1
A π meson of rest energy 139.6
MeV moving at a speed of 0.906c
collides with and sticks to a
proton of rest energy 938.3 MeV
that is at rest.
(a) Find the total relativistic
energy of the resulting
composite particle.
(b) Find the total linear
momentum of the composite
particle.
(c) Using the results of (a) and
(b), find the rest energy of the
composite particle.
2
Helping Tools
No.1
No.2
No.3
3
No.4
No.5
Solution
2
2
( )
( ) (1)
( ) (2)
E E (3)
p p p
p
a
Let
E K mc
E K mc
E
  

= + − − − −
= + − − − −
= + − − − − − − −
4
2
2
2 2
2
2
2
2
,
( ) (1)
( )
( ) ( )
1
139.6 139.6
1 0.82
0.906 )
1
139.6
332.38
0.42
Now
E K mc
mc
mc mc
v
c
MeV MeV
c
c
MeV
MeV
  

 
= + − − − −
= − +
−
= =
−
−
= =
2
,
( ) (2)
0 938.3 938.3
&
E E (3)
E 332.38MeV 938.3MeV
1270.68
p p p
p
Now
E K mc
MeV MeV
E
MeV

= + − − − −
= + =
= + − − − − − − −
 = +
=
2
2
( )
Proton is at Rest
Total Momentum = p
1
b
mv
v
c

 =
−
2
2
2
1
( ) X
(0.906 )
1
1
139.6 0.906
0.42
301.14
v
mc
c c
c
c
MeVX X
c
MeV
c
=
−
=
=
5
2 2 2 2
2 2 2 2
2 2 2
( )
( ) ( )
( ) ( )
( )
c
E pc mc
mc E pc
mc E pc
= +
 = −
 = −
2 2
2
2
(1270.68 ) (301.14 )
(1614627.66 90685.3)(MeV)
1523942.36( )
1234.48
MeV MeV
MeV
MeV
= −
= −
=
=

Pi Meson & Rest Energy.pdf

  • 1.
    1 A π mesonof rest energy 139.6 MeV moving at a speed of 0.906c collides with and sticks to a proton of rest energy 938.3 MeV that is at rest. (a) Find the total relativistic energy of the resulting composite particle. (b) Find the total linear momentum of the composite particle. (c) Using the results of (a) and (b), find the rest energy of the composite particle.
  • 2.
  • 3.
    3 No.4 No.5 Solution 2 2 ( ) ( )(1) ( ) (2) E E (3) p p p p a Let E K mc E K mc E     = + − − − − = + − − − − = + − − − − − − −
  • 4.
    4 2 2 2 2 2 2 2 2 , ( )(1) ( ) ( ) ( ) 1 139.6 139.6 1 0.82 0.906 ) 1 139.6 332.38 0.42 Now E K mc mc mc mc v c MeV MeV c c MeV MeV       = + − − − − = − + − = = − − = = 2 , ( ) (2) 0 938.3 938.3 & E E (3) E 332.38MeV 938.3MeV 1270.68 p p p p Now E K mc MeV MeV E MeV  = + − − − − = + = = + − − − − − − −  = + = 2 2 ( ) Proton is at Rest Total Momentum = p 1 b mv v c   = − 2 2 2 1 ( ) X (0.906 ) 1 1 139.6 0.906 0.42 301.14 v mc c c c c MeVX X c MeV c = − = =
  • 5.
    5 2 2 22 2 2 2 2 2 2 2 ( ) ( ) ( ) ( ) ( ) ( ) c E pc mc mc E pc mc E pc = +  = −  = − 2 2 2 2 (1270.68 ) (301.14 ) (1614627.66 90685.3)(MeV) 1523942.36( ) 1234.48 MeV MeV MeV MeV = − = − = =