SlideShare a Scribd company logo
Molecular and Isotopic Fingerprinting of Hydrocarbons in
Different Petroleum Entities
Clara Kamel, Anic Imfeld, Yves Gélinas
INTRODUCTION
CONCLUSION
Ø  What	
  is	
  Petroleum?	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  
	
  
	
  
Ø Why	
   do	
   refined	
   oils	
   have	
   different	
   hydrocarbon	
  
composi9ons?	
  
	
  
	
  
PETROLEUM	
  	
  
HYDROCARBONS	
  
C6-­‐C60	
  
Saturates	
  
Naphthenes	
  
(Cycloalkanes)	
  
Paraffins	
  
(branched	
  +	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  n-­‐alkanes)	
  
Olefins	
  
Aroma5cs	
  	
  
(BTEX,	
  PAH)	
  
NON-­‐
HYDROCARBONS	
  
(N,O,S)	
  organic	
  
compounds	
  +	
  
Metallics	
  
Group	
   Gasoline	
   Diesel	
   Light	
  
Crude	
  
Bunker	
   Jet	
  Fuel	
  
Saturates	
   50-­‐60	
   65-­‐95	
   55-­‐90	
   20-­‐40	
   70-­‐80	
  
Olefins	
   5-­‐10	
   0-­‐10	
   -­‐	
   -­‐	
   -­‐	
  
Aroma9cs	
   25-­‐40	
   5-­‐25	
   10-­‐35	
   30-­‐50	
   30-­‐20	
  
Ø  Figure	
  1:	
  Qualita9ve	
  
Chemical	
  Composi9on	
  
of	
  Petroleum	
  
Δ13C	
  signatures	
  of	
  n-­‐alkanes	
  using	
  
GC-­‐IRMS	
  
	
  
The	
   alkanes	
   emerged	
   from	
   the	
   GC	
   column	
  
and	
   were	
   introduced	
   into	
   a	
   CuO	
   furnace	
  
where	
  they	
  were	
  successively	
  combusted	
  to	
  
CO2	
  before	
  entering	
  the	
  ion	
  source	
  of	
  IRMS.	
  	
  
The	
   intensi9es	
   of	
   masses	
   44,	
   45	
   and	
   46	
  
corresponding	
   to	
   12C16O2,13C16O2and	
  
12C18O16O,	
   respec9vely,	
   were	
   measured	
  
simultaneously,	
  from	
  which	
  the	
  13C/12C	
  ra9os	
  
were	
   determined.	
   Two	
   correc9ons	
   were	
  
applied	
  to	
  the	
  δ13C	
  values	
  of	
  n-­‐alkanes.	
  
For	
   calibra9on	
   of	
   	
   δ13C	
   	
   values	
   of	
   the	
  
standards,	
   a	
   CO2	
   reference	
   gas	
   was	
  
automa9cally	
   introduced	
   into	
   the	
   IRMS	
  
before	
  and	
  aaer	
  n-­‐alkane	
  peaks.	
  
The	
  n-­‐alkane	
  sample	
  injec9ons	
  and	
  the	
  IRMS	
  
measurements	
  were	
  repeated	
  two	
  9mes.	
  
0	
  
10000	
  
20000	
  
30000	
  
40000	
  
50000	
  
60000	
  
8	
   9	
   10	
   11	
   12	
   13	
   14	
   15	
   16	
   17	
   18	
   19	
   20	
   21	
   22	
   23	
   24	
   25	
   27	
  
Concentra5on	
  (ppm)	
  
Number	
  of	
  Carbons	
  
n-­‐Alkane	
  Fingerprint	
  
Gasoline	
  
Diesel	
  	
  
Jet	
  Fuel	
  	
  
Crude	
  
Bunker	
  	
  
0	
  
500	
  
1000	
  
1500	
  
2000	
  
2500	
  
3000	
  
Concentra5on	
  (ppm)	
  
PAH	
  Fingerprint	
  
Gasoline	
  
Diesel	
  	
  
Jet	
  Fuel	
  
Crude	
  
Bunker	
  
-­‐33	
  
-­‐31	
  
-­‐29	
  
-­‐27	
  
-­‐25	
  
-­‐23	
  
-­‐21	
  
-­‐19	
  
-­‐17	
  
-­‐15	
  
8	
   9	
  10	
  11	
  12	
  13	
  14	
  15	
  16	
  17	
  18	
  19	
  20	
  21	
  22	
  23	
  24	
  25	
  26	
  27	
  28	
  29	
  30	
  31	
  32	
  33	
  
δ	
  13C/δ	
  12C	
  (per	
  mil)	
  
Number	
  of	
  Carbons	
  
Crude	
  oil	
  
Bunker	
  
Gasoline	
  
Diesel	
  
Jet	
  Fuel	
  
APPLICATION
Molecular	
  Signature	
  of	
  n-­‐alkanes	
  and	
  PAH	
  
Isotopic	
  signature	
  of	
  n-­‐alkanes	
  
GC-­‐FID	
  trace	
  of	
  n-­‐alkanes	
  in	
  Diesel	
  
GC-­‐FID	
  trace	
  of	
  n-­‐alkanes	
  in	
  Crude	
  oil	
  
GC-­‐FID	
  trace	
  of	
  PAH	
  in	
  Jet	
  fuel	
  
GC-­‐FID	
  trace	
  of	
  PAH	
  in	
  Bunker	
  
Ø  Table	
  1:	
  Typical	
  hydrocarbon	
  
composi9on	
  in	
  (%)	
  of	
  different	
  
petroleum	
  products	
  (1)	
  
These	
  differences	
  in	
  concentra9ons	
  of	
  oil	
  cons9tuents	
  allow	
  a	
  unique	
  chemical	
  fingerprint	
  
for	
  each	
  petroleum	
  en9ty.
Ø  Figure	
  2:	
  Frac9onal	
  dis9lla9on	
  column	
  for	
  the	
  
refinement	
  of	
  crude	
  oil	
  (modified	
  from	
  ref.	
  5)	
  
	
  
The	
  difference	
  in	
  distribu9on	
  of	
  the	
  saturates	
  
and	
  the	
  aroma9cs	
  in	
  each	
  refined	
  oil	
  depends	
  
on	
  two	
  factors:	
  
Ø  The	
  source	
  (where	
  the	
  oil	
  was	
  extracted)	
  
Ø  The	
  refinement	
  process	
  	
  
	
  
Crude	
  oil	
  is	
  converted	
  into	
  petroleum	
  products	
  
in	
  a	
  number	
  of	
  steps	
  in	
  refineries.	
  The	
  first	
  is	
  
frac9onal	
  dis9lla9on	
  at	
  350	
  to	
  400°C.	
  	
  
The	
  crude	
  oil	
  vapors	
  rise	
  inside	
  the	
  column	
  
(light	
  hydrocarbons),	
  while	
  the	
  heaviest	
  
hydrocarbons	
  remain	
  at	
  the	
  bokom.	
  	
  
Ø  Chemical	
  Fingerprin9ng	
  of	
  the	
  Hydrocarbons	
  
Due	
  to	
  the	
  dissimilari9es	
  in	
  characteris9cs	
  of	
  crude	
  oil	
  feed	
  stocks	
  and	
  varia9ons	
  in	
  
refinery	
  processes,	
  refined	
  oil	
  products	
  differ	
  in	
  their	
  chemical	
  composi9ons.	
  
	
  
Molecular	
  Signature:	
  GC-­‐FID	
  fingerprints	
  à	
  rela9ve	
  abundances	
  of	
  the	
  different	
  
hydrocarbons	
  present.	
  
	
  
Isotopic	
  Signature:	
  CSIA	
  (compound-­‐specific	
  isotope	
  ra9o)	
  à	
  ra9os	
  of	
  naturally	
  
occurring	
  stable	
  isotopes	
  in	
  individual	
  organic	
  compounds	
  from	
  environmental	
  samples	
  
by	
  GC/IRMS.	
  
	
  
n-­‐Alkanes	
  generally	
  have	
  dis9nct	
  13C/12C	
  isotope	
  ra9os	
  that	
  reflect	
  the	
  source	
  or	
  the	
  
nature	
  of	
  the	
  petroleum	
  product.	
  The	
  carbon	
  isotopic	
  signature	
  is	
  determined	
  using	
  
the	
  formula	
  below	
  and	
  the	
  results	
  are	
  reported	
  as	
  δ13C	
  (in	
  per	
  mil)	
  with	
  respect	
  to	
  PDB.	
  	
  
INTRODUCTION
METHODS
Extrac5on	
  of	
  hydrocarbons	
  from	
  
samples	
  with	
  column	
  chromatography	
  
	
  
Ø  n-­‐Alkanes	
  eluted	
  with	
  hexane	
  
Ø  PAH	
  eluted	
  with	
  dichloromethane	
  
Quan5fica5on	
  of	
  n-­‐alkanes	
  and	
  PAH	
  
with	
  	
  GC/FID	
  (from	
  C8	
  to	
  C40)	
  
	
  
Capillary	
   column:	
   DB-­‐EUPAH	
   30	
   m,	
   0.25-­‐mm	
  
film	
  thickness.	
  	
  
Carrier	
  gas:	
  Helium	
  (1	
  mL/min).	
  
Compound	
   iden9fica9on:	
   based	
   on	
   GC	
  
reten9on	
   9mes	
   of	
   authen9c	
   standards,	
  
injected	
   and	
   analyzed	
   under	
   the	
   same	
  
condi9ons	
  as	
  samples.	
  	
  
Samples	
   were	
   run	
   in	
   triplicates,	
   with	
   the	
  
average	
   value	
   and	
   standard	
   devia9on	
  
reported.	
  
Ø  CSIA	
  shows	
  that	
  the	
  n-­‐alkane	
  
carbon	
  isotopic	
  composi9ons	
  are	
  
different	
  in	
  these	
  refined	
  oils.	
  
	
  
Ø  The	
  low	
  MW	
  n-­‐alkanes	
  (C8-­‐C16)	
  will	
  
not	
  be	
  used	
  because	
  they	
  are	
  
highly	
  vola9le	
  (poten9al	
  for	
  mass-­‐
dependent	
  isotopic	
  frac9ona9on),	
  
and	
  because	
  of	
  coelu9on	
  issues	
  
which	
  result	
  in	
  spectral	
  overlap	
  and	
  
inaccurate	
  signatures.	
  	
  
Ø  The	
  δ13C	
  values	
  are	
  all	
  depleted	
  in	
  
13C	
  	
  compared	
  to	
  the	
  PDB	
  
reference.	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  For	
  Diesel	
  :	
  -­‐29	
  to	
  -­‐22	
  ‰	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  For	
  Jet	
  fuel	
  :	
  -­‐27	
  to	
  -­‐22	
  ‰	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  For	
  Bunker	
  :	
  -­‐30	
  to	
  -­‐26	
  ‰	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  For	
  Crude	
  oil:	
  -­‐30	
  to	
  -­‐15	
  ‰	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  For	
  Gasoline:	
  -­‐24	
  to	
  -­‐21	
  ‰	
  
Ø  Chemical	
  fingerprin9ng	
  was	
  applied	
  to	
  four	
  refined	
  oils	
  (Jet	
  Fuel,	
  Diesel,	
  Gasoline,	
  Bunker)	
  
as	
  well	
  as	
  crude	
  oil.	
  The	
  petroleum-­‐specific	
  target	
  analytes	
  that	
  were	
  chemically	
  
characterized	
  were	
  the	
  n-­‐alkanes	
  and	
  PAH.	
  They	
  were	
  successfully	
  iden9fied	
  and	
  
quan9fied	
  in	
  each	
  petroleum	
  en9ty	
  using	
  GC/FID.	
  	
  
	
  
Ø  CSIA	
  provides	
  informa9on	
  regarding	
  the	
  source	
  of	
  the	
  different	
  samples	
  and	
  the	
  effects	
  of	
  
the	
  refinement	
  process	
  on	
  the	
  δ13C	
  signatures	
  of	
  each	
  n-­‐alkane.	
  Carbon	
  isotopic	
  
composi9on	
  of	
  high	
  molecular	
  weight	
  n-­‐alkanes	
  (>	
  C16)	
  are	
  more	
  useful	
  in	
  
characteriza9on	
  of	
  oil	
  since	
  they	
  are	
  less	
  vola9le	
  and	
  more	
  resistant	
  to	
  weathering/
evapora9on.	
  Coelu9on	
  of	
  target	
  peaks	
  remains	
  a	
  complica9on	
  of	
  CSIA.	
  	
  
Ø  Chemical	
  fingerprin9ng	
  of	
  petroleum	
  is	
  a	
  powerful	
  tool	
  in	
  geochemistry	
  for	
  hydrocarbon	
  
source	
  iden9fica9on.	
  In	
  oil	
  spill	
  inves9ga9ons,	
  using	
  a	
  single	
  fingerprin9ng	
  approach	
  
some9mes	
  is	
  not	
  powerful	
  enough	
  to	
  fully	
  meet	
  the	
  objec9ves	
  of	
  forensic	
  inves9ga9ons	
  
and	
  quan9ta9vely	
  associate	
  hydrocarbons	
  to	
  their	
  sources.	
  This	
  is	
  why	
  two	
  techniques	
  
were	
  employed	
  in	
  this	
  case:	
  GC/FID	
  and	
  GC/IRMS.	
  
Ø  Molecular	
  and	
  isotopic	
  measurements	
  are	
  also	
  used	
  to	
  study	
  the	
  weathering	
  effect	
  on	
  oil	
  
spill	
  residues.	
  
	
  
Ø  A	
  model	
  integra9ng	
  both	
  fingerprint	
  signatures	
  will	
  be	
  developed	
  to	
  allow	
  differen9a9ng	
  
between	
  different	
  contaminants,	
  and	
  between	
  contaminants	
  and	
  natural	
  n-­‐alkanes	
  
present	
  in	
  soils	
  and	
  sediments.	
  
REFERENCES
1)  A.,	
  S.	
  S.	
  (2016).	
  Standard	
  handbook	
  oil	
  spill	
  environmental	
  forensics	
  fingerprin9ng	
  and	
  source	
  
iden9fica9on.	
  London:	
  Academic	
  Press.	
  
2)  Murphy,	
  B.	
  L.,	
  &	
  Morrison,	
  R.	
  D.	
  (2007).	
  Introduc9on	
  to	
  environmental	
  forensics.	
  Amsterdam:	
  Elsevier.	
  
3)  	
  Zhendi	
  Wang	
  ,	
  Scok	
  A.	
  Stout	
  &	
  Merv	
  Fingas	
  (2006)	
  Forensic	
  Fingerprin9ng	
  of	
  Biomarkers	
  for	
  Oil	
  Spill	
  
Characteriza9on	
  and	
  Source	
  Iden9fica9on,	
  Environmental	
  Forensics,	
  7:2,	
  105-­‐146,	
  DOI:	
  
10.1080/15275920600667104	
  
4)  Frances	
  D.	
  Hostekler	
  ,	
  Thomas	
  D.	
  Lorenson	
  &	
  Barbara	
  A.	
  Bekins	
  (2013)	
  Petroleum	
  Fingerprin9ng	
  with	
  
Organic	
  Markers,	
  Environmental	
  Forensics,	
  14:4,	
  262-­‐277,	
  DOI:	
  10.1080/15275922.2013.843611	
  
5)  "Trays	
  and	
  Plates."	
  DisAllaAon	
  Column:	
  Column	
  Internals,	
  Bubble	
  Cap	
  Trays,	
  Valve	
  Trays,	
  Sieve	
  Trays,	
  
Structured	
  Packing.	
  N.p.,	
  2008.	
  Web.	
  03	
  Dec.	
  2016.	
  
	
  
C10	
  
RESULTS/DISCUSSION
C8	
  
C9	
  
C12	
  
C14	
  
C9	
  
C10	
  
C18	
  
C16	
  
C26	
  
C20	
  
C18	
  
C16	
  C14	
  
C12	
  C11	
  
C24	
  C20	
  
*	
  
*	
  
*	
  
*	
  PAH	
  
*	
  
*	
  
*	
  *	
   *	
  *	
  
*	
  
*	
  
PAH	
  
*	
  
*	
  
*	
  
*	
  
δ13
C =
(
13
C
12
C
)Sample −(
13
C
12
C
)PDB
(
13
C
12
C
)PDB
×1000%

More Related Content

What's hot

Cai 2015 Org Geochem S-C isotope oil-source correlation
Cai 2015 Org Geochem S-C isotope oil-source correlationCai 2015 Org Geochem S-C isotope oil-source correlation
Cai 2015 Org Geochem S-C isotope oil-source correlation
Richard Worden
 
Edwards - Residual Catalytic Cracking - NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking - NMR - ACS August 2008
John Edwards
 
Are we there yet
Are we there yetAre we there yet
Are we there yet
masesane
 
defense presentation
defense presentationdefense presentation
defense presentation
Seda
 
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUMSTUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
UniversitasGadjahMada
 
295 tudu
295 tudu295 tudu
Ao eau surf
Ao eau surfAo eau surf
Ao eau surf
elmkaddem95
 
5531 5535.output
5531 5535.output5531 5535.output
5531 5535.output
Иван Иванов
 
Undergrad Research
Undergrad ResearchUndergrad Research
Undergrad Research
Apryl Boyle
 
What is this stuff on my filter, argentina 2009 (nx power lite)
What is this stuff on my filter, argentina 2009 (nx power lite)What is this stuff on my filter, argentina 2009 (nx power lite)
What is this stuff on my filter, argentina 2009 (nx power lite)
Phillip Bureman
 
Solutions suspensions and colloids
Solutions suspensions and colloidsSolutions suspensions and colloids
Solutions suspensions and colloids
Al-Chemist Channel
 
Carbonylation strategy and Scaleup of Olaparib
Carbonylation strategy and Scaleup of OlaparibCarbonylation strategy and Scaleup of Olaparib
Carbonylation strategy and Scaleup of Olaparib
AbulKalam62
 
Radiolysis of Transformer Oil in The Presence of Admixtures of Polychlorineb...
 Radiolysis of Transformer Oil in The Presence of Admixtures of Polychlorineb... Radiolysis of Transformer Oil in The Presence of Admixtures of Polychlorineb...
Radiolysis of Transformer Oil in The Presence of Admixtures of Polychlorineb...
IJMREMJournal
 
5606 5610.output
5606 5610.output5606 5610.output
5606 5610.output
Иван Иванов
 
JOC-Liu-1987
JOC-Liu-1987JOC-Liu-1987
JOC-Liu-1987
Paul Liu
 
JACS Fluorination 2013
JACS Fluorination 2013JACS Fluorination 2013
JACS Fluorination 2013
Anthony Mazzotti
 
Pubblication #1
Pubblication #1Pubblication #1
Pubblication #1
Anna Katarina Huba
 
SPE-102240-MS y SPE-164712-MS
SPE-102240-MS y SPE-164712-MSSPE-102240-MS y SPE-164712-MS
SPE-102240-MS y SPE-164712-MS
Ledavid Leonel Jose Flores Rivera
 
Presentasi oil-refinery-process-rev0
Presentasi oil-refinery-process-rev0Presentasi oil-refinery-process-rev0
Presentasi oil-refinery-process-rev0
Nofiar Rachman
 
Attuali procedure analitiche per l’analisi di inquinanti organici prioritari ...
Attuali procedure analitiche per l’analisi di inquinanti organici prioritari ...Attuali procedure analitiche per l’analisi di inquinanti organici prioritari ...
Attuali procedure analitiche per l’analisi di inquinanti organici prioritari ...
Confindustria Emilia-Romagna Ricerca
 

What's hot (20)

Cai 2015 Org Geochem S-C isotope oil-source correlation
Cai 2015 Org Geochem S-C isotope oil-source correlationCai 2015 Org Geochem S-C isotope oil-source correlation
Cai 2015 Org Geochem S-C isotope oil-source correlation
 
Edwards - Residual Catalytic Cracking - NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking - NMR - ACS August 2008
 
Are we there yet
Are we there yetAre we there yet
Are we there yet
 
defense presentation
defense presentationdefense presentation
defense presentation
 
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUMSTUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
 
295 tudu
295 tudu295 tudu
295 tudu
 
Ao eau surf
Ao eau surfAo eau surf
Ao eau surf
 
5531 5535.output
5531 5535.output5531 5535.output
5531 5535.output
 
Undergrad Research
Undergrad ResearchUndergrad Research
Undergrad Research
 
What is this stuff on my filter, argentina 2009 (nx power lite)
What is this stuff on my filter, argentina 2009 (nx power lite)What is this stuff on my filter, argentina 2009 (nx power lite)
What is this stuff on my filter, argentina 2009 (nx power lite)
 
Solutions suspensions and colloids
Solutions suspensions and colloidsSolutions suspensions and colloids
Solutions suspensions and colloids
 
Carbonylation strategy and Scaleup of Olaparib
Carbonylation strategy and Scaleup of OlaparibCarbonylation strategy and Scaleup of Olaparib
Carbonylation strategy and Scaleup of Olaparib
 
Radiolysis of Transformer Oil in The Presence of Admixtures of Polychlorineb...
 Radiolysis of Transformer Oil in The Presence of Admixtures of Polychlorineb... Radiolysis of Transformer Oil in The Presence of Admixtures of Polychlorineb...
Radiolysis of Transformer Oil in The Presence of Admixtures of Polychlorineb...
 
5606 5610.output
5606 5610.output5606 5610.output
5606 5610.output
 
JOC-Liu-1987
JOC-Liu-1987JOC-Liu-1987
JOC-Liu-1987
 
JACS Fluorination 2013
JACS Fluorination 2013JACS Fluorination 2013
JACS Fluorination 2013
 
Pubblication #1
Pubblication #1Pubblication #1
Pubblication #1
 
SPE-102240-MS y SPE-164712-MS
SPE-102240-MS y SPE-164712-MSSPE-102240-MS y SPE-164712-MS
SPE-102240-MS y SPE-164712-MS
 
Presentasi oil-refinery-process-rev0
Presentasi oil-refinery-process-rev0Presentasi oil-refinery-process-rev0
Presentasi oil-refinery-process-rev0
 
Attuali procedure analitiche per l’analisi di inquinanti organici prioritari ...
Attuali procedure analitiche per l’analisi di inquinanti organici prioritari ...Attuali procedure analitiche per l’analisi di inquinanti organici prioritari ...
Attuali procedure analitiche per l’analisi di inquinanti organici prioritari ...
 

Similar to POSTER 419

DIESEL.PPT
DIESEL.PPTDIESEL.PPT
DIESEL.PPT
MehulMohan2
 
3. Engine Fuels.pptx
3. Engine Fuels.pptx3. Engine Fuels.pptx
3. Engine Fuels.pptx
SumitRijal1
 
Obtaining higher fatty alcohols based on low molecular polyethylene and their...
Obtaining higher fatty alcohols based on low molecular polyethylene and their...Obtaining higher fatty alcohols based on low molecular polyethylene and their...
Obtaining higher fatty alcohols based on low molecular polyethylene and their...
SubmissionResearchpa
 
Oils and their relationship to refrigeration systems -RETA conference 2015
Oils and their relationship to refrigeration systems -RETA conference 2015Oils and their relationship to refrigeration systems -RETA conference 2015
Oils and their relationship to refrigeration systems -RETA conference 2015
Manuel Muñoz Alonso
 
10. green carbon, inc fred taylor & phil wilson
10. green carbon, inc   fred taylor & phil wilson10. green carbon, inc   fred taylor & phil wilson
10. green carbon, inc fred taylor & phil wilson
GreaterRomeChamber
 
Analysis of petroleum products
Analysis of petroleum productsAnalysis of petroleum products
Analysis of petroleum products
Rahul Verma
 
Alkane and cycloalkanes
Alkane and cycloalkanesAlkane and cycloalkanes
Alkane and cycloalkanes
Sunita Jobli
 
From Crude to Fuels – Trace Metals Analysis by ICP-OES for ASTM D7691 and D7111
From Crude to Fuels – Trace Metals Analysis by ICP-OES for ASTM D7691 and D7111From Crude to Fuels – Trace Metals Analysis by ICP-OES for ASTM D7691 and D7111
From Crude to Fuels – Trace Metals Analysis by ICP-OES for ASTM D7691 and D7111
Shimadzu Scientific Instruments
 
Petroleum Refinery Engineering-Part-2-30-July-2016
Petroleum Refinery Engineering-Part-2-30-July-2016Petroleum Refinery Engineering-Part-2-30-July-2016
Petroleum Refinery Engineering-Part-2-30-July-2016
Muhammad Rashid Usman
 
Xiao2013
Xiao2013Xiao2013
Xiao2013
Hameed66
 
Fundamentals of petroleum processing_ lecture7-1.pdf
Fundamentals of petroleum processing_ lecture7-1.pdfFundamentals of petroleum processing_ lecture7-1.pdf
Fundamentals of petroleum processing_ lecture7-1.pdf
RobinsonA9
 
4.Fuels.pptx for engineering technology fifth year
4.Fuels.pptx for engineering technology fifth year4.Fuels.pptx for engineering technology fifth year
4.Fuels.pptx for engineering technology fifth year
ZemariamGetu
 
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
DanesBlake
 
Propane propylene splitter
Propane propylene splitterPropane propylene splitter
Propane propylene splitter
Ing. Luca Barbagallo
 
Analysis of Vanadium, Nickel, Sodium, and Iron in Fuel Oils using Flame Atomi...
Analysis of Vanadium, Nickel, Sodium, and Iron in Fuel Oils using Flame Atomi...Analysis of Vanadium, Nickel, Sodium, and Iron in Fuel Oils using Flame Atomi...
Analysis of Vanadium, Nickel, Sodium, and Iron in Fuel Oils using Flame Atomi...
PerkinElmer, Inc.
 
Oil and gas geochemistry
Oil and gas geochemistryOil and gas geochemistry
Oil and gas geochemistry
Tongji UNIVERSITY
 
Analysis of Oil Additives Following ASTM D4951 with the Avio 200 ICP-OES
Analysis of Oil Additives Following ASTM D4951 with the Avio 200 ICP-OESAnalysis of Oil Additives Following ASTM D4951 with the Avio 200 ICP-OES
Analysis of Oil Additives Following ASTM D4951 with the Avio 200 ICP-OES
PerkinElmer, Inc.
 
Group_5_ppt.pptx of aniline point and cloude point
Group_5_ppt.pptx of aniline point and cloude pointGroup_5_ppt.pptx of aniline point and cloude point
Group_5_ppt.pptx of aniline point and cloude point
SherKhan100641
 
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
crimsonpublisherspps
 
Classifications of Crude Oil
Classifications of Crude OilClassifications of Crude Oil
Classifications of Crude Oil
Pam Cudal
 

Similar to POSTER 419 (20)

DIESEL.PPT
DIESEL.PPTDIESEL.PPT
DIESEL.PPT
 
3. Engine Fuels.pptx
3. Engine Fuels.pptx3. Engine Fuels.pptx
3. Engine Fuels.pptx
 
Obtaining higher fatty alcohols based on low molecular polyethylene and their...
Obtaining higher fatty alcohols based on low molecular polyethylene and their...Obtaining higher fatty alcohols based on low molecular polyethylene and their...
Obtaining higher fatty alcohols based on low molecular polyethylene and their...
 
Oils and their relationship to refrigeration systems -RETA conference 2015
Oils and their relationship to refrigeration systems -RETA conference 2015Oils and their relationship to refrigeration systems -RETA conference 2015
Oils and their relationship to refrigeration systems -RETA conference 2015
 
10. green carbon, inc fred taylor & phil wilson
10. green carbon, inc   fred taylor & phil wilson10. green carbon, inc   fred taylor & phil wilson
10. green carbon, inc fred taylor & phil wilson
 
Analysis of petroleum products
Analysis of petroleum productsAnalysis of petroleum products
Analysis of petroleum products
 
Alkane and cycloalkanes
Alkane and cycloalkanesAlkane and cycloalkanes
Alkane and cycloalkanes
 
From Crude to Fuels – Trace Metals Analysis by ICP-OES for ASTM D7691 and D7111
From Crude to Fuels – Trace Metals Analysis by ICP-OES for ASTM D7691 and D7111From Crude to Fuels – Trace Metals Analysis by ICP-OES for ASTM D7691 and D7111
From Crude to Fuels – Trace Metals Analysis by ICP-OES for ASTM D7691 and D7111
 
Petroleum Refinery Engineering-Part-2-30-July-2016
Petroleum Refinery Engineering-Part-2-30-July-2016Petroleum Refinery Engineering-Part-2-30-July-2016
Petroleum Refinery Engineering-Part-2-30-July-2016
 
Xiao2013
Xiao2013Xiao2013
Xiao2013
 
Fundamentals of petroleum processing_ lecture7-1.pdf
Fundamentals of petroleum processing_ lecture7-1.pdfFundamentals of petroleum processing_ lecture7-1.pdf
Fundamentals of petroleum processing_ lecture7-1.pdf
 
4.Fuels.pptx for engineering technology fifth year
4.Fuels.pptx for engineering technology fifth year4.Fuels.pptx for engineering technology fifth year
4.Fuels.pptx for engineering technology fifth year
 
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
 
Propane propylene splitter
Propane propylene splitterPropane propylene splitter
Propane propylene splitter
 
Analysis of Vanadium, Nickel, Sodium, and Iron in Fuel Oils using Flame Atomi...
Analysis of Vanadium, Nickel, Sodium, and Iron in Fuel Oils using Flame Atomi...Analysis of Vanadium, Nickel, Sodium, and Iron in Fuel Oils using Flame Atomi...
Analysis of Vanadium, Nickel, Sodium, and Iron in Fuel Oils using Flame Atomi...
 
Oil and gas geochemistry
Oil and gas geochemistryOil and gas geochemistry
Oil and gas geochemistry
 
Analysis of Oil Additives Following ASTM D4951 with the Avio 200 ICP-OES
Analysis of Oil Additives Following ASTM D4951 with the Avio 200 ICP-OESAnalysis of Oil Additives Following ASTM D4951 with the Avio 200 ICP-OES
Analysis of Oil Additives Following ASTM D4951 with the Avio 200 ICP-OES
 
Group_5_ppt.pptx of aniline point and cloude point
Group_5_ppt.pptx of aniline point and cloude pointGroup_5_ppt.pptx of aniline point and cloude point
Group_5_ppt.pptx of aniline point and cloude point
 
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
Synthesis of Oxygenated Fuel Additives via Acetylation of Bio-Glycerol over H...
 
Classifications of Crude Oil
Classifications of Crude OilClassifications of Crude Oil
Classifications of Crude Oil
 

POSTER 419

  • 1. Molecular and Isotopic Fingerprinting of Hydrocarbons in Different Petroleum Entities Clara Kamel, Anic Imfeld, Yves Gélinas INTRODUCTION CONCLUSION Ø  What  is  Petroleum?                       Ø Why   do   refined   oils   have   different   hydrocarbon   composi9ons?       PETROLEUM     HYDROCARBONS   C6-­‐C60   Saturates   Naphthenes   (Cycloalkanes)   Paraffins   (branched  +                      n-­‐alkanes)   Olefins   Aroma5cs     (BTEX,  PAH)   NON-­‐ HYDROCARBONS   (N,O,S)  organic   compounds  +   Metallics   Group   Gasoline   Diesel   Light   Crude   Bunker   Jet  Fuel   Saturates   50-­‐60   65-­‐95   55-­‐90   20-­‐40   70-­‐80   Olefins   5-­‐10   0-­‐10   -­‐   -­‐   -­‐   Aroma9cs   25-­‐40   5-­‐25   10-­‐35   30-­‐50   30-­‐20   Ø  Figure  1:  Qualita9ve   Chemical  Composi9on   of  Petroleum   Δ13C  signatures  of  n-­‐alkanes  using   GC-­‐IRMS     The   alkanes   emerged   from   the   GC   column   and   were   introduced   into   a   CuO   furnace   where  they  were  successively  combusted  to   CO2  before  entering  the  ion  source  of  IRMS.     The   intensi9es   of   masses   44,   45   and   46   corresponding   to   12C16O2,13C16O2and   12C18O16O,   respec9vely,   were   measured   simultaneously,  from  which  the  13C/12C  ra9os   were   determined.   Two   correc9ons   were   applied  to  the  δ13C  values  of  n-­‐alkanes.   For   calibra9on   of     δ13C     values   of   the   standards,   a   CO2   reference   gas   was   automa9cally   introduced   into   the   IRMS   before  and  aaer  n-­‐alkane  peaks.   The  n-­‐alkane  sample  injec9ons  and  the  IRMS   measurements  were  repeated  two  9mes.   0   10000   20000   30000   40000   50000   60000   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   27   Concentra5on  (ppm)   Number  of  Carbons   n-­‐Alkane  Fingerprint   Gasoline   Diesel     Jet  Fuel     Crude   Bunker     0   500   1000   1500   2000   2500   3000   Concentra5on  (ppm)   PAH  Fingerprint   Gasoline   Diesel     Jet  Fuel   Crude   Bunker   -­‐33   -­‐31   -­‐29   -­‐27   -­‐25   -­‐23   -­‐21   -­‐19   -­‐17   -­‐15   8   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33   δ  13C/δ  12C  (per  mil)   Number  of  Carbons   Crude  oil   Bunker   Gasoline   Diesel   Jet  Fuel   APPLICATION Molecular  Signature  of  n-­‐alkanes  and  PAH   Isotopic  signature  of  n-­‐alkanes   GC-­‐FID  trace  of  n-­‐alkanes  in  Diesel   GC-­‐FID  trace  of  n-­‐alkanes  in  Crude  oil   GC-­‐FID  trace  of  PAH  in  Jet  fuel   GC-­‐FID  trace  of  PAH  in  Bunker   Ø  Table  1:  Typical  hydrocarbon   composi9on  in  (%)  of  different   petroleum  products  (1)   These  differences  in  concentra9ons  of  oil  cons9tuents  allow  a  unique  chemical  fingerprint   for  each  petroleum  en9ty. Ø  Figure  2:  Frac9onal  dis9lla9on  column  for  the   refinement  of  crude  oil  (modified  from  ref.  5)     The  difference  in  distribu9on  of  the  saturates   and  the  aroma9cs  in  each  refined  oil  depends   on  two  factors:   Ø  The  source  (where  the  oil  was  extracted)   Ø  The  refinement  process       Crude  oil  is  converted  into  petroleum  products   in  a  number  of  steps  in  refineries.  The  first  is   frac9onal  dis9lla9on  at  350  to  400°C.     The  crude  oil  vapors  rise  inside  the  column   (light  hydrocarbons),  while  the  heaviest   hydrocarbons  remain  at  the  bokom.     Ø  Chemical  Fingerprin9ng  of  the  Hydrocarbons   Due  to  the  dissimilari9es  in  characteris9cs  of  crude  oil  feed  stocks  and  varia9ons  in   refinery  processes,  refined  oil  products  differ  in  their  chemical  composi9ons.     Molecular  Signature:  GC-­‐FID  fingerprints  à  rela9ve  abundances  of  the  different   hydrocarbons  present.     Isotopic  Signature:  CSIA  (compound-­‐specific  isotope  ra9o)  à  ra9os  of  naturally   occurring  stable  isotopes  in  individual  organic  compounds  from  environmental  samples   by  GC/IRMS.     n-­‐Alkanes  generally  have  dis9nct  13C/12C  isotope  ra9os  that  reflect  the  source  or  the   nature  of  the  petroleum  product.  The  carbon  isotopic  signature  is  determined  using   the  formula  below  and  the  results  are  reported  as  δ13C  (in  per  mil)  with  respect  to  PDB.     INTRODUCTION METHODS Extrac5on  of  hydrocarbons  from   samples  with  column  chromatography     Ø  n-­‐Alkanes  eluted  with  hexane   Ø  PAH  eluted  with  dichloromethane   Quan5fica5on  of  n-­‐alkanes  and  PAH   with    GC/FID  (from  C8  to  C40)     Capillary   column:   DB-­‐EUPAH   30   m,   0.25-­‐mm   film  thickness.     Carrier  gas:  Helium  (1  mL/min).   Compound   iden9fica9on:   based   on   GC   reten9on   9mes   of   authen9c   standards,   injected   and   analyzed   under   the   same   condi9ons  as  samples.     Samples   were   run   in   triplicates,   with   the   average   value   and   standard   devia9on   reported.   Ø  CSIA  shows  that  the  n-­‐alkane   carbon  isotopic  composi9ons  are   different  in  these  refined  oils.     Ø  The  low  MW  n-­‐alkanes  (C8-­‐C16)  will   not  be  used  because  they  are   highly  vola9le  (poten9al  for  mass-­‐ dependent  isotopic  frac9ona9on),   and  because  of  coelu9on  issues   which  result  in  spectral  overlap  and   inaccurate  signatures.     Ø  The  δ13C  values  are  all  depleted  in   13C    compared  to  the  PDB   reference.                        -­‐  For  Diesel  :  -­‐29  to  -­‐22  ‰                      -­‐  For  Jet  fuel  :  -­‐27  to  -­‐22  ‰                      -­‐  For  Bunker  :  -­‐30  to  -­‐26  ‰                      -­‐  For  Crude  oil:  -­‐30  to  -­‐15  ‰                      -­‐  For  Gasoline:  -­‐24  to  -­‐21  ‰   Ø  Chemical  fingerprin9ng  was  applied  to  four  refined  oils  (Jet  Fuel,  Diesel,  Gasoline,  Bunker)   as  well  as  crude  oil.  The  petroleum-­‐specific  target  analytes  that  were  chemically   characterized  were  the  n-­‐alkanes  and  PAH.  They  were  successfully  iden9fied  and   quan9fied  in  each  petroleum  en9ty  using  GC/FID.       Ø  CSIA  provides  informa9on  regarding  the  source  of  the  different  samples  and  the  effects  of   the  refinement  process  on  the  δ13C  signatures  of  each  n-­‐alkane.  Carbon  isotopic   composi9on  of  high  molecular  weight  n-­‐alkanes  (>  C16)  are  more  useful  in   characteriza9on  of  oil  since  they  are  less  vola9le  and  more  resistant  to  weathering/ evapora9on.  Coelu9on  of  target  peaks  remains  a  complica9on  of  CSIA.     Ø  Chemical  fingerprin9ng  of  petroleum  is  a  powerful  tool  in  geochemistry  for  hydrocarbon   source  iden9fica9on.  In  oil  spill  inves9ga9ons,  using  a  single  fingerprin9ng  approach   some9mes  is  not  powerful  enough  to  fully  meet  the  objec9ves  of  forensic  inves9ga9ons   and  quan9ta9vely  associate  hydrocarbons  to  their  sources.  This  is  why  two  techniques   were  employed  in  this  case:  GC/FID  and  GC/IRMS.   Ø  Molecular  and  isotopic  measurements  are  also  used  to  study  the  weathering  effect  on  oil   spill  residues.     Ø  A  model  integra9ng  both  fingerprint  signatures  will  be  developed  to  allow  differen9a9ng   between  different  contaminants,  and  between  contaminants  and  natural  n-­‐alkanes   present  in  soils  and  sediments.   REFERENCES 1)  A.,  S.  S.  (2016).  Standard  handbook  oil  spill  environmental  forensics  fingerprin9ng  and  source   iden9fica9on.  London:  Academic  Press.   2)  Murphy,  B.  L.,  &  Morrison,  R.  D.  (2007).  Introduc9on  to  environmental  forensics.  Amsterdam:  Elsevier.   3)   Zhendi  Wang  ,  Scok  A.  Stout  &  Merv  Fingas  (2006)  Forensic  Fingerprin9ng  of  Biomarkers  for  Oil  Spill   Characteriza9on  and  Source  Iden9fica9on,  Environmental  Forensics,  7:2,  105-­‐146,  DOI:   10.1080/15275920600667104   4)  Frances  D.  Hostekler  ,  Thomas  D.  Lorenson  &  Barbara  A.  Bekins  (2013)  Petroleum  Fingerprin9ng  with   Organic  Markers,  Environmental  Forensics,  14:4,  262-­‐277,  DOI:  10.1080/15275922.2013.843611   5)  "Trays  and  Plates."  DisAllaAon  Column:  Column  Internals,  Bubble  Cap  Trays,  Valve  Trays,  Sieve  Trays,   Structured  Packing.  N.p.,  2008.  Web.  03  Dec.  2016.     C10   RESULTS/DISCUSSION C8   C9   C12   C14   C9   C10   C18   C16   C26   C20   C18   C16  C14   C12  C11   C24  C20   *   *   *   *  PAH   *   *   *  *   *  *   *   *   PAH   *   *   *   *   δ13 C = ( 13 C 12 C )Sample −( 13 C 12 C )PDB ( 13 C 12 C )PDB ×1000%