DATA ANALYTICS FOR PYTHON
DAY-2
Operators
 Arithmetic
Comparison
 Logical
 Assignment
Arithmetic Operators
Common operators:
addition ‘+’
Subtraction ‘-’
Multiplication ‘*’
Division ‘/’
Modulo ‘%’
Exponentiation ‘**’
List Operations
Indexing: Access elements
by position (starts at 0).
Example:
◦ fruits = ["apple",
"banana", "cherry"]
◦ print(fruits[1])
◦ fruits.append("date")
◦ print(fruits)
Example:
fruits = ["apple", "banana", "cherry"]
print(fruits[1]) # banana
fruits.append("date") # add at end
print(fruits)
fruits.insert(0, "orange") # add at first position
print(fruits)
List Methods
Common methods insert(), remove(), sort(), len()
Example:
◦ numbers = [3, 1, 4, 1]
◦ numbers.sort()
◦ print(numbers) # Output: [1, 1, 3, 4]
◦ print(len(numbers)) # Output: 4
NumPy – Definition
NumPy (Numerical Python) is a Python library used for numerical and
mathematical operations.
It provides fast, memory-efficient array processing.
Why NumPy is Important
• Faster than Python lists
• Handles large datasets efficiently
• Core library for Data Analytics & ML
Installing NumPy & Import
Command to install NumPy:
◦ "pip install numpy"
Import NumPy using alias:
import numpy as np
What is NumPy Array?
A NumPy array is a collection of elements of the same data type.
It is stored in contiguous memory locations.
Example:
import numpy as np
arr = np.array([1, 2, 3])
print(arr * 2)
1D Array – Code Example
import numpy as np
a = np.array([10, 20, 30, 40])
print(a)
2D Array – Code Example
a = np.array([[1,2,3],[4,5,6]])
print(a)
Statistical Functions
np.mean(a)
np.sum(a)
np.min(a)
np.max(a)
Reshaping Array
a = np.arange(6)
a.reshape(2,3)
Pandas – Definition
Pandas is a Python library used for data manipulation and analysis.
It works with structured data like tables.
adds data structures and tools designed to work with table-like data
(similar to Series and Data Frames in R)
provides tools for data manipulation: reshaping, merging, sorting,
slicing, aggregation etc.
allows handling missing data
Why Pandas?
• Easy data cleaning
• Fast analysis
• Works with Excel, CSV, SQL
Installing Pandas
Command:
pip install pandas
Importing Pandas
import pandas as pd
Pandas Data Structures
Series – One dimensional
DataFrame – Two dimensional (rows & columns)
Series – Code Example
import pandas as pd
s = pd.Series([10,20,30])
print(s)
DataFrame – Code Example
df = pd.DataFrame({
'Name':['A','B'],
'Age':[20,25]
})
Reading CSV File
df = pd.read_csv('data.csv')
Viewing Data
df.head()
df.tail()
Data Information
df.info()
df.describe()
Selecting Columns
df['Age']
df[['Name','Age']]
Filtering Rows
df[df['Age'] > 22]
Handling Missing Values
df.isnull()
df.dropna()
df.fillna(0)
GroupBy Operation
df.groupby('Department')['Salary'].sum()
Pandas Use Cases
• Data Cleaning
• Business Reports
• Data Analytics

python basic for data analytics for libraries