+234-703-430-2486


                                    Recommendations
                                                           By
                                                Peter Anyebe
   View
             It is possible to categorise people into the following three, 3 groups, according to
my profile
             their scores on the factor-Nu:

                           Adapted, Nu < 2.00
                           Adjusted, 2.00 ≤ Nu ≤ 4.00
                           Integrated, Nu ≥ 4.00

             The factor-Nu measures the number of essentials that the person is able to identify,
             out of the expected five, 5. It is derived from the factor-F. This conception is
             corroborated by the following two, 2 measures:
WordPress
                           Maturation, MI and
                           Normality, NI
Google Me
             In principle the factors MI and NI are correlated at r = 0.9962, when the subjects are
             consistent. The correlation drops to r = 0.8579 when the inconsistent subjects are
             included in the analysis. In general, a correlation of r = 0.7014 is observed between
             both factors. This is expected to rise with the number of subjects in the analysis. Of
             the twenty, 20 subjects in the analysis described here, six, 6 were consistent.
             Normality is derived from the factor-Nu. And maturation, MI is derived principally
             from the factors S and C. Recall that it is sufficient to put a value on people
             objectively, using the factors F, S, and C. These factors, in turn, are derived from the
             factors Pc, Rn, Vc, and √n which are measured on their various kits.

             Following this corroboration, performance is appraised on the factor-PfI, which is
             one of two, 2 factors that define maturation formally as follows:

               MI = √(PfI x EB),           Pf = 1 / (1 – 1/Fp)                    Rw = √(Nu/Nu’),
                                              Fp = (FA x FC)                      Nu’ = f1, Derived on the PMM
                                                 FC = √n / √n’, FC > 1            f0 = 2Po – 1
                  PfI = 1 – 1/Pf,                FC = 1/ FC + 1, FC < 1           Po = RES / RGT
                  EB = Rw/2,                     FA = 1/(RES x RGT), 1 ≤ FA ≤ 2
                                                 FA = 1/ FA + 2, FA < 1

             The factor- EB is a measure of the quality of the business environment.
The factor-PfI is predicted from the measure of only the factor-Pc at r = 0.9999, for
the subjects that are consistent. It drops to r = 0.8024 when the inconsistent subjects
are included in the analysis. For recommendations therefore, the score on this factor
necessarily needs to be at least 0.80 for the subject to be recommendable. Recall the
Pareto 80-20 Rule, following which 80% of the work in most organisations is done
by 20% of the personnel. The 20%ters need to score up to 0.98 on this factor.
Reference the data on the tables 1 and 2 below.

The factor-ROI is another factor that needs to feature prominently on the
recommendation note. When the negative ROI scores are ignored, the other scores
on the above referenced data return a correlation of r = 0.7846 between the scores
derived from only the factor-Pc and the scores derived from the three, 3 factors Pc,
Rn, and √n. Serially, a recommendation would be adequate when it includes the
following measures:

                   1.   Maturation        Recommendations
                   2.   Category          6. HPRQ
                   3.   Entropy           5. Reward
                   4.   ROI

Thus for a meaningful recommendation, the object would be to define a quality
human-power resource, HPRQ against the back drop of the competencies that need
to be rewarded, for sustained organisational growth, ROI. These competencies are
expressed in the amount of entropy, F that the subject is capable of contributing, as
well as the category, Nu and level of maturation, MI.

Recall that the factor-C is the input to the evaluation of the ROI. It is the objective
determinant of employability. It ought to exceed or at least equal the organisational
C-score for the subject to be employable. A lower C-score would only negate
organisational growth.

Recommendations put labour on the shelf, like all other commodities. Done in the
manner presented here, it makes HR precise.
Pc     Rn      /n      Vc       S       F       C      RES RGT ROI            Rw      EB       Nu       PfI        MI         NI        Po     Ps

     1.64    2.42 2.15       1.25    0.43    1.08    1.71    1.0  0.99 6.16 1.51            0.76 3.38         0.95     0.86957    0.99928     0.91 27.26
     1.58    2.32 2.07       1.24    0.44    1.07    1.67    0.97 0.96 6.09 1.45            0.72 3.23         0.9      0.85011    0.99877     0.86 24.92
     1.8     2.68 2.36       1.27    0.41    1.08    1.83    1.06 1.08 1.4  0.52            0.26 1.06         0.3      0.50903    0.708       0.29 9.39
     1.95    2.93 2.55       1.29    0.39    1.09    1.95    1.11 1.15 1.06 0.53            0.26 0.99         0.29     0.51307    0.67499     0.28 9.44
     2.33    3.56 3.05       1.33    0.35    1.1     2.23    1.21 1.32 0.68 0.54            0.27 0.85         0.26     0.51764    0.6047      0.25 9.33
     5.37    8.7 7.07        1.46    0.23    1.14    4.52    1.63 2.29 0.22 0.48            0.24 0.46         0.16     0.49105    0.35528     0.15 7.08

      1.69    2.5    2.22    1.26    0.42    1.08    1.75    1.01    1.02    1.85   0.51    0.25     1.11     0.32     0.50461    0.73439     0.3    9.29
     2.6      4.01   3.41    1.35    0.33    1.11    2.44    1.27    1.43    0.55   0.54    0.27     0.78     0.25     0.51807    0.56418     0.23   9.14
     3.64    5.76    4.78    1.41    0.28    1.13    3.22    1.45    1.79    0.34   0.52    0.26     0.61     0.2      0.51071    0.45489     0.19   8.28
     1.18    1.68    1.56    1.15    0.51    1.05    1.36    0.76    0.7     4.94   0.93    0.47     2.09     0.52     0.68368    0.96334     0.5    9.82
     1.65    2.43    2.16    1.25    0.43    1.08    1.72    1.0     1.0     6.17   1.52    0.76     3.41     0.96     0.87272    0.99934     0.92   27.65
     1.34    1.93    1.76    1.19    0.47    1.06    1.48    0.86    0.81    5.61   1.16    0.58     2.59     0.67     0.76049    0.99028     0.66   15.7
     2.85    4.43    3.74    1.37    0.32    1.11    2.63    1.32    1.52    0.47   0.54    0.27     0.73     0.23     0.51725    0.53209     0.22   8.94
     18.31   30.8    24.31   1.53    0.12    1.16    14.23   2.02    4.85    0.08   0.31    0.16     0.21     0.08     0.39584    0.67499     0.07   3.71
     2.14    3.24    2.8     1.31    0.37    1.1     2.09    1.16    1.24    0.82   0.53    0.27     0.91     0.28     0.51612    0.63765     0.26   9.41
     2.65    4.09    3.47    1.36    0.33    1.11    2.47    1.29    1.45    0.53   0.54    0.27     0.77     0.24     0.51798    0.55738     0.23   9.1
     1.4     2.03    1.84    1.2     0.46    1.06    1.53    0.89    0.85    5.78   1.23    0.62     2.76     0.73     0.78516    0.99415     0.71   17.98
     1.28    1.83    1.69    1.17    0.49    1.05    1.44    0.82    0.77    5.41   1.08    0.54     2.41     0.62     0.73379    0.98393     0.6    13.45
     1.32    1.9     1.74    1.18    0.48    1.06    1.47    0.85    0.8     5.55   1.13    0.57     2.53     0.66     0.75183    0.9885      0.64   14.94
     1.66    2.45    2.18    1.25    0.42    1.08    1.73    1.0     1.0     2.04   0.51    0.25     1.13     0.32     0.50309    0.74191     0.31   9.25


                                                                                      Data derived from only the factor-Pc
       Pc      Rn     /n      Vc       S       F       C     RES      RGT ROI        Rw      EB       Nu       PfI        MI         NI        Po      Ps

      1.64    2.28    2.13    1.14    0.44    1.07    1.71    0.99    0.99    6.05 1.63 0.82 3.65 0.92                  0.86442    0.99973     0.97 27.05
      1.58    2.16    2.05    1.11    0.45    1.05    1.67    0.96    0.95    5.35 1.75 0.87 3.91 0.86                  0.86667    0.99991     0.97 21.74
      1.8     2.6     2.35    1.21    0.41    1.11    1.83    1.06    1.08    5.62 1.56 0.78 3.18 0.3                   0.48466    0.99852     0.95 36.42
      1.95    2.89    2.55    1.27    0.38    1.13    1.95    1.11    1.16    4.74 1.58 0.79 2.9 0.29                   0.47741    0.99623     0.94 42.05
      2.33    3.66    3.08    1.38    0.33    1.19    2.23    1.22    1.36    3.3  1.67 0.84 2.45 0.26                  0.46809    0.98579     0.91 50.95
      5.37    7.29    6.03    1.42    0.32    1.21    4.52    1.69    1.86    1.84 1.5  0.75 2.32 0.19                  0.37849    0.97958     0.91 53.61

      1.69 2.61       2.06   1.53    0.39     1.27   1.51     0.92    0.86    -5.28 0.9      0.45     2.01     0.4     0.42272    0.95587 0.88 59.72
       2.6 4.7        3.7     1.54    0.26    1.27   2.44     1.28    1.63    2.66 1.81      0.9      2.       0.24    0.46254    0.9543  0.88 60.02
      3.64 6.29       4.89   1.57    0.24     1.29   3.22     1.44    1.94    1.97 1.91      0.95     1.93      0.2    0.43962    0.94629 0.88 61.4
      1.18 1.09       1.36   1.58    0.89     1.29   1.36     0.52    0.89    4.22 2.38      1.19     1.91      0.42   0.70573    0.94423 0.88 61.72
      1.65 0.74       1.36   1.69    0.59     1.34   1.72     0.93    0.95    -6.18 0.84      0.42     1.72     0.8    0.57928    0.91395 0.86 65.65
      1.34 1.09       1.56   1.7      0.59    1.35    1.6     0.86    0.89    -5.64 0.88      0.44    1.7       0.66   0.53747    0.91063 0.85 66.0
      2.85 2.74       2.81   1.82    0.53     1.41   2.62     1.34    1.22    -19.33 0.69     0.34    1.54      0.26   0.30049    0.8756  0.83 69.25
      18.31 35.62    25.05   1.84    0.14    1.42    14.23    2.07    4.29    1.14 2.13      1.06     1.5       0.09   0.3121     0.86732 0.83 69.91
      2.14 4.79       3.13   2.06    0.19     1.53   1.65     1.07    1.28    -12.76 1.04     0.52    1.29      0.15    0.27514   0.80299 0.8 74.17
      2.65 3.1        1.89    2.28    0.44    1.64   1.23     0.72    0.52    -1.92 0.51      0.25    1.14      0.18    0.21218   0.74441 0.77 77.24
      1.28 4.41       2.53   2.49     0.11    1.74    0.89    0.84   -0.55    6.72 3.04       1.52    1.03      0.32    0.6966    0.6969   0.74 79.38
      1.4    2.39     1.19   3.02    0.38     2.01   1.27     0.79    0.58    -1.63 0.38      0.19    0.85      0.18    0.18555   0.60304 0.69 83.03
      1.32 2.2        1.1     3.0     0.4     2.0     1.22    0.74    0.49    -1.6   0.38     0.19    0.85      0.14    0.16562   0.60549 0.69 82.94
      1.66 3.57       1.26   4.67    0.25     2.83   1.44     0.97    0.9     -1.49 0.27      0.14    0.61      0.29    0.19929   0.45528 0.57 87.86


NI = 2(ϕx – 0.5),                                              Data derived from the factors Pc, Rn, Vc, and √n
                    x = Nu,
ϕx = 1 – Qt(C1t + C2t + C3t + C4t + C5t)                                                         P = 0.2316419
                                                                                                 C1 = 0.31938153
     t = 1 / (1 + Px)                                                                            C2 = 0.356563782
    ϕt = 1 / √(2π) x e(-(x2/2))                                                                  C3 = 1.78147837
                                                                                                 C4 = -1.821255978                          e = 2.7183
Hastings’ Approximation of the Normal Distribution Function                                      C5 = 1.330274429                           π = 3.141

Recommendations

  • 1.
    +234-703-430-2486 Recommendations By Peter Anyebe View It is possible to categorise people into the following three, 3 groups, according to my profile their scores on the factor-Nu: Adapted, Nu < 2.00 Adjusted, 2.00 ≤ Nu ≤ 4.00 Integrated, Nu ≥ 4.00 The factor-Nu measures the number of essentials that the person is able to identify, out of the expected five, 5. It is derived from the factor-F. This conception is corroborated by the following two, 2 measures: WordPress Maturation, MI and Normality, NI Google Me In principle the factors MI and NI are correlated at r = 0.9962, when the subjects are consistent. The correlation drops to r = 0.8579 when the inconsistent subjects are included in the analysis. In general, a correlation of r = 0.7014 is observed between both factors. This is expected to rise with the number of subjects in the analysis. Of the twenty, 20 subjects in the analysis described here, six, 6 were consistent. Normality is derived from the factor-Nu. And maturation, MI is derived principally from the factors S and C. Recall that it is sufficient to put a value on people objectively, using the factors F, S, and C. These factors, in turn, are derived from the factors Pc, Rn, Vc, and √n which are measured on their various kits. Following this corroboration, performance is appraised on the factor-PfI, which is one of two, 2 factors that define maturation formally as follows: MI = √(PfI x EB), Pf = 1 / (1 – 1/Fp) Rw = √(Nu/Nu’), Fp = (FA x FC) Nu’ = f1, Derived on the PMM FC = √n / √n’, FC > 1 f0 = 2Po – 1 PfI = 1 – 1/Pf, FC = 1/ FC + 1, FC < 1 Po = RES / RGT EB = Rw/2, FA = 1/(RES x RGT), 1 ≤ FA ≤ 2 FA = 1/ FA + 2, FA < 1 The factor- EB is a measure of the quality of the business environment.
  • 2.
    The factor-PfI ispredicted from the measure of only the factor-Pc at r = 0.9999, for the subjects that are consistent. It drops to r = 0.8024 when the inconsistent subjects are included in the analysis. For recommendations therefore, the score on this factor necessarily needs to be at least 0.80 for the subject to be recommendable. Recall the Pareto 80-20 Rule, following which 80% of the work in most organisations is done by 20% of the personnel. The 20%ters need to score up to 0.98 on this factor. Reference the data on the tables 1 and 2 below. The factor-ROI is another factor that needs to feature prominently on the recommendation note. When the negative ROI scores are ignored, the other scores on the above referenced data return a correlation of r = 0.7846 between the scores derived from only the factor-Pc and the scores derived from the three, 3 factors Pc, Rn, and √n. Serially, a recommendation would be adequate when it includes the following measures: 1. Maturation Recommendations 2. Category 6. HPRQ 3. Entropy 5. Reward 4. ROI Thus for a meaningful recommendation, the object would be to define a quality human-power resource, HPRQ against the back drop of the competencies that need to be rewarded, for sustained organisational growth, ROI. These competencies are expressed in the amount of entropy, F that the subject is capable of contributing, as well as the category, Nu and level of maturation, MI. Recall that the factor-C is the input to the evaluation of the ROI. It is the objective determinant of employability. It ought to exceed or at least equal the organisational C-score for the subject to be employable. A lower C-score would only negate organisational growth. Recommendations put labour on the shelf, like all other commodities. Done in the manner presented here, it makes HR precise.
  • 3.
    Pc Rn /n Vc S F C RES RGT ROI Rw EB Nu PfI MI NI Po Ps 1.64 2.42 2.15 1.25 0.43 1.08 1.71 1.0 0.99 6.16 1.51 0.76 3.38 0.95 0.86957 0.99928 0.91 27.26 1.58 2.32 2.07 1.24 0.44 1.07 1.67 0.97 0.96 6.09 1.45 0.72 3.23 0.9 0.85011 0.99877 0.86 24.92 1.8 2.68 2.36 1.27 0.41 1.08 1.83 1.06 1.08 1.4 0.52 0.26 1.06 0.3 0.50903 0.708 0.29 9.39 1.95 2.93 2.55 1.29 0.39 1.09 1.95 1.11 1.15 1.06 0.53 0.26 0.99 0.29 0.51307 0.67499 0.28 9.44 2.33 3.56 3.05 1.33 0.35 1.1 2.23 1.21 1.32 0.68 0.54 0.27 0.85 0.26 0.51764 0.6047 0.25 9.33 5.37 8.7 7.07 1.46 0.23 1.14 4.52 1.63 2.29 0.22 0.48 0.24 0.46 0.16 0.49105 0.35528 0.15 7.08 1.69 2.5 2.22 1.26 0.42 1.08 1.75 1.01 1.02 1.85 0.51 0.25 1.11 0.32 0.50461 0.73439 0.3 9.29 2.6 4.01 3.41 1.35 0.33 1.11 2.44 1.27 1.43 0.55 0.54 0.27 0.78 0.25 0.51807 0.56418 0.23 9.14 3.64 5.76 4.78 1.41 0.28 1.13 3.22 1.45 1.79 0.34 0.52 0.26 0.61 0.2 0.51071 0.45489 0.19 8.28 1.18 1.68 1.56 1.15 0.51 1.05 1.36 0.76 0.7 4.94 0.93 0.47 2.09 0.52 0.68368 0.96334 0.5 9.82 1.65 2.43 2.16 1.25 0.43 1.08 1.72 1.0 1.0 6.17 1.52 0.76 3.41 0.96 0.87272 0.99934 0.92 27.65 1.34 1.93 1.76 1.19 0.47 1.06 1.48 0.86 0.81 5.61 1.16 0.58 2.59 0.67 0.76049 0.99028 0.66 15.7 2.85 4.43 3.74 1.37 0.32 1.11 2.63 1.32 1.52 0.47 0.54 0.27 0.73 0.23 0.51725 0.53209 0.22 8.94 18.31 30.8 24.31 1.53 0.12 1.16 14.23 2.02 4.85 0.08 0.31 0.16 0.21 0.08 0.39584 0.67499 0.07 3.71 2.14 3.24 2.8 1.31 0.37 1.1 2.09 1.16 1.24 0.82 0.53 0.27 0.91 0.28 0.51612 0.63765 0.26 9.41 2.65 4.09 3.47 1.36 0.33 1.11 2.47 1.29 1.45 0.53 0.54 0.27 0.77 0.24 0.51798 0.55738 0.23 9.1 1.4 2.03 1.84 1.2 0.46 1.06 1.53 0.89 0.85 5.78 1.23 0.62 2.76 0.73 0.78516 0.99415 0.71 17.98 1.28 1.83 1.69 1.17 0.49 1.05 1.44 0.82 0.77 5.41 1.08 0.54 2.41 0.62 0.73379 0.98393 0.6 13.45 1.32 1.9 1.74 1.18 0.48 1.06 1.47 0.85 0.8 5.55 1.13 0.57 2.53 0.66 0.75183 0.9885 0.64 14.94 1.66 2.45 2.18 1.25 0.42 1.08 1.73 1.0 1.0 2.04 0.51 0.25 1.13 0.32 0.50309 0.74191 0.31 9.25 Data derived from only the factor-Pc Pc Rn /n Vc S F C RES RGT ROI Rw EB Nu PfI MI NI Po Ps 1.64 2.28 2.13 1.14 0.44 1.07 1.71 0.99 0.99 6.05 1.63 0.82 3.65 0.92 0.86442 0.99973 0.97 27.05 1.58 2.16 2.05 1.11 0.45 1.05 1.67 0.96 0.95 5.35 1.75 0.87 3.91 0.86 0.86667 0.99991 0.97 21.74 1.8 2.6 2.35 1.21 0.41 1.11 1.83 1.06 1.08 5.62 1.56 0.78 3.18 0.3 0.48466 0.99852 0.95 36.42 1.95 2.89 2.55 1.27 0.38 1.13 1.95 1.11 1.16 4.74 1.58 0.79 2.9 0.29 0.47741 0.99623 0.94 42.05 2.33 3.66 3.08 1.38 0.33 1.19 2.23 1.22 1.36 3.3 1.67 0.84 2.45 0.26 0.46809 0.98579 0.91 50.95 5.37 7.29 6.03 1.42 0.32 1.21 4.52 1.69 1.86 1.84 1.5 0.75 2.32 0.19 0.37849 0.97958 0.91 53.61 1.69 2.61 2.06 1.53 0.39 1.27 1.51 0.92 0.86 -5.28 0.9 0.45 2.01 0.4 0.42272 0.95587 0.88 59.72 2.6 4.7 3.7 1.54 0.26 1.27 2.44 1.28 1.63 2.66 1.81 0.9 2. 0.24 0.46254 0.9543 0.88 60.02 3.64 6.29 4.89 1.57 0.24 1.29 3.22 1.44 1.94 1.97 1.91 0.95 1.93 0.2 0.43962 0.94629 0.88 61.4 1.18 1.09 1.36 1.58 0.89 1.29 1.36 0.52 0.89 4.22 2.38 1.19 1.91 0.42 0.70573 0.94423 0.88 61.72 1.65 0.74 1.36 1.69 0.59 1.34 1.72 0.93 0.95 -6.18 0.84 0.42 1.72 0.8 0.57928 0.91395 0.86 65.65 1.34 1.09 1.56 1.7 0.59 1.35 1.6 0.86 0.89 -5.64 0.88 0.44 1.7 0.66 0.53747 0.91063 0.85 66.0 2.85 2.74 2.81 1.82 0.53 1.41 2.62 1.34 1.22 -19.33 0.69 0.34 1.54 0.26 0.30049 0.8756 0.83 69.25 18.31 35.62 25.05 1.84 0.14 1.42 14.23 2.07 4.29 1.14 2.13 1.06 1.5 0.09 0.3121 0.86732 0.83 69.91 2.14 4.79 3.13 2.06 0.19 1.53 1.65 1.07 1.28 -12.76 1.04 0.52 1.29 0.15 0.27514 0.80299 0.8 74.17 2.65 3.1 1.89 2.28 0.44 1.64 1.23 0.72 0.52 -1.92 0.51 0.25 1.14 0.18 0.21218 0.74441 0.77 77.24 1.28 4.41 2.53 2.49 0.11 1.74 0.89 0.84 -0.55 6.72 3.04 1.52 1.03 0.32 0.6966 0.6969 0.74 79.38 1.4 2.39 1.19 3.02 0.38 2.01 1.27 0.79 0.58 -1.63 0.38 0.19 0.85 0.18 0.18555 0.60304 0.69 83.03 1.32 2.2 1.1 3.0 0.4 2.0 1.22 0.74 0.49 -1.6 0.38 0.19 0.85 0.14 0.16562 0.60549 0.69 82.94 1.66 3.57 1.26 4.67 0.25 2.83 1.44 0.97 0.9 -1.49 0.27 0.14 0.61 0.29 0.19929 0.45528 0.57 87.86 NI = 2(ϕx – 0.5), Data derived from the factors Pc, Rn, Vc, and √n x = Nu, ϕx = 1 – Qt(C1t + C2t + C3t + C4t + C5t) P = 0.2316419 C1 = 0.31938153 t = 1 / (1 + Px) C2 = 0.356563782 ϕt = 1 / √(2π) x e(-(x2/2)) C3 = 1.78147837 C4 = -1.821255978 e = 2.7183 Hastings’ Approximation of the Normal Distribution Function C5 = 1.330274429 π = 3.141