POLYNOMIALS REVIEW
Classifying Polynomials
Adding & Subtracting Polynomials
Multiplying Polynomials
Remember: Monomials
are separated
by _____ or _____ signs.
 
But, what is a monomial?
A number or variable or product
of numbers and variables.
5x2
6 x
- y2
z3 ½xy
“Poly” means _________________?
Polynomials can be classified
according to the number of
terms they have.
• ONE TERM –
• TWO TERMS –
• THREE TERMS -
5 5 3 6 2
x x y z z
 
Classify the following:
3x2
– 8xy
4abc
3x2
– 8xy
5x2
a2
+ 2ab + b2
DEGREE………………
The degree of a monomial is
determined by adding the
exponents of its variables.
So, to find the degree of a
POLYnomial, find the degree of
each separate MONOmial. The
Monomial with the HIGHEST
sum determines the degree of
the problem.
5 5 3 6 2
x x y z z
 
2
3 5
x 
7 6 4 4
3
y y x m
 
Ascending & Descending
Order
• Ascending – means to count up!
So, order the VARIABLES
exponents from least to greatest.
• Descending – means to count down!
So, order the VARIABLES
exponents from greatest to least.
2 3
5 4 2
x x x
   
3 2
4 5 2
x x x
   
2 3 2 4
24 12 6
x y x y x
 
3 2
12x y
 2
24x y
 4
6x

2 3
5 4 2
x x x
    3
4x

2
 x
 2
5x

2 3 2 4
24 12 6
x y x y x
  2 3 2 4
24 12 6
x y x y x
 
( of “y” )
2
2 5 8
x y
 
20
3
3 8 2
x y
  
6
Adding & Subtracting
Polynomials
2
(3 5 6)
y y
  2
(7 9)
y
 
2
10y 5y
 15

2 2
(3 3 )
a ab b
 
2
(4 6 )
ab b
 
2
3a 7ab
 2
5b

2
(3 2)
x  (9x
 1)

2
(7x
 4 )
x

2
10 5 1
x x
 
2 2
(4 3 5 )
x y xy
  (8xy
 2
6x
 2
3 )
y

2 2
2 3 6
x xy y
  
Subtract
2
8 5
x x
   from
2
2 6
x x

2
3x 2x
 5

4
(8 6)
x  2
(4x
 2)
 4
(2x

2
)
x

4 2
10 5 8
x x
 
Multiplying Polynomials
3
4 (3 3 )
x x y

4
12 12
x xy
 4
5 (8 5 )
x x y
 
5
40x
 25

4
x y
4 3 2
3 (2 4 4 6)
x x x x
  
6 7
x 12
 6
x 12

5
x 18
 4
x
2 2 3
6 ( 4 2 )
x y x xy y
  
4
6x y
 3 2
24x y

2 4
12x y

2 2 3
2 ( 4 7 )
x y x xy y
  
4
2x y
 3 2
8x y
 2 4
14x y

( 7)( 1)
x x
 
2
x 8x
 7

( 4)( 2)
x x
 
2
x 6x
 8

( 6)( 5)
x x
 
2
x 11x
 30

( 7)( 3)
x x
 
2
x 10x
 21

( 9)( 3)
x x
 
2
x 6x
 27

( 6)( 3)
x x
 
2
x 3x
 18

( 1)( 8)
x x
 
2
7 8
x x
 
( 2)( 7)
x x
 
2
5 14
x x
 
Tie Breaker
(3x + 2) (2x + 3)
6x2 + 13x + 6

POLYNOMIALS-REVIEW.ppt

  • 1.
    POLYNOMIALS REVIEW Classifying Polynomials Adding& Subtracting Polynomials Multiplying Polynomials
  • 2.
    Remember: Monomials are separated by_____ or _____ signs.  
  • 3.
    But, what isa monomial? A number or variable or product of numbers and variables. 5x2 6 x - y2 z3 ½xy
  • 4.
    “Poly” means _________________? Polynomialscan be classified according to the number of terms they have. • ONE TERM – • TWO TERMS – • THREE TERMS -
  • 5.
    5 5 36 2 x x y z z   Classify the following: 3x2 – 8xy 4abc 3x2 – 8xy 5x2 a2 + 2ab + b2
  • 6.
    DEGREE……………… The degree ofa monomial is determined by adding the exponents of its variables. So, to find the degree of a POLYnomial, find the degree of each separate MONOmial. The Monomial with the HIGHEST sum determines the degree of the problem.
  • 7.
    5 5 36 2 x x y z z   2 3 5 x  7 6 4 4 3 y y x m  
  • 8.
    Ascending & Descending Order •Ascending – means to count up! So, order the VARIABLES exponents from least to greatest. • Descending – means to count down! So, order the VARIABLES exponents from greatest to least.
  • 9.
    2 3 5 42 x x x     3 2 4 5 2 x x x     2 3 2 4 24 12 6 x y x y x   3 2 12x y  2 24x y  4 6x  2 3 5 4 2 x x x     3 4x  2  x  2 5x  2 3 2 4 24 12 6 x y x y x   2 3 2 4 24 12 6 x y x y x   ( of “y” )
  • 10.
    2 2 5 8 xy   20 3 3 8 2 x y    6
  • 11.
    Adding & Subtracting Polynomials 2 (35 6) y y   2 (7 9) y   2 10y 5y  15  2 2 (3 3 ) a ab b   2 (4 6 ) ab b   2 3a 7ab  2 5b  2 (3 2) x  (9x  1)  2 (7x  4 ) x  2 10 5 1 x x  
  • 12.
    2 2 (4 35 ) x y xy   (8xy  2 6x  2 3 ) y  2 2 2 3 6 x xy y    Subtract 2 8 5 x x    from 2 2 6 x x  2 3x 2x  5  4 (8 6) x  2 (4x  2)  4 (2x  2 ) x  4 2 10 5 8 x x  
  • 13.
    Multiplying Polynomials 3 4 (33 ) x x y  4 12 12 x xy  4 5 (8 5 ) x x y   5 40x  25  4 x y 4 3 2 3 (2 4 4 6) x x x x    6 7 x 12  6 x 12  5 x 18  4 x
  • 14.
    2 2 3 6( 4 2 ) x y x xy y    4 6x y  3 2 24x y  2 4 12x y  2 2 3 2 ( 4 7 ) x y x xy y    4 2x y  3 2 8x y  2 4 14x y  ( 7)( 1) x x   2 x 8x  7  ( 4)( 2) x x   2 x 6x  8 
  • 15.
    ( 6)( 5) xx   2 x 11x  30  ( 7)( 3) x x   2 x 10x  21  ( 9)( 3) x x   2 x 6x  27 
  • 16.
    ( 6)( 3) xx   2 x 3x  18  ( 1)( 8) x x   2 7 8 x x   ( 2)( 7) x x   2 5 14 x x  
  • 17.
    Tie Breaker (3x +2) (2x + 3) 6x2 + 13x + 6