerevisiae
S. paradoxus
S. mikatae
S. jurei
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Species
Belgium beers and wine performed by hybrids
Langdon, Peris et al Accepted Nat Ecol & Evol
Peris et al 2018 Yeast
Peris et al 2012 PloS One
S. cerevisiae
S. paradoxus
S. mikatae
S. jurei
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Species
Hybrid contaminants, some S. bayanus
Langdon, Peris et al Accepted Nat Ecol & Evol
Phenotypic differentiation based on temperature tolerance
Group 1
Group 2
Group 3
Group 4
Group 5
S. cerevisiae
S. paradoxus
S. mikatae
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Gonçalves et al 2011 PloS ONE
Salvadó et al 2011 AEM
Peris et al In preparation
Phenotypic differentiation based on temperature tolerance
Group 1
Group 2
Group 3
Group 4
Group 5
S. cerevisiae
S. paradoxus
S. mikatae
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Gonçalves et al 2011 PloS ONE
Salvadó et al 2011 AEM
Peris et al In preparation
94% of interspecies hybrids inherited the mitochondrial genome of
non-cerevisiae species
Group 1
Group 2
Group 3
Group 4
Group 5
S. cerevisiae
S. paradoxus
S. mikatae
S. kudriavzevii
S. arboricola
S. uvarum
S. eubayanus
Gonçalves et al 2011 PloS ONE
Salvadó et al 2011 AEM
Peris et al In preparation
Aim
Infer the contribution of each parent to the hybrid phenotype
Tests in synthetic hybrids
Peris et al 2018 Yeast
Rare mating: when diploids become mating competent
Hanson and Wolfe 2017
Ortiz-Merino et al 2017
Braun-Galleani et al 2018
Homing endonuclease
(HO)
MATa
MAT
HO
MATa
MATa
1)
MATa/MATa
or
MAT/MATa
Inactivation/Loss of one
idiomorph
MATa
MAT
MATa
2)
MATa/-
1:106
Rare mating: when diploids become mating competent
Hanson and Wolfe 2017
Ortiz-Merino et al 2017
Braun-Galleani et al 2018
Homing endonuclease
(HO)
MATa
MAT
HO
MATa
MATa
1)
MATa/MATa
or
MAT/MATa
Inactivation/Loss of one
idiomorph
MATa
MAT
MATa
2)
MATa/-
1:106
MAT
MAT/MAT
X
Peris et al 2019 BioRxiv
HyPr (Hybrid Production) plasmid
doxycycline
shock
HyPr: Hybrid Production method
HyPr: frequent mating
Alexander, Peris et al 2016
HyPr (Hybrid Production) plasmid
doxycycline
shock
Vegetative yeast
mitochondrial genome
chromosome
diploid
a/ a/
[pHMK34-HygMX]
[pHCT2-NatMX]
x
a/a /
a/a//
a/a//
Selection in media
with NAT+HYG
Remove selection for HYG
Check loss of NAT plasmid
>4G
Pre-culture
with NAT
Pre-culture
with HYG
S. eubayanus can grow at low temperature
Baker, Peris et al 2019 Sci Adv
Li, Peris et al 2019 Sci Adv
10C + Glycerol
Hybrid Scer-mtDNA
Hybrid Seub-mtDNA
Seub-with mtDNA
Seub-no mtDNA
Scer-with mtDNA
Scer-no mtDNA
S. cerevisiae can not grow at low temperature
Baker, Peris et al 2019 Sci Adv
Li, Peris et al 2019 Sci Adv
10C + Glycerol
Hybrid Scer-mtDNA
Hybrid Seub-mtDNA
Seub-with mtDNA
Seub-no mtDNA
Scer-with mtDNA
Scer-no mtDNA
Mitochondrial inheritance directly related with temperature tolerance
Baker, Peris et al 2019 Sci Adv
Li, Peris et al 2019 Sci Adv
10C + Glycerol
Hybrid Scer-mtDNA
Hybrid Seub-mtDNA
Seub-with mtDNA
Seub-no mtDNA
Scer-with mtDNA
Scer-no mtDNA
Mitochondrial inheritance directly related with temperature tolerance
Baker, Peris et al 2019 Sci Adv
Li, Peris et al 2019 Sci Adv
10C + Glycerol
Hybrid Scer- mtDNA
Hybrid Seub- mtDNA
Seub-with mtDNA
Seub-no mtDNA
Scer-with mtDNA
Scer-no mtDNA
37C + Glycerol
Hybrid Scer-mtDNA
Hybrid Seub-mtDNA
Seub-with mtDNA
Seub-no mtDNA
Scer-with mtDNA
Scer-no mtDNA
Could be apply hybrids to other
industrial processes?
Piotrowski et al 2014 Front Microbiol
Redomestication of S. cerevisiae for biofuels
Wohlbach et al. 2009 PNAS
Sato et al. 2013 AEM
Xylose Hydrolysate toxins
Y73
2n
ACSH
D-glucose
Glucose -6P
Fructose -6P
Glyceraldehyde -3P
Dihydroxy
acetone P
Glycerol NADH
Phosphoenolpyruvate
Acetaldehyde
Pyruvate
NADH
ATP
ATP CO2
Ethanol
Acetate
NADH
D-xylose
D-Xylulose
Xylulose 5P
NAD(P)+
NADH
ATP
NAD(P)H
Xylitol
Acetyl -CoA
ATP
Pathway engineered in GLBRCY73
Succinate TCA
ATP
CO2
CO2
NADH
NADH
ATP
Pyruvate
Acetyl-CoA
Mitochondrion
Cytosol
Ssti-XYL1
Ssti-XYL2
Ssti-XYL3
Redomestication of S. cerevisiae for biofuels
Xylose Hydrolysate toxins
Y101 n n
S.mikatae S.kudriavzevii
X
R1 R9
…
50 Generation:ACSH
30ºC
14days
Y73
2n
or
MAT
MATa/MAT
MATa MATa
Peris et al 2017 Biotech Biofuels
Hybrids might improve chassis strains
Peris et al 2017 Biotech Biofuels
Y101 n n
S.mikatae S.kudriavzevii
X
R1 R9
…
30ºC
14days
or
CHASSIS
ANCESTOR
EVOLVED
ANCESTOR
EVOLVED
D-xylose
Ethanol
CHASSIS
ANCESTOR
EVOLVED
ANCESTOR
EVOLVED
50 Generation:ACSH
T2
(166.5 h)
Genotypic diversity
Peris et al In preparation
Genotypic diversity (human-birds)
Peris et al In preparation
Genotypic diversity is translated in different phenotypes
Peris et al In preparation
Aim
Expand the number of species genomes introduced in a single
cell
iHyPr: iterative Hybrid Production method
Peris et al 2019 BioRxiv
HyPr (Hybrid Production) plasmid
doxycycline
shock
Vegetative yeast
mitochondrial genome
chromosome
diploid
a/ a/
[pHMK34-HygMX]
[pHCT2-NatMX]
x
a/a /
a/a//
Selection in media
with NAT+HYG
Pre-culture
with HYG
Pre-culture
with NAT
iHyPr: iterative Hybrid Production method
Peris et al 2019 BioRxiv
HyPr (Hybrid Production) plasmid
doxycycline
shock
Vegetative yeast
mitochondrial genome
chromosome
diploid
Pre-culture
with ZEO
Pre-culture
with HYG
a/ a/
[pHMK34-HygMX]
[pHCT2-NatMX]
x
a/a /
a/a//
a/a/a/a
Selection in media
with NAT+HYG
>4G
a/
/
[pHRW32-ZeoMX]
x
Pre-culture
with HYG
Pre-culture
with NAT
iHyPr: iterative Hybrid Production method
Peris et al 2019 BioRxiv
HyPr (Hybrid Production) plasmid
doxycycline
shock
Vegetative yeast
mitochondrial genome
chromosome
diploid
>4G
Pre-culture
with ZEO
Pre-culture
with HYG
a/ a/
[pHMK34-HygMX]
[pHCT2-NatMX]
x
a/a /
a/a//
a/a/a/a
Selection in media
with NAT+HYG
>4G
a/
/
[pHRW32-ZeoMX]
x
a/a/a/a//
Selection in media
with HYG+ZEO
Pre-culture
with HYG
Pre-culture
with NAT
Pre-culture
with ZEO
a/a/a/a/a/a
iHyPr: iterative Hybrid Production method
Peris et al 2019 BioRxiv
HyPr (Hybrid Production) plasmid
doxycycline
shock
Vegetative yeast
mitochondrial genome
chromosome
diploid
Pre-culture
with G418
>4G >4G
Pre-culture
with ZEO
Pre-culture
with HYG
a/ a/
[pHMK34-HygMX]
[pHCT2-NatMX]
x
a/a /
a/a//
a/a/a/a
Selection in media
with NAT+HYG
>4G
a/
/
[pHRW32-ZeoMX]
x
a/a/a/a//
Selection in media
with HYG+ZEO
Pre-culture
with HYG
Pre-culture
with NAT
x
a/a////
Reutilization of
NAT plasmid
Selection in media
with NAT+G418
Pre-culture
with ZEO
a/a/a/a/a/a
/////
Three different hybridization schemes
Peris et al 2019 BioRxiv
sppIDer: quick genome characterization using NGS
Langdon et al 2019 MBE
sppIDer: quick genome characterization using NGS
Langdon et al 2019 MBE
sppIDer: a quick method to characterize hybrid genomes
Peris et al 2019 BioRxiv
Six-species hybrid genomes are highly unstable
Peris et al 2019 BioRxiv
Six-species hybrid genomes are highly unstable
Peris et al 2019 BioRxiv
Six-species hybrid genomes are highly unstable
Peris et al 2019 BioRxiv
Alloctoploid (8n) six-species hybrid was constructed
Peris et al 2019 BioRxiv
Aim
The influence of mitochondrial inheritance in the genome
retention
Improve the six-species hybrids through ALE
iHyPr is a method to generate diversity
80 Generation
Peris et al 2019 BioRxiv
iHyPr is a method to generate diversity
80 Generation
Peris et al 2019 BioRxiv
Mitochondrial inheritance influences in the genotypic outcome
mtDNA
S. cerevisiae
Other species
Step of hybridization
100
75
50
25
%
of
S.
cerevisiae
nuclear
genome
Peris et al 2019 BioRxiv
iHyPr combined with ALE for the improvement of chassis strains
Peris et al 2019 BioRxiv
GLBRCY101
iHyPr is a method to combine phenotypic traits
Peris et al 2019 BioRxiv
iHyPr is a method to combine phenotypic traits
Peris et al 2019 BioRxiv
Take-home messages
Nuclear gene flow is limited between species
Take-home messages
Nuclear gene flow is limited between species
Gene flow can have an impact in the phenotype
Take-home messages
Nuclear gene flow is limited between species
Gene flow can have an impact in the phenotype
Mitochondrial inheritance is important for temperature
tolerance
Take-home messages
Nuclear gene flow is limited between species
Gene flow can have an impact in the phenotype
Mitochondrial inheritance is important for temperature
tolerance
Mitochondrial inheritance influences in the genome retention
Take-home messages
Nuclear gene flow is limited between species
Gene flow can have an impact in the phenotype
Mitochondrial inheritance is important for temperature
tolerance
Mitochondrial inheritance influences in the genome retention
iHyPr is an efficient method to generate polyploids and
complex hybrids
Take-home messages
Nuclear gene flow is limited between species
Gene flow can have an impact in the phenotype
Mitochondrial inheritance is important for temperature
tolerance
Mitochondrial inheritance influences in the genome retention
iHyPr is an efficient method to generate polyploids and
complex hybrids
iHyPr is an efficient method to generate diversity and combine
the phenotypic traits of wild strains
Lainy Ramírez Aroca
Amparo Querol
David Lázaro
Laura Pérez-Través
Querol Lab Members
Eladio Barrio
Laura Gutierrez
Miguel Morard
Barrio Lab Members
José Guillamón
Guillamón Lab Members
Sergi Puig
Sergi Lab Members
William G Alexander
Mira G Basuino
Emily J Ubbelohde
Diego Libkind
Jose Paulo Sampaio
Paula Gonçalves
Christian Landry
Jean-Baptiste Leducq
Guillaume Charron
Justin Fay
Katie Hyma
Li Xueying
Fengyan Bai
Qi Ming Wang
Ursula Bond
Chris T. Hittinger’s lab
Quinn Langdon
EmilyClaire Baker
Rusell Wrobel
Ryan Moriarty
Kaitlin Fisher
Mehua Kuang
Jacek Kominek
Dana Opulente
Amanda Hulfachor
UW & GLBRC Collaboration
SBYBI@IATA-CSIC
Thank you

Reticulate evolution in yeasts and its industrial applications

  • 1.
    Reticulate evolution inyeasts and its industrial applications David Peris, Postdoctoral Researcher Biotechnology Department, SBYBI (IATA-CSIC) 18th October 2019 @djperis
  • 2.
    Overview Source of incongruencein the Saccharomyces genus Hybridization as mechanism of domestication Mining genomic diversity for industrial applications
  • 3.
    Yeast life cycle MATMATa MAT/MATa Haploid (n) Haploid (n) Diploid (2n) 2 Sexual types (MAT locus)
  • 4.
    Mating competent cellscan mate MAT MATa Haploid (n) Haploid (n) MAT MATa X MAT/MATa schmoo MATa MAT
  • 5.
    A diploid getssexual competent by sporulation MAT/MATa Diploid (2n) MAT MATa X MAT/MATa   a a
  • 6.
  • 7.
    Uniparental inheritance ofthe mitochondrial genome MAT MATa X rhoA Birky et al 2001 Ann Rev Gen
  • 8.
    Uniparental inheritance ofthe mitochondrial genome MAT MATa X rhoA rhoB
  • 9.
    Homoplasmic state isquickly reached MAT MATa X rhoA rhoAxB rhoB
  • 10.
  • 11.
    MAT X MAT/MATa MATa   a a x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x: No growth 4/128 = 3.1% Biological species concept MAT/MATa   a MAT/MATa a   a a
  • 12.
    Saccharomyces genomes 1.0 S.paradoxus S. mikatae S. kudriavzevii S. uvarum S. cerevisiae Scannell et al 2011
  • 13.
    Signals of phylogeneticincongruence S. paradoxus S. mikatae S. kudriavzevii S. uvarum S. cerevisiae Rokas et al 2003 Nature
  • 14.
    New strains andspecies Libkind et al 2011 Liti et al 2013 Leducq et al 2016 Naseeb et al 2018 Peter et al 2018 Duan et al 2018 Peris et al In preparation
  • 15.
    Aims Peris et alIn preparation Complete the phylogenetic relationship among Saccharomyces strains What is the source of phylogenetic incongruence
  • 16.
    Saccharomyces Genomes 2.0 Periset al In preparation
  • 17.
    Saccharomyces Genomes 2.0 Periset al In preparation
  • 18.
    What is thesource of phylogenetic incongruence?
  • 19.
    Most of theincongruence is due to ILS Peris et al In preparation
  • 20.
    Nuclear gene flowmostly limited within species: mosaics/admixed Gene flow Peris et al In preparation
  • 21.
    Kuang et al2016 eLife Legras et al 2018 MBE Peris et al In preparation How does introgression impact on the phenotypes?
  • 22.
    The Saccharomyces kudriavzeviipopulations Hittinger et al 2010 Nature Peris et al In preparation
  • 23.
    Genome scans andphylogenetic networks show gene flow Hittinger et al 2010 Nature Peris et al In preparation 11.93%
  • 24.
    Most European S.kudriavzevii can grow in galactose EU1 Hittinger et al 2010 Nature MM + 2% Galactose S. cerevisiae S. paradoxus S. mikatae S. kudriavzevii S. arboricola S. uvarum S. eubayanus
  • 25.
    Balancing selection ofa complete network Asia A Asia B EU1 Hittinger et al 2010 Nature MM + 2% Galactose S. cerevisiae S. paradoxus S. mikatae S. kudriavzevii S. arboricola S. uvarum S. eubayanus
  • 26.
    EU1 MM + 2%Galactose Gene flow promotes loss or gain of a trait EU2 Asia A Asia B Peris et al In preparation S. cerevisiae S. paradoxus S. mikatae S. kudriavzevii S. arboricola S. uvarum S. eubayanus
  • 27.
    Transgressive phenotypes byhybridization Stelkens et al 2014 JEB
  • 28.
    Low frequency ofwild hybrids Barbosa et al 2016 GBE S. cerevisiae S. paradoxus S. mikatae S. jurei S. kudriavzevii S. arboricola S. uvarum S. eubayanus Species
  • 29.
    S. cerevisiae S. paradoxus S.mikatae S. jurei S. kudriavzevii S. arboricola S. uvarum S. eubayanus Species Hybridization as a domestication mechanism Langdon, Peris et al Accepted Nat Ecol & Evol Pontes et al 2019 Front Gen Peris et al 2018 Yeast Almeida et al 2014 Erny et al 2012 AEM Peris et al 2012 Yeast Peris et al 2012 BMC Genomics Peris et al 2012 PloS One
  • 30.
    S. cerevisiae S. paradoxus S.mikatae S. jurei S. kudriavzevii S. arboricola S. uvarum S. eubayanus Species Alpechin/olive hybrids Pontes et al 2019 Front Gen
  • 31.
    S. cerevisiae S. paradoxus S.mikatae S. jurei S. kudriavzevii S. arboricola S. uvarum S. eubayanus Species Lager brewing hybrids: S. pastorianus Langdon, Peris et al Accepted Nat Ecol & Evol Peris et al 2016 PloS Gen Saaz/Group I Frohberg/Group II
  • 32.
    S. cerevisiae S. paradoxus S.mikatae S. jurei S. kudriavzevii S. arboricola S. uvarum S. eubayanus Species Belgium beers and wine performed by hybrids Langdon, Peris et al Accepted Nat Ecol & Evol Peris et al 2018 Yeast Peris et al 2012 PloS One
  • 33.
    S. cerevisiae S. paradoxus S.mikatae S. jurei S. kudriavzevii S. arboricola S. uvarum S. eubayanus Species Hybrid contaminants, some S. bayanus Langdon, Peris et al Accepted Nat Ecol & Evol
  • 34.
    Phenotypic differentiation basedon temperature tolerance Group 1 Group 2 Group 3 Group 4 Group 5 S. cerevisiae S. paradoxus S. mikatae S. kudriavzevii S. arboricola S. uvarum S. eubayanus Gonçalves et al 2011 PloS ONE Salvadó et al 2011 AEM Peris et al In preparation
  • 35.
    Phenotypic differentiation basedon temperature tolerance Group 1 Group 2 Group 3 Group 4 Group 5 S. cerevisiae S. paradoxus S. mikatae S. kudriavzevii S. arboricola S. uvarum S. eubayanus Gonçalves et al 2011 PloS ONE Salvadó et al 2011 AEM Peris et al In preparation
  • 36.
    94% of interspecieshybrids inherited the mitochondrial genome of non-cerevisiae species Group 1 Group 2 Group 3 Group 4 Group 5 S. cerevisiae S. paradoxus S. mikatae S. kudriavzevii S. arboricola S. uvarum S. eubayanus Gonçalves et al 2011 PloS ONE Salvadó et al 2011 AEM Peris et al In preparation
  • 37.
    Aim Infer the contributionof each parent to the hybrid phenotype
  • 38.
    Tests in synthetichybrids Peris et al 2018 Yeast
  • 39.
    Rare mating: whendiploids become mating competent Hanson and Wolfe 2017 Ortiz-Merino et al 2017 Braun-Galleani et al 2018 Homing endonuclease (HO) MATa MAT HO MATa MATa 1) MATa/MATa or MAT/MATa Inactivation/Loss of one idiomorph MATa MAT MATa 2) MATa/- 1:106
  • 40.
    Rare mating: whendiploids become mating competent Hanson and Wolfe 2017 Ortiz-Merino et al 2017 Braun-Galleani et al 2018 Homing endonuclease (HO) MATa MAT HO MATa MATa 1) MATa/MATa or MAT/MATa Inactivation/Loss of one idiomorph MATa MAT MATa 2) MATa/- 1:106 MAT MAT/MAT X
  • 41.
    Peris et al2019 BioRxiv HyPr (Hybrid Production) plasmid doxycycline shock HyPr: Hybrid Production method
  • 42.
    HyPr: frequent mating Alexander,Peris et al 2016 HyPr (Hybrid Production) plasmid doxycycline shock Vegetative yeast mitochondrial genome chromosome diploid a/ a/ [pHMK34-HygMX] [pHCT2-NatMX] x a/a / a/a// a/a// Selection in media with NAT+HYG Remove selection for HYG Check loss of NAT plasmid >4G Pre-culture with NAT Pre-culture with HYG
  • 43.
    S. eubayanus cangrow at low temperature Baker, Peris et al 2019 Sci Adv Li, Peris et al 2019 Sci Adv 10C + Glycerol Hybrid Scer-mtDNA Hybrid Seub-mtDNA Seub-with mtDNA Seub-no mtDNA Scer-with mtDNA Scer-no mtDNA
  • 44.
    S. cerevisiae cannot grow at low temperature Baker, Peris et al 2019 Sci Adv Li, Peris et al 2019 Sci Adv 10C + Glycerol Hybrid Scer-mtDNA Hybrid Seub-mtDNA Seub-with mtDNA Seub-no mtDNA Scer-with mtDNA Scer-no mtDNA
  • 45.
    Mitochondrial inheritance directlyrelated with temperature tolerance Baker, Peris et al 2019 Sci Adv Li, Peris et al 2019 Sci Adv 10C + Glycerol Hybrid Scer-mtDNA Hybrid Seub-mtDNA Seub-with mtDNA Seub-no mtDNA Scer-with mtDNA Scer-no mtDNA
  • 46.
    Mitochondrial inheritance directlyrelated with temperature tolerance Baker, Peris et al 2019 Sci Adv Li, Peris et al 2019 Sci Adv 10C + Glycerol Hybrid Scer- mtDNA Hybrid Seub- mtDNA Seub-with mtDNA Seub-no mtDNA Scer-with mtDNA Scer-no mtDNA 37C + Glycerol Hybrid Scer-mtDNA Hybrid Seub-mtDNA Seub-with mtDNA Seub-no mtDNA Scer-with mtDNA Scer-no mtDNA
  • 47.
    Could be applyhybrids to other industrial processes? Piotrowski et al 2014 Front Microbiol
  • 48.
    Redomestication of S.cerevisiae for biofuels Wohlbach et al. 2009 PNAS Sato et al. 2013 AEM Xylose Hydrolysate toxins Y73 2n ACSH D-glucose Glucose -6P Fructose -6P Glyceraldehyde -3P Dihydroxy acetone P Glycerol NADH Phosphoenolpyruvate Acetaldehyde Pyruvate NADH ATP ATP CO2 Ethanol Acetate NADH D-xylose D-Xylulose Xylulose 5P NAD(P)+ NADH ATP NAD(P)H Xylitol Acetyl -CoA ATP Pathway engineered in GLBRCY73 Succinate TCA ATP CO2 CO2 NADH NADH ATP Pyruvate Acetyl-CoA Mitochondrion Cytosol Ssti-XYL1 Ssti-XYL2 Ssti-XYL3
  • 49.
    Redomestication of S.cerevisiae for biofuels Xylose Hydrolysate toxins Y101 n n S.mikatae S.kudriavzevii X R1 R9 … 50 Generation:ACSH 30ºC 14days Y73 2n or MAT MATa/MAT MATa MATa Peris et al 2017 Biotech Biofuels
  • 50.
    Hybrids might improvechassis strains Peris et al 2017 Biotech Biofuels Y101 n n S.mikatae S.kudriavzevii X R1 R9 … 30ºC 14days or CHASSIS ANCESTOR EVOLVED ANCESTOR EVOLVED D-xylose Ethanol CHASSIS ANCESTOR EVOLVED ANCESTOR EVOLVED 50 Generation:ACSH T2 (166.5 h)
  • 51.
  • 52.
  • 53.
    Genotypic diversity istranslated in different phenotypes Peris et al In preparation
  • 54.
    Aim Expand the numberof species genomes introduced in a single cell
  • 55.
    iHyPr: iterative HybridProduction method Peris et al 2019 BioRxiv HyPr (Hybrid Production) plasmid doxycycline shock Vegetative yeast mitochondrial genome chromosome diploid a/ a/ [pHMK34-HygMX] [pHCT2-NatMX] x a/a / a/a// Selection in media with NAT+HYG Pre-culture with HYG Pre-culture with NAT
  • 56.
    iHyPr: iterative HybridProduction method Peris et al 2019 BioRxiv HyPr (Hybrid Production) plasmid doxycycline shock Vegetative yeast mitochondrial genome chromosome diploid Pre-culture with ZEO Pre-culture with HYG a/ a/ [pHMK34-HygMX] [pHCT2-NatMX] x a/a / a/a// a/a/a/a Selection in media with NAT+HYG >4G a/ / [pHRW32-ZeoMX] x Pre-culture with HYG Pre-culture with NAT
  • 57.
    iHyPr: iterative HybridProduction method Peris et al 2019 BioRxiv HyPr (Hybrid Production) plasmid doxycycline shock Vegetative yeast mitochondrial genome chromosome diploid >4G Pre-culture with ZEO Pre-culture with HYG a/ a/ [pHMK34-HygMX] [pHCT2-NatMX] x a/a / a/a// a/a/a/a Selection in media with NAT+HYG >4G a/ / [pHRW32-ZeoMX] x a/a/a/a// Selection in media with HYG+ZEO Pre-culture with HYG Pre-culture with NAT Pre-culture with ZEO a/a/a/a/a/a
  • 58.
    iHyPr: iterative HybridProduction method Peris et al 2019 BioRxiv HyPr (Hybrid Production) plasmid doxycycline shock Vegetative yeast mitochondrial genome chromosome diploid Pre-culture with G418 >4G >4G Pre-culture with ZEO Pre-culture with HYG a/ a/ [pHMK34-HygMX] [pHCT2-NatMX] x a/a / a/a// a/a/a/a Selection in media with NAT+HYG >4G a/ / [pHRW32-ZeoMX] x a/a/a/a// Selection in media with HYG+ZEO Pre-culture with HYG Pre-culture with NAT x a/a//// Reutilization of NAT plasmid Selection in media with NAT+G418 Pre-culture with ZEO a/a/a/a/a/a /////
  • 59.
    Three different hybridizationschemes Peris et al 2019 BioRxiv
  • 60.
    sppIDer: quick genomecharacterization using NGS Langdon et al 2019 MBE
  • 61.
    sppIDer: quick genomecharacterization using NGS Langdon et al 2019 MBE
  • 62.
    sppIDer: a quickmethod to characterize hybrid genomes Peris et al 2019 BioRxiv
  • 63.
    Six-species hybrid genomesare highly unstable Peris et al 2019 BioRxiv
  • 64.
    Six-species hybrid genomesare highly unstable Peris et al 2019 BioRxiv
  • 65.
    Six-species hybrid genomesare highly unstable Peris et al 2019 BioRxiv
  • 66.
    Alloctoploid (8n) six-specieshybrid was constructed Peris et al 2019 BioRxiv
  • 67.
    Aim The influence ofmitochondrial inheritance in the genome retention Improve the six-species hybrids through ALE
  • 68.
    iHyPr is amethod to generate diversity 80 Generation Peris et al 2019 BioRxiv
  • 69.
    iHyPr is amethod to generate diversity 80 Generation Peris et al 2019 BioRxiv
  • 70.
    Mitochondrial inheritance influencesin the genotypic outcome mtDNA S. cerevisiae Other species Step of hybridization 100 75 50 25 % of S. cerevisiae nuclear genome Peris et al 2019 BioRxiv
  • 71.
    iHyPr combined withALE for the improvement of chassis strains Peris et al 2019 BioRxiv GLBRCY101
  • 72.
    iHyPr is amethod to combine phenotypic traits Peris et al 2019 BioRxiv
  • 73.
    iHyPr is amethod to combine phenotypic traits Peris et al 2019 BioRxiv
  • 74.
    Take-home messages Nuclear geneflow is limited between species
  • 75.
    Take-home messages Nuclear geneflow is limited between species Gene flow can have an impact in the phenotype
  • 76.
    Take-home messages Nuclear geneflow is limited between species Gene flow can have an impact in the phenotype Mitochondrial inheritance is important for temperature tolerance
  • 77.
    Take-home messages Nuclear geneflow is limited between species Gene flow can have an impact in the phenotype Mitochondrial inheritance is important for temperature tolerance Mitochondrial inheritance influences in the genome retention
  • 78.
    Take-home messages Nuclear geneflow is limited between species Gene flow can have an impact in the phenotype Mitochondrial inheritance is important for temperature tolerance Mitochondrial inheritance influences in the genome retention iHyPr is an efficient method to generate polyploids and complex hybrids
  • 79.
    Take-home messages Nuclear geneflow is limited between species Gene flow can have an impact in the phenotype Mitochondrial inheritance is important for temperature tolerance Mitochondrial inheritance influences in the genome retention iHyPr is an efficient method to generate polyploids and complex hybrids iHyPr is an efficient method to generate diversity and combine the phenotypic traits of wild strains
  • 80.
    Lainy Ramírez Aroca AmparoQuerol David Lázaro Laura Pérez-Través Querol Lab Members Eladio Barrio Laura Gutierrez Miguel Morard Barrio Lab Members José Guillamón Guillamón Lab Members Sergi Puig Sergi Lab Members William G Alexander Mira G Basuino Emily J Ubbelohde Diego Libkind Jose Paulo Sampaio Paula Gonçalves Christian Landry Jean-Baptiste Leducq Guillaume Charron Justin Fay Katie Hyma Li Xueying Fengyan Bai Qi Ming Wang Ursula Bond Chris T. Hittinger’s lab Quinn Langdon EmilyClaire Baker Rusell Wrobel Ryan Moriarty Kaitlin Fisher Mehua Kuang Jacek Kominek Dana Opulente Amanda Hulfachor UW & GLBRC Collaboration SBYBI@IATA-CSIC Thank you