SlideShare a Scribd company logo
info@IntoTheMinds.com
www.IntoTheMinds.com
©2017
Reproduction interdite
De impact van Big Data
in de verkoop
Cevora
Dag van de verkoper
18/05/2017
• Pragmatisch uitleggen wat
‘Big Data’ betekent
(demystificeren)
• Maximaal illustreren aan de hand
van concrete voorbeelden
• Met u samenwerken rond wat er
in uw organisatie gedaan kan
worden om Big Data-technieken
te gebruiken voor commerciële
doeleinden
(Mijn) doelstellingen voor
deze workshop
2
• Let op: het is niet de bedoeling
om van u specialisten in Big Data
te maken
(Mijn) doelstellingen voor
deze workshop
3
Wat u moet onthouden van deze
workshop:
• Inzicht in het doel van de « Big
Data »-verwerking
• Beperkingen en zakelijke
opportuniteiten van de « Big
Data »-verwerking toegepast op
de verkoop
• Toepassingsmogelijkheden van
« Big Data » in uw organisatie
(Uw) doelstellingen voor deze
workshop
4
• De slides zijn beschikbaar
op slideshare (slideshare.net/Into
theminds)
• Consolideer uw kennis door het
lezen van onze artikelen op de
blog van IntoTheMinds (in 3
talen):
www.intotheminds.com/Blog/nl
• Connecteer u met mij
via Linkedin om te
communiceren na de vorming.
Praktische info
vooraleer we starten
5
1. Algemene toelichting over
Big Data: 25'
2. Concrete toepassingen: 20'
3. Werken rond uw eigen situaties:
45'
Structuur van de workshop
1
2
3
6
• Oprichter van het
marktonderzoeksbureau
IntoTheMinds
– Kwalitatief onderzoek
– Kwantitatief onderzoek (verwerking
van massale data)
– Combinatie van 2 technieken
• MBA strategie, dokter in de
marketing
• Tweets: @pnschwab of
@intotheminds
• Blog: intotheminds.com/blog/nl
Wie ben ik?
7
• Ik hou van magie en vooral van
mentalisme
• Op de foto: Frédéric Da Silva en
ikzelf vorige maand in Las Vegas
Teaser
8
• Hij raadde het getal dat ik in
gedachten had (22)
• Door verwerking van een groot
aantal gegevens kan
geanticipeerd worden op datgene
wat een individu doet/wilt
Teaser
9
• Facebook weet:
– wat u hebt ge« liked »
– met wie u bent verbonden
– waar u geweest bent
– wat u hebt geschreven
– en nog veel meer …
• En gebruikt dat om een profiel
van u te maken  meer
doelgericht, meer verkoop
Digitale sporen worden
verwerkt via Big Data
10
• Facebook is het meest volmaakte
voorbeeld van gebruik van
Big Data voor commerciële
doeleinden
– Exploitatie van gegevens (new business)
– Profilering van « klanten »
• Grote verscheidenheid aan
gegevens gebruikt voor
« profilering » van gebruikers
– Tekst
– Beeld
– Acties
Facebook: het manna van
gebruikersprofilering
11
• Uw Likes bepalen wie u bent,
maar uw commentaar en wat u
deelt, is waardevoller
• Door emoticons (feb 2016) zijn
uw emoties gekend
• Wat u schrijft, wordt
geanalyseerd door algoritmen
om zo uw interesses te bepalen
Facebook
Uw acties verraden u
12
Facebook definieert uw netwerk en
trekt conclusies over uw eigen
profiel (« gelijkgestemden zoeken
elkaar »)
• uw "vrienden"
• De mensen met wie u op foto’s staat
Facebook
Uw vrienden bepalen wie u
bent
13
• Persoonlijke gegevens via uw
foto's:
– Https://ctrlq.org/google/images/
– Https://whereisthepicture.com/
Facebook
Beeldherkenning
14
• Het profiel van een persoon
wordt verhandelbare informatie
voor bedrijven
• Profieltest
Facebook
Gegevens zijn business
15
• Vooreerst is het een
« buzzword » om falende IT-
systemen en projecten te
verkopen (80% van de projecten
mislukken*)
• Vooral het gevolg van een
technische en commerciële
ontwikkeling, waarmee bedrijven
grote hoeveelheden data kunnen
verwerken tegen een redelijke
kostprijs
Wat zijn Big Data?
1
16
*Bron: Gartner
• Aanwezige data kunnen
verwerken, werd altijd al gezien
als een bron van kennis
(« insights »)
• De methodes en doelstellingen
van gegevensverwerking zijn de
voorbije 40 jaar geëvolueerd
• De middelen om toegang te
krijgen tot deze kennis zijn
maximaal toegankelijk gemaakt
Big Data zijn niet nieuw
1
17
Big Data zijn niet nieuw
1
18
Big Data zijn niet nieuw
Wat is er veranderd: de opslag
1
19
Bron: a history of storage costs
Big Data zijn niet nieuw
Wat is er veranderd: de verwerkingskosten
1
20
Bron: Sandberg en Bostrom (2008)
Big Data zijn niet nieuw
Wat is er veranderd: gegevens zijn er overal
1
21
Bron: IDC’s Digital Universe Study
Big Data zijn niet nieuw
Wat is er veranderd: gegevens zijn er overal
1
22
Big Data zijn niet nieuw
Wat is er veranderd: gegevens zijn er overal
1
23
• Waarom gegevens
verwerken? Om de toekomst te
kunnen voorspellen!
• Anticiperen =
concurrentievoordeel, beter
beheer van middelen (dat geldt
voor bedrijven en landen)
• Overgang van sociologische
massamodellen naar quasi
individuele modellen
Big Data: een 40 jaar lange
natuurlijke evolutie
1
24
• Landen: 1ste gebruikers van
historische gegevens:
– Voor het beheer van
maatschappelijke ontwikkelingen
– Om landen te « besturen »
• Sociale wetenschappen aan de
basis van de eerste modellen:
– Kwalitatieve analyse van variabelen
die van invloed zijn op het gedrag
– Kwantitatieve beoordeling van de
invloed van vooraf vastgestelde
variabelen
Big Data gisteren
1
25
Big Data gisteren
Een op voorhand vastgesteld model, dat wordt
« geverifieerd »
26
model
Variabele
1
Variabele
2
Variabele
3
Te
modelleren
gedrag
• Er wordt voor elk individu
gezocht naar correlaties in
meerdere gegevens, soms van
zeer uiteenlopende aard
• Er kunnen vreemde correlaties
opduiken
• De sociologische verklaring komt
op de tweede plaats: alleen het
statistische verband telt
Big Data vandaag
Geen vooraf bepaald model
1
27
Big Data vandaag
Opgelet voor toevallige correlaties
28
Bron: Tyler Vigen's « Spurious correlations »
Big Data vandaag
Opgelet voor toevallige correlaties
29
Bron: Tyler Vigen’s « Spurious correlations »
• Afstappen van de sociologische
invalshoek bij de interpretatie
van gegevens
• Zoeken naar correlaties zonder
de reden ervan te begrijpen: het
oorzakelijk verband wordt niet
langer uitgelegd!
Het probleem van Big Data
vandaag
30
• Wat is er veranderd:
– Het systematiseren van
gevensverzameling
– Het soort verzamelde gegevens
– Het niveau van "granulariteit"
– De verhouding kosten/snelheid van
de verwerking
– Het doel (inzicht in wereldwijde
trends  commerciële oriëntatie)
Big Data vandaag
Wat is er veranderd?
31
Deel 2
2
32
Concrete voorbeelden ter inspiratie
• RTBF: verwerking van
verbruiksgegevens om inhoud
voor te stellen
(aanbevelingsalgoritmen)
• Telecom: voorspellen van uitval
(« churn »)
• Bank: voorspelling van
stortingen, opnames en uitval
(« churn »)
Voorbeelden uit ons eigen
werk
33
RTBF
34
• Twee manieren om voordeel te
halen uit gegevens:
– B2B: verwerking van
« klant »gegevens om nieuwe
diensten met toegevoegde waarde
aan te kunnen bieden
– B2C: verzamelen en kruisen van
gegevens over individuen om te
anticiperen op hun behoeften/meer
te verkopen
• Enkele (o.a. Belgische) voorbeelden
van gegevensverwerking voor
commerciële doeleinden
B2B versus B2C2
35
• Gebruikte gegevens:
– Taxi in het gebied
– Vraag
– Waarschijnlijkheid van aankoop
(prijsgevoeligheid)
• « Dynamic Pricing », gebaseerd
op vraag en aanbod. In theorie
positief voor klanttevredenheid
(↘ wachttijd).
• Maar ook andere geheime
variabelen gebruikt
Uber
« Surge Pricing »2
36
• Belgische startup (Gent)
• Gebruik van openbare informatie
(publieke data) om de prijs van
onroerende goederen te
voorspellen
• Reactie op het monopolie van
notarissen op de prijzen van
vastgoedtransacties
• Foutmarge: 7-9%
Realo2
37
Realo
38
Realo
39
• Gebruik van uw
aankoopgeschiedenis (via uw
getrouwheidskaart) om u
kortingsbonnen aan te bieden
Delhaize, Colruyt2
40
• Gebruik van bestaande gegevens
(gsm-signaal) voor andere
doeleinden  visualisatie van
personenbewegingen
• Kruising van deze gegevens met
andere gegevens van socio-
demografische aard
• Toepassingsgebied: kwantificatie
en kwalificatie van
personenstromen in
handelscentra
Proximus2
41
Proximus
City 2 versus Docks Bruxsel
42
Proximus
City 2 versus Docks Bruxsel
43
• Sociaal secretariaat
• Rijk aan klantgegevens (lonen,
ziekteverzuim, profiel van
werknemers, …)
• Vraag: hoe deze gegevens
gebruiken om klantenproblemen
op te lossen?
• Een probleem van alle
werkgevers: ziekteverzuim
SD Worx2
44
• SD Worx bezit meer gegevens
over haar klanten dan de klanten
zelf
• 6500 waarnemingen, 980
voorspellende variabelen
• 8 voorspellende variabelen voor
ziekteverzuim. Geheim, maar
evaluatie van de werknemer en
aanwezigheid van een « back-
up » spelen blijkbaar een
belangrijke rol
SD Worx2
45
• Innovatie in de gebruikte
gegevens levert nieuwe
inkomstenbronnen op
• De gegevens worden bijna altijd
gebruikt om een gedrag, een
toekomstige gebeurtenis, een
prijs te voorspellen
Eerste lessen2
46
• Realo: gebruik van openbare
gegevens (publieke data)
• SD Worx: gebruik van
klantgegevens om B2B-
problemen op te lossen
• Proximus:
– Valorisatie van bestaande
geanonimiseerde gegevens
– Verrijking met externe gegevens
Eerste lessen2
47
• Delhaize, Colruyt: gebruik van
bestaande nominatieve gegevens
(getrouwheidskaart) om de
consumptie in kaart te brengen
en te anticiperen op behoeften
– Kortingsbonnen
– Adaptieve prijszetting
– Voorspelling supply-chain
Eerste lessen2
48
• Mag u persoonsgegevens
verzamelen?
• Welke regelingen gelden?
– Wet van 8 december 1992
(bescherming van de privacy)
– GDPR (26 mei 2018)
Juridische aspecten
49
Deel 3
3
50
Nu is het aan u om creatief te zijn!
3 vragen
45 minuten om na te denken over het
gebruik van Big Data in uw bedrijf
• Wat wilt u kunnen voorspellen in
uw activiteitensector?
• Wat zijn de onzekerheden
waarmee uw bedrijf of uw
klanten te maken hebben?
Vraag 1
De zakelijke behoefte (15')
51
• Welke gegevens verzamelt u over
uw klanten of voor rekening van
uw klanten?
• Welke gegevens verwerkt u al?
• Welke gegevens ontbreken om
voordeel te halen uit de
commerciële opportuniteiten van
vraag 1?
Vraag 2
De gegevens (15')
52
• Wat moet u doen om deze
mogelijkheden te kunnen
benutten?
Vraag 3
De zakelijke behoefte
53
3
54
CONCLUSIES
• Alle bedrijven beschikken over
gegevens die ze kunnen
benutten. Begin met het
inventariseren ervan
• Reflectie/brainstormen over
mogelijk gebruik ervan
• Opgelet met juridische
beperkingen
Enkele conclusies
55
• Geen behoefte aan grote
investeringen  test uw ideeën
van valorisatie van « data » uit op
uw klanten
• Start klein (een eenvoudige
statistiek volstaat) en ga
eventueel sneller te werk met
een gespecialiseerde partner
Enkele conclusies
56
3
57
BEDANKT VOOR UW AANDACHT

More Related Content

Similar to Presentatie big data in verkoop (cevora) gent 16 Mei 2017

What's Up?! with Data Intelligence - 11 september 2014 - Joris Goossens - Dat...
What's Up?! with Data Intelligence - 11 september 2014 - Joris Goossens - Dat...What's Up?! with Data Intelligence - 11 september 2014 - Joris Goossens - Dat...
What's Up?! with Data Intelligence - 11 september 2014 - Joris Goossens - Dat...
United
 
Mark Vermeer - Congres 'Data gedreven Beleidsontwikkeling'
Mark Vermeer - Congres 'Data gedreven Beleidsontwikkeling'Mark Vermeer - Congres 'Data gedreven Beleidsontwikkeling'
Mark Vermeer - Congres 'Data gedreven Beleidsontwikkeling'
ScienceWorks
 
NL - Module 6 - The Future of Smart Data
NL - Module 6 - The Future of Smart DataNL - Module 6 - The Future of Smart Data
NL - Module 6 - The Future of Smart Data
caniceconsulting
 
Whitepaper-Refining-the-new-oil-turning-data-into-value
Whitepaper-Refining-the-new-oil-turning-data-into-valueWhitepaper-Refining-the-new-oil-turning-data-into-value
Whitepaper-Refining-the-new-oil-turning-data-into-valueAnderson MacGyver
 
Pim Stouten (LexisNexis BIS), Big Data Business as usual? - Data Donderdag
Pim Stouten (LexisNexis BIS), Big Data Business as usual? - Data DonderdagPim Stouten (LexisNexis BIS), Big Data Business as usual? - Data Donderdag
Pim Stouten (LexisNexis BIS), Big Data Business as usual? - Data Donderdag
Cre-Aid
 
NL - Module 2 - Using your own Data
NL - Module 2 - Using your own DataNL - Module 2 - Using your own Data
NL - Module 2 - Using your own Data
caniceconsulting
 
Eduvision - Webinar Hoe Word Ik Big Data Professional?
Eduvision - Webinar Hoe Word Ik Big Data Professional?Eduvision - Webinar Hoe Word Ik Big Data Professional?
Eduvision - Webinar Hoe Word Ik Big Data Professional?
Eduvision Opleidingen
 
Big Data in Retail: too big to ignore
Big Data in Retail: too big to ignoreBig Data in Retail: too big to ignore
Big Data in Retail: too big to ignore
valantic NL
 
20130618 presentatie big data in financiële sector v1.0 Dutch
20130618 presentatie big data in financiële sector v1.0 Dutch20130618 presentatie big data in financiële sector v1.0 Dutch
20130618 presentatie big data in financiële sector v1.0 Dutch
Pascal Spelier
 
BI Congres Het nut van een gegevensinfrastructuur Marc Govers 2012
BI Congres Het nut van een gegevensinfrastructuur Marc Govers 2012BI Congres Het nut van een gegevensinfrastructuur Marc Govers 2012
BI Congres Het nut van een gegevensinfrastructuur Marc Govers 2012Marc Govers
 
Big data analytics johan quist
Big data analytics johan quistBig data analytics johan quist
Big data analytics johan quist
Johan Quist
 
Presentatie Big data & IoT van hype naar doen
Presentatie Big data & IoT van hype naar doenPresentatie Big data & IoT van hype naar doen
Presentatie Big data & IoT van hype naar doen
Cmotions
 
20181102 Leveranciersdag_privacy by-design
20181102 Leveranciersdag_privacy by-design20181102 Leveranciersdag_privacy by-design
20181102 Leveranciersdag_privacy by-design
VNG Realisatie
 
Avans Data verbindende factor
Avans Data verbindende factorAvans Data verbindende factor
Avans Data verbindende factorMarc Govers
 
Visie_-_Big_Data_voor_energie_en_ultilities_sector_v1.0._docx
Visie_-_Big_Data_voor_energie_en_ultilities_sector_v1.0._docxVisie_-_Big_Data_voor_energie_en_ultilities_sector_v1.0._docx
Visie_-_Big_Data_voor_energie_en_ultilities_sector_v1.0._docxMarc Govers
 
VINT Symposium 2012: Recorded Future | Harrie Vollaard (Rabobank)
VINT Symposium 2012: Recorded Future | Harrie Vollaard (Rabobank)VINT Symposium 2012: Recorded Future | Harrie Vollaard (Rabobank)
VINT Symposium 2012: Recorded Future | Harrie Vollaard (Rabobank)
VINTlabs | The Sogeti Trendlab
 
Big Data in zicht - Nationale Denktank
Big Data in zicht - Nationale DenktankBig Data in zicht - Nationale Denktank
Big Data in zicht - Nationale Denktank
Lisette van Beusekom
 
Big Data Expo 2015 - Centennium De lucht eruit
Big Data Expo 2015 - Centennium De lucht eruitBig Data Expo 2015 - Centennium De lucht eruit
Big Data Expo 2015 - Centennium De lucht eruit
BigDataExpo
 

Similar to Presentatie big data in verkoop (cevora) gent 16 Mei 2017 (20)

Bigdata
BigdataBigdata
Bigdata
 
What's Up?! with Data Intelligence - 11 september 2014 - Joris Goossens - Dat...
What's Up?! with Data Intelligence - 11 september 2014 - Joris Goossens - Dat...What's Up?! with Data Intelligence - 11 september 2014 - Joris Goossens - Dat...
What's Up?! with Data Intelligence - 11 september 2014 - Joris Goossens - Dat...
 
Mark Vermeer - Congres 'Data gedreven Beleidsontwikkeling'
Mark Vermeer - Congres 'Data gedreven Beleidsontwikkeling'Mark Vermeer - Congres 'Data gedreven Beleidsontwikkeling'
Mark Vermeer - Congres 'Data gedreven Beleidsontwikkeling'
 
NL - Module 6 - The Future of Smart Data
NL - Module 6 - The Future of Smart DataNL - Module 6 - The Future of Smart Data
NL - Module 6 - The Future of Smart Data
 
Whitepaper-Refining-the-new-oil-turning-data-into-value
Whitepaper-Refining-the-new-oil-turning-data-into-valueWhitepaper-Refining-the-new-oil-turning-data-into-value
Whitepaper-Refining-the-new-oil-turning-data-into-value
 
Pim Stouten (LexisNexis BIS), Big Data Business as usual? - Data Donderdag
Pim Stouten (LexisNexis BIS), Big Data Business as usual? - Data DonderdagPim Stouten (LexisNexis BIS), Big Data Business as usual? - Data Donderdag
Pim Stouten (LexisNexis BIS), Big Data Business as usual? - Data Donderdag
 
NL - Module 2 - Using your own Data
NL - Module 2 - Using your own DataNL - Module 2 - Using your own Data
NL - Module 2 - Using your own Data
 
Eduvision - Webinar Hoe Word Ik Big Data Professional?
Eduvision - Webinar Hoe Word Ik Big Data Professional?Eduvision - Webinar Hoe Word Ik Big Data Professional?
Eduvision - Webinar Hoe Word Ik Big Data Professional?
 
Big Data in Retail: too big to ignore
Big Data in Retail: too big to ignoreBig Data in Retail: too big to ignore
Big Data in Retail: too big to ignore
 
20130618 presentatie big data in financiële sector v1.0 Dutch
20130618 presentatie big data in financiële sector v1.0 Dutch20130618 presentatie big data in financiële sector v1.0 Dutch
20130618 presentatie big data in financiële sector v1.0 Dutch
 
BI Congres Het nut van een gegevensinfrastructuur Marc Govers 2012
BI Congres Het nut van een gegevensinfrastructuur Marc Govers 2012BI Congres Het nut van een gegevensinfrastructuur Marc Govers 2012
BI Congres Het nut van een gegevensinfrastructuur Marc Govers 2012
 
Big data analytics johan quist
Big data analytics johan quistBig data analytics johan quist
Big data analytics johan quist
 
Presentatie Big data & IoT van hype naar doen
Presentatie Big data & IoT van hype naar doenPresentatie Big data & IoT van hype naar doen
Presentatie Big data & IoT van hype naar doen
 
Data trends
Data trendsData trends
Data trends
 
20181102 Leveranciersdag_privacy by-design
20181102 Leveranciersdag_privacy by-design20181102 Leveranciersdag_privacy by-design
20181102 Leveranciersdag_privacy by-design
 
Avans Data verbindende factor
Avans Data verbindende factorAvans Data verbindende factor
Avans Data verbindende factor
 
Visie_-_Big_Data_voor_energie_en_ultilities_sector_v1.0._docx
Visie_-_Big_Data_voor_energie_en_ultilities_sector_v1.0._docxVisie_-_Big_Data_voor_energie_en_ultilities_sector_v1.0._docx
Visie_-_Big_Data_voor_energie_en_ultilities_sector_v1.0._docx
 
VINT Symposium 2012: Recorded Future | Harrie Vollaard (Rabobank)
VINT Symposium 2012: Recorded Future | Harrie Vollaard (Rabobank)VINT Symposium 2012: Recorded Future | Harrie Vollaard (Rabobank)
VINT Symposium 2012: Recorded Future | Harrie Vollaard (Rabobank)
 
Big Data in zicht - Nationale Denktank
Big Data in zicht - Nationale DenktankBig Data in zicht - Nationale Denktank
Big Data in zicht - Nationale Denktank
 
Big Data Expo 2015 - Centennium De lucht eruit
Big Data Expo 2015 - Centennium De lucht eruitBig Data Expo 2015 - Centennium De lucht eruit
Big Data Expo 2015 - Centennium De lucht eruit
 

More from IntoTheMinds

Voilà à quoi ressemblera la reprise
Voilà à quoi ressemblera la repriseVoilà à quoi ressemblera la reprise
Voilà à quoi ressemblera la reprise
IntoTheMinds
 
The advertising campaigns run in Belgium during the Covid-19 crisis
The advertising campaigns run in Belgium during the Covid-19 crisisThe advertising campaigns run in Belgium during the Covid-19 crisis
The advertising campaigns run in Belgium during the Covid-19 crisis
IntoTheMinds
 
Presentation Christian Radler at EBU Conference "data in the newsroom"
Presentation Christian Radler at EBU Conference "data in the newsroom"Presentation Christian Radler at EBU Conference "data in the newsroom"
Presentation Christian Radler at EBU Conference "data in the newsroom"
IntoTheMinds
 
Presentation Sabino Metta at EBU Conference "data in the newsroom"
Presentation Sabino Metta at EBU Conference "data in the newsroom"Presentation Sabino Metta at EBU Conference "data in the newsroom"
Presentation Sabino Metta at EBU Conference "data in the newsroom"
IntoTheMinds
 
Presentation Stéphane Saulnier at EBU Conference "data in the newsroom"
Presentation Stéphane Saulnier at EBU Conference "data in the newsroom"Presentation Stéphane Saulnier at EBU Conference "data in the newsroom"
Presentation Stéphane Saulnier at EBU Conference "data in the newsroom"
IntoTheMinds
 
Presentation Kristofer Sjoholm at EBU Conference "data in the newsroom"
Presentation Kristofer Sjoholm at EBU Conference "data in the newsroom"Presentation Kristofer Sjoholm at EBU Conference "data in the newsroom"
Presentation Kristofer Sjoholm at EBU Conference "data in the newsroom"
IntoTheMinds
 
Purchase drivers for iconic products in the luxury sector
Purchase drivers for iconic products in the luxury sectorPurchase drivers for iconic products in the luxury sector
Purchase drivers for iconic products in the luxury sector
IntoTheMinds
 
A robot called Voitto
A robot called VoittoA robot called Voitto
A robot called Voitto
IntoTheMinds
 
presentation Newsbridge by Philippe Petitpont at Media Fast Forward 2018
presentation Newsbridge by Philippe Petitpont at Media Fast Forward 2018presentation Newsbridge by Philippe Petitpont at Media Fast Forward 2018
presentation Newsbridge by Philippe Petitpont at Media Fast Forward 2018
IntoTheMinds
 
Artworks personalization on Netflix
Artworks personalization on Netflix Artworks personalization on Netflix
Artworks personalization on Netflix
IntoTheMinds
 
Privacy Calculus in the Sharing Economy
Privacy Calculus in the Sharing EconomyPrivacy Calculus in the Sharing Economy
Privacy Calculus in the Sharing Economy
IntoTheMinds
 
Toon borré presentation at Meetup Big Data and Ethics at DigitYser Brussels 1...
Toon borré presentation at Meetup Big Data and Ethics at DigitYser Brussels 1...Toon borré presentation at Meetup Big Data and Ethics at DigitYser Brussels 1...
Toon borré presentation at Meetup Big Data and Ethics at DigitYser Brussels 1...
IntoTheMinds
 
Leenke De Donder presentation at Meetup Big Data and Ethics at DigitYser Brus...
Leenke De Donder presentation at Meetup Big Data and Ethics at DigitYser Brus...Leenke De Donder presentation at Meetup Big Data and Ethics at DigitYser Brus...
Leenke De Donder presentation at Meetup Big Data and Ethics at DigitYser Brus...
IntoTheMinds
 
Jochanen eynikel presentation at Meetup Big Data and Ethics at DigitYser Brus...
Jochanen eynikel presentation at Meetup Big Data and Ethics at DigitYser Brus...Jochanen eynikel presentation at Meetup Big Data and Ethics at DigitYser Brus...
Jochanen eynikel presentation at Meetup Big Data and Ethics at DigitYser Brus...
IntoTheMinds
 
Thomas carette presentation at Meetup Big Data and Ethics at DigitYser Brusse...
Thomas carette presentation at Meetup Big Data and Ethics at DigitYser Brusse...Thomas carette presentation at Meetup Big Data and Ethics at DigitYser Brusse...
Thomas carette presentation at Meetup Big Data and Ethics at DigitYser Brusse...
IntoTheMinds
 
Big Data and ethics meetup : slides presentation michael ekstrand
Big Data and ethics meetup : slides presentation michael ekstrandBig Data and ethics meetup : slides presentation michael ekstrand
Big Data and ethics meetup : slides presentation michael ekstrand
IntoTheMinds
 
Slides pierre nicolas schwab DISummit 2017 (Big Data, Brussels)
Slides pierre nicolas schwab DISummit 2017 (Big Data, Brussels)Slides pierre nicolas schwab DISummit 2017 (Big Data, Brussels)
Slides pierre nicolas schwab DISummit 2017 (Big Data, Brussels)
IntoTheMinds
 
"Building Trust" discussion panel at EBU Big Data conference 2017 (Pierre-Nic...
"Building Trust" discussion panel at EBU Big Data conference 2017 (Pierre-Nic..."Building Trust" discussion panel at EBU Big Data conference 2017 (Pierre-Nic...
"Building Trust" discussion panel at EBU Big Data conference 2017 (Pierre-Nic...
IntoTheMinds
 
Presentation by Steven Bourke at the EBU Big Data and Society workshop
Presentation by Steven Bourke at the EBU Big Data and Society workshopPresentation by Steven Bourke at the EBU Big Data and Society workshop
Presentation by Steven Bourke at the EBU Big Data and Society workshop
IntoTheMinds
 
Wrap Up EBU Big Data and Society conference at RTBF - Day 2 (13 december 2016)
Wrap Up EBU Big Data and Society conference at RTBF - Day 2 (13 december 2016)Wrap Up EBU Big Data and Society conference at RTBF - Day 2 (13 december 2016)
Wrap Up EBU Big Data and Society conference at RTBF - Day 2 (13 december 2016)
IntoTheMinds
 

More from IntoTheMinds (20)

Voilà à quoi ressemblera la reprise
Voilà à quoi ressemblera la repriseVoilà à quoi ressemblera la reprise
Voilà à quoi ressemblera la reprise
 
The advertising campaigns run in Belgium during the Covid-19 crisis
The advertising campaigns run in Belgium during the Covid-19 crisisThe advertising campaigns run in Belgium during the Covid-19 crisis
The advertising campaigns run in Belgium during the Covid-19 crisis
 
Presentation Christian Radler at EBU Conference "data in the newsroom"
Presentation Christian Radler at EBU Conference "data in the newsroom"Presentation Christian Radler at EBU Conference "data in the newsroom"
Presentation Christian Radler at EBU Conference "data in the newsroom"
 
Presentation Sabino Metta at EBU Conference "data in the newsroom"
Presentation Sabino Metta at EBU Conference "data in the newsroom"Presentation Sabino Metta at EBU Conference "data in the newsroom"
Presentation Sabino Metta at EBU Conference "data in the newsroom"
 
Presentation Stéphane Saulnier at EBU Conference "data in the newsroom"
Presentation Stéphane Saulnier at EBU Conference "data in the newsroom"Presentation Stéphane Saulnier at EBU Conference "data in the newsroom"
Presentation Stéphane Saulnier at EBU Conference "data in the newsroom"
 
Presentation Kristofer Sjoholm at EBU Conference "data in the newsroom"
Presentation Kristofer Sjoholm at EBU Conference "data in the newsroom"Presentation Kristofer Sjoholm at EBU Conference "data in the newsroom"
Presentation Kristofer Sjoholm at EBU Conference "data in the newsroom"
 
Purchase drivers for iconic products in the luxury sector
Purchase drivers for iconic products in the luxury sectorPurchase drivers for iconic products in the luxury sector
Purchase drivers for iconic products in the luxury sector
 
A robot called Voitto
A robot called VoittoA robot called Voitto
A robot called Voitto
 
presentation Newsbridge by Philippe Petitpont at Media Fast Forward 2018
presentation Newsbridge by Philippe Petitpont at Media Fast Forward 2018presentation Newsbridge by Philippe Petitpont at Media Fast Forward 2018
presentation Newsbridge by Philippe Petitpont at Media Fast Forward 2018
 
Artworks personalization on Netflix
Artworks personalization on Netflix Artworks personalization on Netflix
Artworks personalization on Netflix
 
Privacy Calculus in the Sharing Economy
Privacy Calculus in the Sharing EconomyPrivacy Calculus in the Sharing Economy
Privacy Calculus in the Sharing Economy
 
Toon borré presentation at Meetup Big Data and Ethics at DigitYser Brussels 1...
Toon borré presentation at Meetup Big Data and Ethics at DigitYser Brussels 1...Toon borré presentation at Meetup Big Data and Ethics at DigitYser Brussels 1...
Toon borré presentation at Meetup Big Data and Ethics at DigitYser Brussels 1...
 
Leenke De Donder presentation at Meetup Big Data and Ethics at DigitYser Brus...
Leenke De Donder presentation at Meetup Big Data and Ethics at DigitYser Brus...Leenke De Donder presentation at Meetup Big Data and Ethics at DigitYser Brus...
Leenke De Donder presentation at Meetup Big Data and Ethics at DigitYser Brus...
 
Jochanen eynikel presentation at Meetup Big Data and Ethics at DigitYser Brus...
Jochanen eynikel presentation at Meetup Big Data and Ethics at DigitYser Brus...Jochanen eynikel presentation at Meetup Big Data and Ethics at DigitYser Brus...
Jochanen eynikel presentation at Meetup Big Data and Ethics at DigitYser Brus...
 
Thomas carette presentation at Meetup Big Data and Ethics at DigitYser Brusse...
Thomas carette presentation at Meetup Big Data and Ethics at DigitYser Brusse...Thomas carette presentation at Meetup Big Data and Ethics at DigitYser Brusse...
Thomas carette presentation at Meetup Big Data and Ethics at DigitYser Brusse...
 
Big Data and ethics meetup : slides presentation michael ekstrand
Big Data and ethics meetup : slides presentation michael ekstrandBig Data and ethics meetup : slides presentation michael ekstrand
Big Data and ethics meetup : slides presentation michael ekstrand
 
Slides pierre nicolas schwab DISummit 2017 (Big Data, Brussels)
Slides pierre nicolas schwab DISummit 2017 (Big Data, Brussels)Slides pierre nicolas schwab DISummit 2017 (Big Data, Brussels)
Slides pierre nicolas schwab DISummit 2017 (Big Data, Brussels)
 
"Building Trust" discussion panel at EBU Big Data conference 2017 (Pierre-Nic...
"Building Trust" discussion panel at EBU Big Data conference 2017 (Pierre-Nic..."Building Trust" discussion panel at EBU Big Data conference 2017 (Pierre-Nic...
"Building Trust" discussion panel at EBU Big Data conference 2017 (Pierre-Nic...
 
Presentation by Steven Bourke at the EBU Big Data and Society workshop
Presentation by Steven Bourke at the EBU Big Data and Society workshopPresentation by Steven Bourke at the EBU Big Data and Society workshop
Presentation by Steven Bourke at the EBU Big Data and Society workshop
 
Wrap Up EBU Big Data and Society conference at RTBF - Day 2 (13 december 2016)
Wrap Up EBU Big Data and Society conference at RTBF - Day 2 (13 december 2016)Wrap Up EBU Big Data and Society conference at RTBF - Day 2 (13 december 2016)
Wrap Up EBU Big Data and Society conference at RTBF - Day 2 (13 december 2016)
 

Presentatie big data in verkoop (cevora) gent 16 Mei 2017

  • 1. info@IntoTheMinds.com www.IntoTheMinds.com ©2017 Reproduction interdite De impact van Big Data in de verkoop Cevora Dag van de verkoper 18/05/2017
  • 2. • Pragmatisch uitleggen wat ‘Big Data’ betekent (demystificeren) • Maximaal illustreren aan de hand van concrete voorbeelden • Met u samenwerken rond wat er in uw organisatie gedaan kan worden om Big Data-technieken te gebruiken voor commerciële doeleinden (Mijn) doelstellingen voor deze workshop 2
  • 3. • Let op: het is niet de bedoeling om van u specialisten in Big Data te maken (Mijn) doelstellingen voor deze workshop 3
  • 4. Wat u moet onthouden van deze workshop: • Inzicht in het doel van de « Big Data »-verwerking • Beperkingen en zakelijke opportuniteiten van de « Big Data »-verwerking toegepast op de verkoop • Toepassingsmogelijkheden van « Big Data » in uw organisatie (Uw) doelstellingen voor deze workshop 4
  • 5. • De slides zijn beschikbaar op slideshare (slideshare.net/Into theminds) • Consolideer uw kennis door het lezen van onze artikelen op de blog van IntoTheMinds (in 3 talen): www.intotheminds.com/Blog/nl • Connecteer u met mij via Linkedin om te communiceren na de vorming. Praktische info vooraleer we starten 5
  • 6. 1. Algemene toelichting over Big Data: 25' 2. Concrete toepassingen: 20' 3. Werken rond uw eigen situaties: 45' Structuur van de workshop 1 2 3 6
  • 7. • Oprichter van het marktonderzoeksbureau IntoTheMinds – Kwalitatief onderzoek – Kwantitatief onderzoek (verwerking van massale data) – Combinatie van 2 technieken • MBA strategie, dokter in de marketing • Tweets: @pnschwab of @intotheminds • Blog: intotheminds.com/blog/nl Wie ben ik? 7
  • 8. • Ik hou van magie en vooral van mentalisme • Op de foto: Frédéric Da Silva en ikzelf vorige maand in Las Vegas Teaser 8
  • 9. • Hij raadde het getal dat ik in gedachten had (22) • Door verwerking van een groot aantal gegevens kan geanticipeerd worden op datgene wat een individu doet/wilt Teaser 9
  • 10. • Facebook weet: – wat u hebt ge« liked » – met wie u bent verbonden – waar u geweest bent – wat u hebt geschreven – en nog veel meer … • En gebruikt dat om een profiel van u te maken  meer doelgericht, meer verkoop Digitale sporen worden verwerkt via Big Data 10
  • 11. • Facebook is het meest volmaakte voorbeeld van gebruik van Big Data voor commerciële doeleinden – Exploitatie van gegevens (new business) – Profilering van « klanten » • Grote verscheidenheid aan gegevens gebruikt voor « profilering » van gebruikers – Tekst – Beeld – Acties Facebook: het manna van gebruikersprofilering 11
  • 12. • Uw Likes bepalen wie u bent, maar uw commentaar en wat u deelt, is waardevoller • Door emoticons (feb 2016) zijn uw emoties gekend • Wat u schrijft, wordt geanalyseerd door algoritmen om zo uw interesses te bepalen Facebook Uw acties verraden u 12
  • 13. Facebook definieert uw netwerk en trekt conclusies over uw eigen profiel (« gelijkgestemden zoeken elkaar ») • uw "vrienden" • De mensen met wie u op foto’s staat Facebook Uw vrienden bepalen wie u bent 13
  • 14. • Persoonlijke gegevens via uw foto's: – Https://ctrlq.org/google/images/ – Https://whereisthepicture.com/ Facebook Beeldherkenning 14
  • 15. • Het profiel van een persoon wordt verhandelbare informatie voor bedrijven • Profieltest Facebook Gegevens zijn business 15
  • 16. • Vooreerst is het een « buzzword » om falende IT- systemen en projecten te verkopen (80% van de projecten mislukken*) • Vooral het gevolg van een technische en commerciële ontwikkeling, waarmee bedrijven grote hoeveelheden data kunnen verwerken tegen een redelijke kostprijs Wat zijn Big Data? 1 16 *Bron: Gartner
  • 17. • Aanwezige data kunnen verwerken, werd altijd al gezien als een bron van kennis (« insights ») • De methodes en doelstellingen van gegevensverwerking zijn de voorbije 40 jaar geëvolueerd • De middelen om toegang te krijgen tot deze kennis zijn maximaal toegankelijk gemaakt Big Data zijn niet nieuw 1 17
  • 18. Big Data zijn niet nieuw 1 18
  • 19. Big Data zijn niet nieuw Wat is er veranderd: de opslag 1 19 Bron: a history of storage costs
  • 20. Big Data zijn niet nieuw Wat is er veranderd: de verwerkingskosten 1 20 Bron: Sandberg en Bostrom (2008)
  • 21. Big Data zijn niet nieuw Wat is er veranderd: gegevens zijn er overal 1 21 Bron: IDC’s Digital Universe Study
  • 22. Big Data zijn niet nieuw Wat is er veranderd: gegevens zijn er overal 1 22
  • 23. Big Data zijn niet nieuw Wat is er veranderd: gegevens zijn er overal 1 23
  • 24. • Waarom gegevens verwerken? Om de toekomst te kunnen voorspellen! • Anticiperen = concurrentievoordeel, beter beheer van middelen (dat geldt voor bedrijven en landen) • Overgang van sociologische massamodellen naar quasi individuele modellen Big Data: een 40 jaar lange natuurlijke evolutie 1 24
  • 25. • Landen: 1ste gebruikers van historische gegevens: – Voor het beheer van maatschappelijke ontwikkelingen – Om landen te « besturen » • Sociale wetenschappen aan de basis van de eerste modellen: – Kwalitatieve analyse van variabelen die van invloed zijn op het gedrag – Kwantitatieve beoordeling van de invloed van vooraf vastgestelde variabelen Big Data gisteren 1 25
  • 26. Big Data gisteren Een op voorhand vastgesteld model, dat wordt « geverifieerd » 26 model Variabele 1 Variabele 2 Variabele 3 Te modelleren gedrag
  • 27. • Er wordt voor elk individu gezocht naar correlaties in meerdere gegevens, soms van zeer uiteenlopende aard • Er kunnen vreemde correlaties opduiken • De sociologische verklaring komt op de tweede plaats: alleen het statistische verband telt Big Data vandaag Geen vooraf bepaald model 1 27
  • 28. Big Data vandaag Opgelet voor toevallige correlaties 28 Bron: Tyler Vigen's « Spurious correlations »
  • 29. Big Data vandaag Opgelet voor toevallige correlaties 29 Bron: Tyler Vigen’s « Spurious correlations »
  • 30. • Afstappen van de sociologische invalshoek bij de interpretatie van gegevens • Zoeken naar correlaties zonder de reden ervan te begrijpen: het oorzakelijk verband wordt niet langer uitgelegd! Het probleem van Big Data vandaag 30
  • 31. • Wat is er veranderd: – Het systematiseren van gevensverzameling – Het soort verzamelde gegevens – Het niveau van "granulariteit" – De verhouding kosten/snelheid van de verwerking – Het doel (inzicht in wereldwijde trends  commerciële oriëntatie) Big Data vandaag Wat is er veranderd? 31
  • 33. • RTBF: verwerking van verbruiksgegevens om inhoud voor te stellen (aanbevelingsalgoritmen) • Telecom: voorspellen van uitval (« churn ») • Bank: voorspelling van stortingen, opnames en uitval (« churn ») Voorbeelden uit ons eigen werk 33
  • 35. • Twee manieren om voordeel te halen uit gegevens: – B2B: verwerking van « klant »gegevens om nieuwe diensten met toegevoegde waarde aan te kunnen bieden – B2C: verzamelen en kruisen van gegevens over individuen om te anticiperen op hun behoeften/meer te verkopen • Enkele (o.a. Belgische) voorbeelden van gegevensverwerking voor commerciële doeleinden B2B versus B2C2 35
  • 36. • Gebruikte gegevens: – Taxi in het gebied – Vraag – Waarschijnlijkheid van aankoop (prijsgevoeligheid) • « Dynamic Pricing », gebaseerd op vraag en aanbod. In theorie positief voor klanttevredenheid (↘ wachttijd). • Maar ook andere geheime variabelen gebruikt Uber « Surge Pricing »2 36
  • 37. • Belgische startup (Gent) • Gebruik van openbare informatie (publieke data) om de prijs van onroerende goederen te voorspellen • Reactie op het monopolie van notarissen op de prijzen van vastgoedtransacties • Foutmarge: 7-9% Realo2 37
  • 40. • Gebruik van uw aankoopgeschiedenis (via uw getrouwheidskaart) om u kortingsbonnen aan te bieden Delhaize, Colruyt2 40
  • 41. • Gebruik van bestaande gegevens (gsm-signaal) voor andere doeleinden  visualisatie van personenbewegingen • Kruising van deze gegevens met andere gegevens van socio- demografische aard • Toepassingsgebied: kwantificatie en kwalificatie van personenstromen in handelscentra Proximus2 41
  • 42. Proximus City 2 versus Docks Bruxsel 42
  • 43. Proximus City 2 versus Docks Bruxsel 43
  • 44. • Sociaal secretariaat • Rijk aan klantgegevens (lonen, ziekteverzuim, profiel van werknemers, …) • Vraag: hoe deze gegevens gebruiken om klantenproblemen op te lossen? • Een probleem van alle werkgevers: ziekteverzuim SD Worx2 44
  • 45. • SD Worx bezit meer gegevens over haar klanten dan de klanten zelf • 6500 waarnemingen, 980 voorspellende variabelen • 8 voorspellende variabelen voor ziekteverzuim. Geheim, maar evaluatie van de werknemer en aanwezigheid van een « back- up » spelen blijkbaar een belangrijke rol SD Worx2 45
  • 46. • Innovatie in de gebruikte gegevens levert nieuwe inkomstenbronnen op • De gegevens worden bijna altijd gebruikt om een gedrag, een toekomstige gebeurtenis, een prijs te voorspellen Eerste lessen2 46
  • 47. • Realo: gebruik van openbare gegevens (publieke data) • SD Worx: gebruik van klantgegevens om B2B- problemen op te lossen • Proximus: – Valorisatie van bestaande geanonimiseerde gegevens – Verrijking met externe gegevens Eerste lessen2 47
  • 48. • Delhaize, Colruyt: gebruik van bestaande nominatieve gegevens (getrouwheidskaart) om de consumptie in kaart te brengen en te anticiperen op behoeften – Kortingsbonnen – Adaptieve prijszetting – Voorspelling supply-chain Eerste lessen2 48
  • 49. • Mag u persoonsgegevens verzamelen? • Welke regelingen gelden? – Wet van 8 december 1992 (bescherming van de privacy) – GDPR (26 mei 2018) Juridische aspecten 49
  • 50. Deel 3 3 50 Nu is het aan u om creatief te zijn! 3 vragen 45 minuten om na te denken over het gebruik van Big Data in uw bedrijf
  • 51. • Wat wilt u kunnen voorspellen in uw activiteitensector? • Wat zijn de onzekerheden waarmee uw bedrijf of uw klanten te maken hebben? Vraag 1 De zakelijke behoefte (15') 51
  • 52. • Welke gegevens verzamelt u over uw klanten of voor rekening van uw klanten? • Welke gegevens verwerkt u al? • Welke gegevens ontbreken om voordeel te halen uit de commerciële opportuniteiten van vraag 1? Vraag 2 De gegevens (15') 52
  • 53. • Wat moet u doen om deze mogelijkheden te kunnen benutten? Vraag 3 De zakelijke behoefte 53
  • 55. • Alle bedrijven beschikken over gegevens die ze kunnen benutten. Begin met het inventariseren ervan • Reflectie/brainstormen over mogelijk gebruik ervan • Opgelet met juridische beperkingen Enkele conclusies 55
  • 56. • Geen behoefte aan grote investeringen  test uw ideeën van valorisatie van « data » uit op uw klanten • Start klein (een eenvoudige statistiek volstaat) en ga eventueel sneller te werk met een gespecialiseerde partner Enkele conclusies 56