Radial Pump Impeller Design
(Example)
1
• Design a rotor(impeller) of a radial water
pump for the following given values
Q = 300 m3/h (0.0833 m3/s)
H = 50 m
n = 1450 rpm
2
• The Specific speed for the pump is calculated from the
following formula for the given values
• After finding the specific speed the shape of the impeller can
be decided using the following table.
 The specific speed is in the radial type pump range
3
.
22
50
0833
.
0
1450
4
3
4
3



H
Q
n
ns
Shape No. Range Shape of the Impeller
10<ns<50 Radial Type
50<ns<150 Mixed Type
150<Ns<400 Axial Type
3
• The shaft Power is given as:
• The overall efficiency, ηo, for a single stage, single entry,
radial pump can be read from the figure below to be ηo = 0.85.
• The pump power becomes,
o
QgH
P



kW
kW
P 55
1
.
51
85
.
0
50
81
.
9
0833
.
0
103






4
(Source: Centrifugal Pumps, Johann Friedrich Gülich, 2nd ed)
5
• Shaft diameter can be found using the following formula
• The torque can be calculated as it follows:
• The allowable shear stress for most of the shafts is in the range
between 40 -60 N/mm2. Thus the shaft diameter becomes:
• The hub diameter, dh = 1.1 to 1.3 ds
3
16
t
s
T
d



Nm
n
P
P
T 362
60
1450
2
55000
2








mm
d
say
mm
d s
s 40
,
64
.
35
13
.
32 


mm
d
d s
h 50
2
.
1 

6
• The eye diameter (D1) can be calculated by assuming inlet
number . The radial velocity at the inlet is given by:
• The volume flow rate at the suction end is given by:
• Calculating for the eye diameter,
• The volumetric efficiency is given by:
Y
Com 2


 
V
h
om
Q
Q
Where
d
D
C
Q




 '
,
4
' 2
2
1
965
.
0
,
,
0362
.
1
,
3
.
22
287
.
0
1
,
287
.
0
1
1
3
2
3
2





 V
s
V
or
n


2
1
4
h
V
om
d
C
Q
D 





7
• The inlet number can be found from the following table.
Guidelines to choose ε
8
• From the table,
• Thus,
• Another option to estimate the value of inlet number is to use
the formula by Pfleiderer,
• Thus, D1 becomes,
3
.
22
,
13
.
0
08
.
0 

 s
n
for

s
m
s
m
Com /
4
/
52
.
7
5
.
2 


3
2
2
10
).
3
5
.
1
( s
n




m
m
D 175
.
0
173
.
0
05
.
0
965
.
0
4
0833
.
0
4 2
1 







9
The outer diameter D2 can be calculated using:
1) The head coefficient (ψ)
The head coefficient for different type of pumps is given below.
2
2
2
U
gH


ψ Pump Type
0.7-1.3 Radial Impeller
0.25-0.7 Mixed-flow impeller
0.1-0.4 Axial Impeller

 gH
n
D
U
2
60
2
2 



gH
n
D
2
60
2 
10
• Choosing ψ = 1,
2) The specific diameter (δ)
The specific diameter becomes,
m
D
and
s
m
U
412
.
0
,
/
32
.
31
2
2


2
1
4
1


 
n
D
Q
Dn
D
Q
AU
Q
U
C
D
n
Y
U
gH
m
3
2
2
2
2
2
2
2
4
4
2
2












2
/
1
4
/
1
2
2
/
1
3
2
4
/
1
2
2
2
2
1
4
1
05
.
1
4
2
Q
Y
D
n
D
Q
D
n
Y




















11
• D2 becomes,
• The specific diameter is plotted in the following diagram for
various specific speeds,
• From the table, δ = 6.5.
• Thus the outer diameter can be taken to be
D2 = 0.4m
  4
/
1
2
2
/
05
.
1 Q
gH
D


 
m
D 397
.
0
0833
.
0
/
50
81
.
9
05
.
1
5
.
6
4
/
1
2
2 


12
Cordier Diagram 13
• Blade width b1
• The Blade width at the outlet b2
• C2m can be found from figure below.
mm
m
C
D
Q
C
D
Q
b
om
V
om
40
039
.
0
4
175
.
0
965
.
0
0833
.
0
'
1
1
1












m
V
m C
D
Q
C
D
Q
b
2
2
2
2
2
'





s
m
C
figure
the
from
k
gH
k
C
m
m
m
m
/
45
.
3
,
11
.
0
,
2
2
2
2
2



mm
m
b 20
0199
.
0
45
.
3
4
.
0
965
.
0
0833
.
0
2 






14
15
• Blade angle β0
• Blade angle β2 can be estimated from the previous figure.
• Number of blades
o
om
om
n
D
C
U
C
75
.
16
60
/
1450
175
.
0
4
tan
tan
tan
1
1
1
1
1
0


































o
o
to 3
.
23
8
.
21
43
.
0
4
.
0
tan
2
2





approach
Stepanoff
Z ,
7
3
2



6
7
,
2
sin 2
1
1
2
2
1







 



Z
k
of
value
the
taking
D
D
D
D
k
Z


16

radial-pump-impeller-design-example.pptx

  • 1.
    Radial Pump ImpellerDesign (Example) 1
  • 2.
    • Design arotor(impeller) of a radial water pump for the following given values Q = 300 m3/h (0.0833 m3/s) H = 50 m n = 1450 rpm 2
  • 3.
    • The Specificspeed for the pump is calculated from the following formula for the given values • After finding the specific speed the shape of the impeller can be decided using the following table.  The specific speed is in the radial type pump range 3 . 22 50 0833 . 0 1450 4 3 4 3    H Q n ns Shape No. Range Shape of the Impeller 10<ns<50 Radial Type 50<ns<150 Mixed Type 150<Ns<400 Axial Type 3
  • 4.
    • The shaftPower is given as: • The overall efficiency, ηo, for a single stage, single entry, radial pump can be read from the figure below to be ηo = 0.85. • The pump power becomes, o QgH P    kW kW P 55 1 . 51 85 . 0 50 81 . 9 0833 . 0 103       4
  • 5.
    (Source: Centrifugal Pumps,Johann Friedrich Gülich, 2nd ed) 5
  • 6.
    • Shaft diametercan be found using the following formula • The torque can be calculated as it follows: • The allowable shear stress for most of the shafts is in the range between 40 -60 N/mm2. Thus the shaft diameter becomes: • The hub diameter, dh = 1.1 to 1.3 ds 3 16 t s T d    Nm n P P T 362 60 1450 2 55000 2         mm d say mm d s s 40 , 64 . 35 13 . 32    mm d d s h 50 2 . 1   6
  • 7.
    • The eyediameter (D1) can be calculated by assuming inlet number . The radial velocity at the inlet is given by: • The volume flow rate at the suction end is given by: • Calculating for the eye diameter, • The volumetric efficiency is given by: Y Com 2     V h om Q Q Where d D C Q      ' , 4 ' 2 2 1 965 . 0 , , 0362 . 1 , 3 . 22 287 . 0 1 , 287 . 0 1 1 3 2 3 2       V s V or n   2 1 4 h V om d C Q D       7
  • 8.
    • The inletnumber can be found from the following table. Guidelines to choose ε 8
  • 9.
    • From thetable, • Thus, • Another option to estimate the value of inlet number is to use the formula by Pfleiderer, • Thus, D1 becomes, 3 . 22 , 13 . 0 08 . 0    s n for  s m s m Com / 4 / 52 . 7 5 . 2    3 2 2 10 ). 3 5 . 1 ( s n     m m D 175 . 0 173 . 0 05 . 0 965 . 0 4 0833 . 0 4 2 1         9
  • 10.
    The outer diameterD2 can be calculated using: 1) The head coefficient (ψ) The head coefficient for different type of pumps is given below. 2 2 2 U gH   ψ Pump Type 0.7-1.3 Radial Impeller 0.25-0.7 Mixed-flow impeller 0.1-0.4 Axial Impeller   gH n D U 2 60 2 2     gH n D 2 60 2  10
  • 11.
    • Choosing ψ= 1, 2) The specific diameter (δ) The specific diameter becomes, m D and s m U 412 . 0 , / 32 . 31 2 2   2 1 4 1     n D Q Dn D Q AU Q U C D n Y U gH m 3 2 2 2 2 2 2 2 4 4 2 2             2 / 1 4 / 1 2 2 / 1 3 2 4 / 1 2 2 2 2 1 4 1 05 . 1 4 2 Q Y D n D Q D n Y                     11
  • 12.
    • D2 becomes, •The specific diameter is plotted in the following diagram for various specific speeds, • From the table, δ = 6.5. • Thus the outer diameter can be taken to be D2 = 0.4m   4 / 1 2 2 / 05 . 1 Q gH D     m D 397 . 0 0833 . 0 / 50 81 . 9 05 . 1 5 . 6 4 / 1 2 2    12
  • 13.
  • 14.
    • Blade widthb1 • The Blade width at the outlet b2 • C2m can be found from figure below. mm m C D Q C D Q b om V om 40 039 . 0 4 175 . 0 965 . 0 0833 . 0 ' 1 1 1             m V m C D Q C D Q b 2 2 2 2 2 '      s m C figure the from k gH k C m m m m / 45 . 3 , 11 . 0 , 2 2 2 2 2    mm m b 20 0199 . 0 45 . 3 4 . 0 965 . 0 0833 . 0 2        14
  • 15.
  • 16.
    • Blade angleβ0 • Blade angle β2 can be estimated from the previous figure. • Number of blades o om om n D C U C 75 . 16 60 / 1450 175 . 0 4 tan tan tan 1 1 1 1 1 0                                   o o to 3 . 23 8 . 21 43 . 0 4 . 0 tan 2 2      approach Stepanoff Z , 7 3 2    6 7 , 2 sin 2 1 1 2 2 1             Z k of value the taking D D D D k Z   16