1
2
3
• If p(x) is divided
by (x-a) then
according to the
remainder theorem
,the remainder is
p(a).
EXAMPLES
• p(x)  x-a then the remainder will be p(a).
• p(x)  x-2 then the remainder will be p(2).
• p(x)  x-7 then the remainder will be p(7).
• p(x)  x-2/3 then the remainder will be p(2/3).
• p(x)  x+4 then the remainder will be p(-4).
• p(x)  x+3/7 then the remainder will be p(-3/7).
• p(x) 2x+3 then the remainder will be p(-3/2).
• p(x)  4+3x then the remainder will be p(-4/3).
4
How to write the sums?
5
Find the remainder theorem when x3+3x2+3x+1 is divided by x+1.
SOLUTION:
p(x)=x3+3x2+3x+1 ÷ x+1
According to the remainder theorem if we are going to divide
(x+1) then the remainder will be p(-1).
p(x) =x3+3x2+3x+1
p(-1)=(-1)3+3(-1)2+3(-1)+1
=(-1)+3(1)+3(-1)+1
=(-1)+3+(-3)+1
=0
If p(x) is a polynomial is divided
by (x-a):-
• If p(a)=0,then (x-a) is factor
of p(x).
• If (x-a) is a factor of p(x) then
p(a)=0.
6
p(x)=x3-3x2-9x-5
g(x) =(x+1)
r(x)=(-1)[remainder]
p(x)=x3-3x2-9x-5
p(-1) = (-1)3-3(-1)2-9(-1)-5
=(-1)-3+9-5
=0
p(-1)=0(x+1) is the factor of p(x).
7
EXAMPLE
• Find if g(x)=(x+1)is the factor of p(x)=x3-3x2-9x-5 or not ?
8
9

REMAINDER AND FACTOR THEOREM.pptx

  • 1.
  • 2.
  • 3.
    3 • If p(x)is divided by (x-a) then according to the remainder theorem ,the remainder is p(a).
  • 4.
    EXAMPLES • p(x) x-a then the remainder will be p(a). • p(x)  x-2 then the remainder will be p(2). • p(x)  x-7 then the remainder will be p(7). • p(x)  x-2/3 then the remainder will be p(2/3). • p(x)  x+4 then the remainder will be p(-4). • p(x)  x+3/7 then the remainder will be p(-3/7). • p(x) 2x+3 then the remainder will be p(-3/2). • p(x)  4+3x then the remainder will be p(-4/3). 4
  • 5.
    How to writethe sums? 5 Find the remainder theorem when x3+3x2+3x+1 is divided by x+1. SOLUTION: p(x)=x3+3x2+3x+1 ÷ x+1 According to the remainder theorem if we are going to divide (x+1) then the remainder will be p(-1). p(x) =x3+3x2+3x+1 p(-1)=(-1)3+3(-1)2+3(-1)+1 =(-1)+3(1)+3(-1)+1 =(-1)+3+(-3)+1 =0
  • 6.
    If p(x) isa polynomial is divided by (x-a):- • If p(a)=0,then (x-a) is factor of p(x). • If (x-a) is a factor of p(x) then p(a)=0. 6
  • 7.
    p(x)=x3-3x2-9x-5 g(x) =(x+1) r(x)=(-1)[remainder] p(x)=x3-3x2-9x-5 p(-1) =(-1)3-3(-1)2-9(-1)-5 =(-1)-3+9-5 =0 p(-1)=0(x+1) is the factor of p(x). 7 EXAMPLE • Find if g(x)=(x+1)is the factor of p(x)=x3-3x2-9x-5 or not ?
  • 8.
  • 9.