SlideShare a Scribd company logo
1 of 85
Research Scholar: Prasad V. Vernekar
Research Supervisor: Dr. A. W.
Patwardhan
21st
September
2013
Motivation
 Separation of minor actinides from simulated
high level waste (SHLW) using Hollow fiber
supported liquid membrane (HFSLM) and Non-
dispersive solvent extraction (NDSX)
 Metal ion separations using HFSLM
 Scale up for industrial applications
 Various parameters affect the metal ion
permeation across the membranes
 Need for a Mathematical model to represent
transport mechanism in membranes
2
Objective
 Separation of metal ions/actinides using:
 Hollow fiber supported liquid membrane
(HFSLM) process
 Non-dispersive solvent extraction (NDSX) process
 Modeling and simulation of HFSLM process
 Extend the model to represent NDSX process
 The model should be able to estimate
separation efficiencies for different process
3
Overview
 What is Hollow fiber supported liquid
membrane (HFSLM) ?
 Study of different systems (5 cases)
 Experimental set up
 Transport mechanism
 Model Development
 Model Validation against experimental data
 Conclusions
4
What is HFSLM?
Carrier fluid
(extractant)
5
HFSLM Specifications
6
HFSLM module Liqui-Cel® X50 (2.5"x8")
Fiber type Polypropylene X50 fibers
Number of fibers (N) 9950
Fiber internal radius (ri), μm 120
Fiber outer radius (ro), μm 150
Effective module outer diameter (da),
cm
4.67
Effective module inner diameter (di),
cm
2.2
Effective pore size (rp), μm 0.03
Porosity (ε), % 40
Tortuosity (τ) 2.5
Effective fiber length (L), cm 15
Extraction of Nd3+ ions from aqueous
nitrate media using N,N,N’,N’-tetraoctyl
diglycolamide (TODGA) using HFSLM
CASE 17
System details
8
 Process  HFSLM
 Feed phase  Nd(NO3)3 in nitric acid media
 Extractant  N,N,N’,N’-tetraoctyl diglycolamide
(TODGA)
 Phase modifier  N,N-dihexyl octanamide
(DHOA)
 Diluent  n-dodecane
Complexation reactions
3
),(
3
)(3
)(
3
)(33
3
),(
3
)(3)(
3
)(33
][][
][
]3)([
tcoefficienonDistributi
][][][
]3)([
constantExtraction
freeorgaq
d
ex
aq
org
d
freeorgaqaq
org
ex
TODGANO
K
K
Nd
TODGANONd
K
TODGANONd
TODGANONd
K








Neodymium
Transport
Acid Transport
9
Nd3+
(aq) + 3NO3
-
(aq) + 3TODGA(org) Nd(NO3)3 ·3TODGA(org)
H+
(aq) + NO3
-
(aq) + TODGA(org) TODGA·HNO3(org)
(Source: Ansari et al., Ind. Eng. Chem. Res. 2009, 48, 8605–8612)
Kex
KH
Cf0
t
Feed
concentration
Experimental set-up
10
side...Strip)(
side...Feed)(
0
0
0
0
ssZs
s
s
ffZf
f
f
CCQ
dt
dC
V
CCQ
dt
dC
V


Cf0
CfZ
Cs0
CsZ
Qf
Qs
Cs0
t
Strip
concentration
Transport Mechanism
Membrane
phase
Source
phase
Receiver
phase
Feed
side
film
Strip
side
film
Cf
Cif
Cimf
Cims
Cis = Cs
Carrier: TODGA
Diluent: n-
dodecane
11
Danesi’s permeability based
model
Danesi’s equation for HFSLM
process
12
t
V
AP
C
Ct
1
ln
0 










NPLr
Q
i
T

 LNrA i2
Where,
A = Total effective surface area of hollow
fiber
P = Permeability coefficient
V = Total volume of the feed solution
N = Total number of fibers
Ф = Parameter of module
QT = Volumetric flow rate
y = 7.497E-02x
0 20 40 60 80
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Time (min)
ln[C0/Ct]
Assumption: Concentration of the complex species on the strip-side is zero
3.5M HNO3
(Source: Danesi, P. R., Journal of Membrane Science 1984, 20,
Danesi’s permeability based
model
2M HNO3
13
y = 5.887E-02x
0 20 40 60 80
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Time (min)
ln[C0/Ct]
y = 7.254E-03x
0 50 100 150 200
0
0.2
0.4
0.6
0.8
1
1.2
Time (min)
ln[C0/Ct]
1M HNO3
Feed phase : 1g/l Nd3+ in aqueous nitrate medium
Organic phase : 0.1M TODGA diluted with n-dodecane + 0.5M DHOA (phase
modifier)
Membrane diffusivity
14
so
i
mlm
i
f kr
r
Pr
r
kP

11
3
,
3
3
3
,
3
3
3
)(33
][][][][][
]3)([
orgfree
d
orgfree
org
ex
TODGANO
K
TODGANONd
TODGANONd
K




 
Where,
Pm = Membrane permeability = Kdkm
km = Membrane mass transfer coefficient
Assumption: Strip-side resistance is negligible
3
,
3
3 ][][
11
orgfreeexmlm
i
f TODGANOKkr
r
kP 
 
y = 16.014x + 39.958
0 20 40 60 80
0
200
400
600
800
1000
1200
1400
Kex[NO3]3[TODGA]3
1/P
m
mem
m
t
D
k 
Estimated values:
kf = 4.2 x 10-6 m/s
Dmem = 7.0 x 10-
10 m2/s
Assumptions
 Fluid is Newtonian and isotropic
 Isothermal operation
 Fully developed laminar flow condition
 The overall mass transfer coefficient (K) is
constant over the length of hollow fiber module
 Mass transfer is modeled by Film Theory
 The Complexation/De-complexation reactions
are instantaneous
 The strip-side film offers negligible resistance
15
Equilibrium-based approach
……..……...Bulk of feed phase to the feed-membrane interface
....Feed-membrane interface to the strip-membrane
interface
………….…Strip-membrane interface to the bulk of strip phase
tcoefficientransfermassOverall
][][
][][
,
1
2
3
),(,
3
32
3
),(,
3
31






K
k
km
TODGANOK
C
C
k
TODGANOK
C
C
k
where
freeorgssex
is
ims
freeorgffex
if
imf
With steady state assumption we have,
Rate of mass transfer of metal ions (RT)
)(
)(
)(
sissT
imsimf
o
m
TCMT
ifffT
CCkR
CC
d
D
RR
CCkR



K
C
k
k
C
k
k
kkD
d
k
C
k
k
C
R
sf
sm
o
f
sf
T
1111
1
2
1
2
1
1
2



























)( sfT mCCKR 
16
Feed-side mass transfer coefficient
(kf)
3
1
2
3
1
64.1
64.1










LD
ud
D
kd
PeSh
fifi
Where,
di = Internal diameter (of fiber) = 2rif
uf = Velocity (of fluid in fiber)
L = Length (of hollow fiber module)
D = Diffusivity (of metal ion)
Leveque equation
17
(Source: Yang and Cussler, AIChE Journal, 1986, 32(11): 1910-1916)
Metal ion diffusivity
6.0
5.018
)(103.117
A
B
AB
v
TM
D




Where,
DAB = Diffusivity of solute ‘A’ through solvent ‘B’ (m2/s)
φ = Association factor for solvent
MB = Molecular weight of solvent ‘B’ (kg/kmol)
T = Temperature (K)
μ = Viscosity of solution (kg/(m.s))
vA = Solute molal volume at normal boiling point (m3/kmol)
Wilke-Chang Equation
18
(Source: Wilke and Chang (1955) AIChE Journal, 1(2): 264-270)
Strip-side mass transfer coefficient
(ks)
6.033.0
33.0
93.0
47.033.0
8.03
1
83.03
1
6.03
1
Re022.0
Re25.1
Re8.0
Re206.0
Re38.0
Re1.12
ScSh
Sc
L
d
Sh
ScSh
ScSh
ScSh
ScSh
e












Where,
de = Equivalent diameter (for shell-side
fluid)
us = Velocity (of fluid in shell)




se
es
ud
D
Sc
D
dk
Sh



Re
Correlations available in literature
19
… (Wakao & Kaquei,
1982)… (Tan et al, 2003)
… (Puigenne et al, 1997)
… (Pierre et al, 2001)
… (Yang & Cussler, 1986)
… (Knudsen & Katz, 1958)
Model Equations
Material balance across fiber at any location
(z) dzrNRdCQ ifTff   2
dz
ur
K
dC
mCC
dzmCCKdCur
fif
f
sf
sfffif


2
)(
1
2)(



Where,
ε = Porosity of hollow fiber module
N = Total number of fibers
Integrating over the module length we have,
 

dz
ur
K
dC
mCC fif
f
sf
2
)(
1
fiff urNQ
2
 
Therefore,
20
z + dz
Z
Fiber
Length
Feed
In
(Cf0)
Strip
out
(CsZ)
Feed out
(CfZ)
Strip in
(Cs0)
Direction of
Mass transfer
SLM
z
Model Equations (cont..)




























































s
f
fifs
f
s
f
fif
s
s
f
fifs
f
f
fZ
Q
Q
m
ur
KZ
Q
Q
m
Q
Q
m
ur
KZ
mC
Q
Q
m
ur
KZ
Q
Q
mC
C
1
2
exp1
1
2
exp11
2
exp1 00


Module exit concentrations for Nd3+ ions:
)( 00 fZf
s
f
ssZ CC
Q
Q
CC 
For feed phase…
For strip phase…
21
Model Equations (cont..)




























































s
f
h
fif
h
s
f
h
s
f
h
fif
h
hsh
s
f
h
fif
h
s
f
hhf
hfZ
Q
Q
m
ur
ZK
Q
Q
m
Q
Q
m
ur
ZK
Cm
Q
Q
m
ur
ZK
Q
Q
mC
C
1
2
exp1
1
2
exp11
2
exp1 00


Module exit concentrations for H+ ions:
)( 00 hfZhf
s
f
hshsZ CC
Q
Q
CC 
For feed phase…
For strip phase…
22
sideStrip...)(
sideFeed...)(
0
0
0
0
hshsZs
hs
s
hfhfZf
hf
f
CCQ
dt
dC
V
CCQ
dt
dC
V


Mass balance across reservoir for H+ ions
Problem Statement
3
0
3
3
0
3
0
3
3
)3(][
)()(
)3(][
imffif
imf
ex
imsimf
m
ifffT
imsss
ims
ex
CLNOC
C
K
CC
d
D
CCkR
CLNOC
C
K







)(][
)()(
)(][
03
0
03
himffhif
himf
H
himshimf
hm
hifhffhT
himsshs
hims
H
CLNOC
C
K
CC
d
D
CCkR
CLNOC
C
K







6 EQUATIONS
6 UNKNOWNS
Cif, Cimf, Cims
Chif, Chimf, Chims
H+
(aq) + NO3
-
(aq) + TODGA(org) TODGA·HNO3(org)
23
Nd3+
(aq) + 3NO3
-
(aq) + 3TODGA(org) Nd(NO3)3 ·3TODGA(org)
Gujar R.B. et al. (2009) Proceedings of the Nuclear and Radiochemistry Symposium, NUCAR-2009,
January 7-10, 2009
Kex =
1000
KH = 4.1
Ansari S.A. et al. (2005) Solvent Extraction and Ion Exchange, 23: 463–479
Kex
KH
Base case
24
Dm = 6.0 x 10-12 m2/s (Nd-TODGA
complex)
-10 2
Experimental conditions:
• Feed phase: 0.56 g/l Nd3+ at 3 M HNO3 (500 ml)
• Carrier: 0.1M TODGA + 0.5M DHOA in n-dodecane
• Strip phase: Distilled water (500 ml)
• Feed / strip phase flow rates: 200 ml/min
0
1
2
3
4
0 10 20 30 40 50 60 70
HNO3concentrationinfeedreservoir(M)
Time (min)
Experimental
Prediction
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Nd3+ionsLeftinthefeedreservoir
Time (min)
Experimental
Prediction
kf = 1.68 x 10-5 m/s
ks = 7.25 x 10-5 m/s
0
20
40
60
80
100
0 30 60 90 120 150 180 210
%Nd3+
ionsLeftinfeedReservoir
Time (min)
Effect of feed phase acidity
25
0
20
40
60
80
100
0 30 60 90 120 150 180 210
%Nd3+ionLeftinfeedReservoir
Time (min)
0.5MHNO3-Exp 0.5MHNO3-Pred
2MHNO3-Exp 2MHNO3-Pred
3.5MHNO3-Exp 3.5MHNO3-Pred
0.01
0.1
1
10
100
0 30 60 90 120 150 180 210
k1
Time (min)
Experimental conditions:
• Feed phase: 0.83 g/l Nd3+ (at 0.5 M HNO3), 0.82 g/l
Nd3+
(at 2 M HNO3), 0.56 g/l Nd3+ (at 3.5 M HNO3) (500 ml)
• Carrier: 0.1M TODGA + 0.5M DHOA in n-dodecane
• Strip phase: distilled water (500 ml)
Effect of initial TODGA
concentration26
Experimental conditions:
• Feed phase: 0.56 g/l Nd3+ at
3.5 M HNO3 (500 ml)
• Carrier: TODGA + 0.5 M
DHOA in n-dodecane
• Strip phase: distilled water
(500 ml)
• Feed / strip phase flow
rates: 200 ml/min
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Nd3+
ionsleftinfeedReservoir
Time (min)
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Nd3+
ionsleftinfeedReservoir
Time (min)
0.05MTODGA-Exp 0.05MTODGA-Pred
0.1MTODGA-Exp 0.1MTODGA-Pred
0.15MTODGA-Exp 0.15MTODGA-Pred
Effect of initial feed concentration
27
Experimental conditions:
• Feed phase: Nd3+ at 3 M
HNO3 (500 ml)
• Carrier: 0.1M TODGA +
0.5M DHOA in n-dodecane
• Strip phase: distilled water
(500 ml)
• Feed / strip phase flow
rates: 200 ml/min
0
20
40
60
80
100
0 50 100 150 200
%Nd3+ionsleftinfeedreservoir
Time (min)
0
20
40
60
80
100
0 20 40 60 80 100 120 140 160 180 200
Time (min)
5.36g/l Nd-Exp 5.36g/l Nd-Pred
2.21g/l Nd-Exp 2.21g/l Nd-Pred
1g/l Nd-Exp 1g/l Nd-Pred
0.56g/l Nd-Exp 0.56g/l Nd-Pred
Effect of TODGA stoichiometry
28
Experimental conditions:
• Feed phase: 5.36 g/l Nd3+ at 3 M HNO3
(500 ml)
• Carrier: 0.1M TODGA + 0.5M DHOA in
n-dodecane
• Strip phase: distilled water (500 ml)
• Feed / strip phase flow rates: 200
ml/min
 Ansari et al (2005) Solvent Extraction and Ion Exchange, 23: 463–479
 Sasaki et al (2001) Solvent Extraction and Ion Exchange, 19(1): 91–103
Nd3+
(aq) + 3NO3
-
(aq) + 4TODGA(org) Nd(NO3)3 ·4TODGA(org)
0
20
40
60
80
100
0 50 100 150 200 250 300 350
%Nd3+ionsleftinfeedreservoir
Time (min)
5.36g/lNd-Exp
4TODGA (5.36g/lNd)-Pred
Effect of feed flow rates
29
Experimental conditions:
• Feed phase: 0.56 g/l Nd3+ at
3 M HNO3 (500 ml)
• Carrier: 0.1M TODGA +
0.5M DHOA in n-dodecane
• Strip phase: distilled water
(500 ml)
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Nd3+ionsleftinfeedreservoir
Time (min)
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Nd3+ionsleftinfeedreservoir
Time (min)
200 ml/min-Exp
200 ml/min-Pred
100 ml/min-Pred
50 ml/min-Pred
Conclusions
 The extraction of Nd3+ ions does not exhibit simple 1st order
behavior
 HNO3 plays a significant role in complexation of Nd3+ ions with
TODGA and needs to be investigated
 The proposed model also hints that ‘n’ may be in the range of
3 < n < 4 for more than 1 g/l Nd3+ concentrations
 Model predictions suggest that extraction of Nd3+ ions is
independent of flow rates for Reynolds number greater than
1.8
 With HFSLM process, 100% extraction of solute ions is
possible with minimal extractant/solvent inventory
 HFSLM would be the preferred choice for extraction (or
selective removal) of acids, pharmaceutical species or anions
30
Role of cations H+ and Na+ on the
transport of Nd3+ ions using HFSLM
CASE 231
System details
32
 Process  HFSLM
 Feed phase  Nd(NO3)3 in (HNO3+ NaNO3)
media
 Extractant  N,N,N’,N’-tetraoctyl diglycolamide
(TODGA)
 Phase modifier  N,N-dihexyl octanamide
(DHOA)
 Diluent  n-dodecane
Equilibration experiment results
33
Sr. No
[HNO3]
(M)
[NaNO3]
(M)
Kd
(for Nd3+
ions)
Kex
1 3 - 140 10042
2 2.5 0.5 110 7816
3 2 1 71 5162
4 1.5 1.5 71 5140
5 1 2 45 3238
6 0.5 2.5 25 1789
7 - 3 5 315
3
),(
3
)(3 ][][ freeorgaq
d
ex
TODGANO
K
K 

[Nd3+]initial = 1 g/l
[TODGA]initial = 0.1 M
Total nitrate ion (NO3
-) concentration is kept constant at 3M
HFSLM experimental data
34
Experimental conditions:
• Feed phase: 1 g/l Nd3+ (500
ml)
• Carrier: 0.1M TODGA + 0.5M
DHOA in NPH
• Strip phase: distilled water
(500 ml)
• Feed / strip phase flow
rates: 170 ml/min0
20
40
60
80
100
0 10 20 30 40 50 60
%Nd3+ionsleftinfeedReservoir
Time (min)
0
20
40
60
80
100
0 10 20 30 40 50 60
%Nd3+ionsleftinfeedReservoir
Time (min)
0MNaNO3-3MHNO3-exp
1.5MNaNO3-1.5MHNO3-Exp
3MNaNO3-0MHNO3-Exp
HFSLM experimental data
(contd…)35
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0 10 20 30 40 50 60 70
HNO3concentrationinstripreservoir(M)
Time (min)
0.35
0.4
0.45
ervoir(M)
3MHNO3 2MHNO3-1MNaNO3
1.5MHNO3-1.5MNaNO3 0.5MHNO3-2.5MNaNO3
66.88
79.56 80.16
88.29 86.07 84 81.8
0
20
40
60
80
100
0 0.5 1 1.5 2 2.5 3
%ExtractionofNd3+
ions
HNO3 concentration(M) →
←NaNO3 concentration(M)
At the end of 30 minutes
of extraction run
Acid transport to the
strip phase
Model Predictions
36
Dm = 6.0 x 10-12 m2/s (Nd-TODGA
complex)
Dhm = 1.2 x 10-10 m2/s (Acid-TODGA
0
20
40
60
80
100
0 30 60 90 120 150
%Nd3+ionsLeftinfeedReservoir
Time (min)
3MHNO3-Exp 3MHNO3-Pred
1.5MHNO3-1.5MNaNO3-Exp 1.5MHNO3-1.5MNaNO3-Pred
3MNaNO3-Exp 3MNaNO3-Pred
0
10
20
30
40
50
60
0 30 60 90 120 150
k1
Time (min)
Model Predictions (cont…)
37
0
20
40
60
80
100
0 50 100 150 200%Nd3+
ionsLeftinfeedReservoir
Time (min)
40
60
80
100
d3+ionsLeftinfeedReservoir
3MHNO3-Exp 3MHNO3-Pred
0.5MHNO3-2.5MNaNO3-Exp 0.5MHNO3-2.5MNaNO3-Pred
0.5MHNO3-Exp 0.5MHNO3-Pred
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Nd3+ionsLeftinfeedReservoir
Time (min)
3MHNO3-Exp 3MHNO3-Pred
2MHNO3-1MNaNO3-Exp 2MHNO3-1MNaNO3-Pred
2MHNO3-Exp 2MHNO3-Pred
Conclusions
 A very high value of 10042 was observed for Kex
when only HNO3 was used in comparison with
315 for the case of NaNO3 only.
 Extraction of Nd3+ ions is slow in absence of
HNO3 (i.e. only NaNO3 present)
 There is possible participation of H+ ions (HNO3)
in TODGA complexation reactions with trivalent
metal ions
 Highest rate of extraction was achieved with
equimolar concentrations of HNO3 and NaNO3
38
Role of cations H+ and Na+ on the
transport of Nd3+ ions using non-
dispersive solvent extraction (NDSX)
and its comparison with HFSLM
CASE 339
System details
40
 Process  NDSX and its comparison with
HFSLM
 Feed phase  Nd(NO3)3 in (HNO3+ NaNO3)
media
 Extractant  N,N,N’,N’-tetraoctyl diglycolamide
(TODGA)
 Phase modifier  N,N-dihexyl octanamide
(DHOA)
Experimental set-up
41
Cf0
CmsZ
CfZ
Cms0
Feed
reservoir
Organic
reservoir
Transport Mechanism
Membrane
phase
Source
phase
Bulk organic
phase
Feed
side
film
Organic
side
film
Cf
Cif
Cimf
Cims
Carrier: TODGA
Diluent: n-
dodecane
42
Cms
Equilibrium-based approach
mss
freeorgfex
if
imf
CC
k
m
k
TODGANOK
C
C
k
where



 
1
2
3
),(
3
31
1
1
][][
,
Rate of mass transfer of metal ions (RT)




















1
2
1
1
2
111
k
k
kkD
d
k
C
k
k
C
R
sm
o
f
sf
T
43
)(
1
)3(][
)()(
00
3
0
3
3
0
imsimf
m
sm
msimf
imffex
imf
if
imsimf
m
ifffT
CC
d
D
kD
d
CC
CLNOK
C
C
CC
d
D
CCkR













3
EQUATIO
NS
3 UNKNOWNS Cif, Cimf , Cims
Equilibration experiment results
44
Sr. No
[Nd3+
]
(g/l)
[HNO3]
(M)
[TODGA]
(M)
DNd Kex
1 1 3 0.05 2.2 32590
2 1 3 0.15 16.8 2812
3 1 3 0.1 7.1 10042
4 2 3 0.1 2.1 7063
5 3 3 0.1 1.6 5540
6 4 3 0.1 1.1 5447
7 5 3 0.1 1.15 5272
8 1 2 0.1 9.18 8615
9 1 1 0.1 3.24 4388
Effect of feed acidity
45
NOTE: Data is at the end of 30 minutes of
extraction run
85.28 83
88.9 90.9
95.37 92.9 95.34
0
20
40
60
80
100
120
0 0.5 1 1.5 2 2.5 3
%ExtractionofNd3+ions
HNO3 concentration(M) →
←NaNO3 concentration(M)
Acid balance for NDSX runs
46
Case
Initial aqueous phase
concentrations (M)
Final aqueous phase
concentration of
HNO3 (M)
Drop in HNO3
concentration
(M)HNO3 NaNO3
1 1 - 0.91 0.09
2 2 - 1.8 0.2
3 3 - 2.6 0.4
4 2.5 0.5 2.3 0.2
5 2 1 1.77 0.23
6 1.5 1.5 1.31 0.19
7 1 2 0.88 0.12
8 0.5 2.5 0.44 0.06
9 - 3 Not applicable Not applicable
Experimental
conditions
• Feed phase: 1 g/l Nd3+ (500 ml)
• Extractant: 0.1M TODGA + 0.5M DHOA in NPH
(500 ml)
• Feed / organic phase flow rates: 170 ml/min
Effect of acidity
47
0
20
40
60
80
100
0 50 100 150 200
%Nd3+ionsleftinfeedreservoir
Time (min)
3MHNO3-Exp 3MHNO3-Pred
1.5MHNO3-1.5MNaNO3-Exp 1.5MHNO3-1.5MNaNO3-Pred
3MNaNO3-Exp 3MNaNO3-Pred
Dm = 9.0 x 10-12 m2/s (Nd-TODGA
complex)
Dhm = 1.2 x 10-10 m2/s (Acid-TODGA
0
20
40
60
80
100
0 50 100 150 200
k1
Time (min)
For 3M HNO3 case:
• Aqueous-film resistance varies from
7% to 63% during NDSX process
For 3M NaNO3 case:
• Diffusion resistance varies from 96%
to 92% during NDSX process
Effect of acidity
48
1MHNO3 only-Exp 1MHNO3 only-Pred
1MHNO3-2MNaNO3-Exp 1MHNO3-2MNaNO3-Pred
0
20
40
60
80
100
0 50 100 150
%Nd3+ionsLeftinfeedReservoir
Time (min)
0
10
20
30
40
50
0 50 100 150
k1
Time (min)
For 1M HNO3 case:
• Diffusion resistance varies from 97%
to 95% during NDSX process
For 1M HNO3-2M NaNO3case:
• Aqueous-film resistance varies from
6% to 44% during NDSX process
Comparison of HFSLM with
NDSX49
Experimental conditions:
• Feed phase: 1 g/l Nd3+ (500 ml)
• Extractant: 0.1M TODGA + 0.5M DHOA in n-dodecane (500 ml)
• Feed / organic phase flow rates: 170 ml/min
0
20
40
60
80
100
0 10 20 30 40 50 60
%Nd3+ionsLeftinfeedReservoir
Time (min)
NDSX-Exp NDSX-Pred
HFSLM-Exp HFSLM-Pred
3M HNO3
0
20
40
60
80
100
0 10 20 30 40 50 60
k1
Time (min)
NDSX-Pred
HFSLM-Pred
Comparison of HFSLM with
NDSX50
Experimental conditions:
• Feed phase: 1 g/l Nd3+ (500 ml)
• Extractant: 0.1M TODGA + 0.5M DHOA in n-dodecane (500 ml)
• Feed / organic phase flow rates: 170 ml/min
0
20
40
60
80
100
0 10 20 30 40 50 60
%Nd3+ionsLeftinfeedReservoir
Time (min)
NDSX-Exp NDSX-Pred
HFSLM-Exp HFSLM-Pred
1.5M HNO3 - 1.5M NaNO3
0
10
20
30
40
50
60
70
0 10 20 30 40 50 60
k1
Time (min)
NDSX-Pred
HFSLM-Pred
Comparison of HFSLM with
NDSX51
Experimental conditions:
• Feed phase: 1 g/l Nd3+ (500 ml)
• Extractant: 0.1M TODGA + 0.5M DHOA in n-dodecane (500 ml)
• Feed / organic phase flow rates: 170 ml/min
0
20
40
60
80
100
0 50 100 150 200
%Nd3+
ionsLeftinfeedReservoir
Time (min)
NDSX-Exp NDSX-Pred
HFSLM-Exp HFSLM-Pred
3M NaNO3
0
2
4
6
8
10
0 50 100 150 200
k1
Time (min)
NDSX-Pred
HFSLM-Pred
Conclusions
 For 3M HNO3 case, controlling resistance changes from diffusion
control to aqueous-film resistance control during NDSX run
 For 3M NaNO3 case, diffusion step is predominantly mass transfer
controlling throughout the extraction run
 NDSX is relatively faster than HFSLM extraction under identical
operating conditions (Exception: absence of H+ ions)
 With just NaNO3 present, acid transport is absent hence there is an
enhanced stripping at the strip-organic interface for HFSLM process
and hence HFSLM gives better % extraction
 With just HNO3 present, acid transport to the strip side is
considerable. This suppresses the stripping reaction at the strip-
organic interface for HFSLM and hence NDSX gives comparatively
better % extraction
 NDSX is similar to solvent extraction technique but with large value of
interfacial mass transfer area
52
Study of competitive transport of Nd3+
and U6+ ions across HFSLM
CASE 453
System details
54
 Process  HFSLM
 Feed phase  Nd(NO3)3 and UO2(NO3)2 in HNO3
media
 Extractant  N,N,N’,N’-tetraoctyl diglycolamide
(TODGA)
 Phase modifier  isodecanol
Experimental set-up
55
side...Strip)(
side...Feed)(
011
01
011
01
ssZs
s
s
ffZf
f
f
CCQ
dt
dC
V
CCQ
dt
dC
V

 Cs0
t
Cf0
CfZ
Cs0
CsZ
Qf
Qs
Cf0
t
Cf02
(U6+)
Cf01
(Nd3+)
Cs02
(U6+)
Cs01
(Nd3+)Nd3+ ions
side...Strip)(
side...Feed)(
022
02
022
02
ssZs
s
s
ffZf
f
f
CCQ
dt
dC
V
CCQ
dt
dC
V


U6+ ions
Complexation reactions
Neodymium
Transport
Acid Transport
56
Nd3+
(aq) + 3NO3
-
(aq) + 3TODGA(org) Nd(NO3)3 ·3TODGA(org)
H+
(aq) + NO3
-
(aq) + TODGA(org) TODGA·HNO3(org)
Uranium Transport
UO2
2+
(aq) + 2NO3
-
(aq) + nTODGA(org) UO2(NO3)2 ·nTODGA(org)
])()([])()([3][][ 232333 nfreeinitial TODGANOUOnTODGANONdTODGATODGA 
TODGA balance
}{}{2}{3][][ )(0)0(0)(02)0(02)(01)0(01)0(,3)(,3 tthfthfttftfttftftfttf CCCCCCNONO 




Nitrate ion
balance
Transport Mechanism
Membrane
phase
Source
phase
Receiver
phase
Feed
side
film
Strip
side
film
Carrier: TODGA
Diluent: n-
dodecane
57
Cf1
Cif1
Cimf1
Cims1
Cis1 = Cs1
Cf2 Cfmf2
Cims2
Cis2 = Cs2
Cif2
Neodymium
ionsUranium
Module exit concentrations




























































s
f
fifs
f
s
f
fif
s
s
f
fifs
f
f
fZ
Q
Q
m
ur
ZK
Q
Q
m
Q
Q
m
ur
ZK
Cm
Q
Q
m
ur
ZK
Q
Q
mC
C
1
1
1
1
1
0111
1
101
1
1
2
exp1
1
2
exp11
2
exp1


Nd3+ ions
)( 101011 fZf
s
f
ssZ CC
Q
Q
CC 
58




























































s
f
fifs
f
s
f
fif
s
s
f
fifs
f
f
fZ
Q
Q
m
ur
ZK
Q
Q
m
Q
Q
m
ur
ZK
Cm
Q
Q
m
ur
ZK
Q
Q
mC
C
2
2
2
2
2
0222
2
202
2
1
2
exp1
1
2
exp11
2
exp1


)( 202022 fZf
s
f
ssZ CC
Q
Q
CC 
UO2
2+ ions
Problem Statement
3
210
3
31
1
1
11
0
1
111
3
210
3
31
1
1
)3(][
)()(
)3(][
imfimffif
imf
ex
imsimf
m
ifffT
imsimsss
ims
ex
nCCLNOC
C
K
CC
d
D
CCkR
nCCLNOC
C
K







)(][
)()(
)(][
03
0
03
himffhif
himf
H
himshimf
hm
hifhffhT
himsshs
hims
H
CLNOC
C
K
CC
d
D
CCkR
CLNOC
C
K







9 EQUATIONS
9 UNKNOWNS
Cif1, Cimf1, Cims1
Cif2, Cimf2, Cims2
Chif, Chimf, Chims
59
n
imfimffif
imf
ex
imsimf
m
ifffT
n
imsimsss
ims
ex
nCCLNOC
C
K
CC
d
D
CCkR
nCCLNOC
C
K
)3(][
)()(
)3(][
210
3
32
2
2
22
0
2
222
210
3
32
2
2







TODGA stoichiometry
60
[HNO3] n Major extracted species Log Kex
1 M 1.74 UO2(NO3)2·(TODGA)2 2.14
3 M 1.18 UO2(NO3)2·(TODGA) 1.03
(Source: Panja et al., Journal of Membrane Science, 337 (2009) 274–
281)
For Uranyl nitrate - TODGA complexation
The value of Kex for 2M HNO3 system was estimated by
interpolation of the data in the above table and found to be Log
(Kex) = 1.6
Model validation for 3M HNO3
61
• Feed phase: 1 g/l Nd3+ ions + 1g/l
UO2
2+ ions at 3M HNO3 (500 ml)
• Carrier: 0.1M TODGA + 5% (v/v)
isodecanol in n-dodecane
• Strip phase: distilled water (500 ml)
• Feed / strip phase flow rates: 170
Dm1 = 1.1 x 10-11 m2/s (Nd-TODGA complex)
Dm2 = 4 x 10-12 m2/s (U-TODGA complex)
Dhm = 1.2 x 10-10 m2/s (HNO3-TODGA
complex)
0
10
20
30
40
50
0 10 20 30 40 50 60 70 80
k1
Time (min)
Nd-Predicted
U-Predicted
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Metalionsleftinfeedreservoir
Time (min)
Nd-Exp Nd-Pred
U-Exp U-Pred
Model validation for 3M HNO3
62
0
20
40
60
80
100
0 20 40 60 80 100
%Metalionsleftinfeedreservoir
Time (min)
Nd-Exp Nd-Pred
U-Exp U-Pred
0
20
40
60
80
100
0 20 40 60 80 100
%Metalionsleftinfeedreservoir
Time (min)
Nd-Exp Nd-Pred
U-Exp U-Pred
[UO2
2+]initial = 2 g/l [UO2
2+]initial = 3 g/l
Model validation for 2M HNO3
63
0
20
40
60
80
100
0 30 60 90 120 150
%Metalionsleftinfeedreservoir
Time (min)
Nd-Exp Nd-Pred
U-Exp U-Pred
0
20
40
60
80
100
0 30 60 90 120 150
%Metalionsleftinfeedreservoir
Time (min)
Nd-Exp Nd-Pred
U-Exp U-Pred
1
TODG
A
2
TODG
A
Conclusions
64
 TODGA provokes competition between Nd3+ and
UO2
2+ ions
 There is significant transport of both the Nd3+ and
UO2
2+ ions
 The rate of extraction of Nd3+ ions is approximately
six times than that of UO2
2+ ions
 100% extraction of Nd3+ ions takes place in almost
30 minutes even with high concentration of UO2
2+
ions
 There is an enhancement in the rate of extraction of
UO2
2+ ions once 100% extraction of Nd3+ ions has
been completed
Extraction of Co2+ ions using bis(2-
ethylhexyl) phosphoric acid (D2EHPA)
in HFSLM
CASE 565
System details
66
 Process  HFSLM
 Feed phase  CoSO4 7H2O solution (dissolved in a
buffer of sodium acetate and acetic acid)
 Extractant  di-2-ethylhexyl phosphoric acid
(D2EHPA)
 Diluent  Kerosene
Complexation reaction
Co2+
(aq) + 2(HR)2(org) CoR2·2(HR)(org) + 2H+
2
)(2
)(
)(
2
)(2
2
)(2)(
2
2
)()(2
])[(
][
][
)](2[
tcoefficienonDistributi
])[(][
][)](2[
constantExtraction

















org
aq
dex
aq
org
d
orgaq
aqorg
ex
HR
H
KK
Cu
HRCuR
K
HRCu
HHRCuR
K
Metal Transport
67
(D2EHPA) (metal
complex)
Transport Mechanism
Membrane
phase
Source
phase
Receiver
phase
Feed
side
film
Strip
side
film
Cf
Cif
Cimf
Cims
Cis
Carrier: D2EHPA
Diluent: Kerosene
68
Chf
Chif
Chis
Chs
Cs
[(HR)2]free,s
[(HR)2]free,f
Equilibrium-based approach
69
1
2
2
),(2
2
2
),(2
1
][
])[(
][
])[(
k
k
m
H
HR
K
C
C
k
H
HR
K
C
C
k
s
freeorg
ex
is
ims
f
freeorg
ex
if
imf



















With steady state assumption we have,
K
C
k
k
C
k
k
kkD
d
k
C
k
k
C
R
sf
sm
o
f
sf
T
1111
1
2
1
2
1
1
2



























Co2+ transfer rate
)(
)(
)(
sissT
imsimf
o
m
TCMT
ifffT
CCkR
CC
d
D
RR
CCkR



H+ transfer rate
)(2
)(
)(
imsimf
o
m
hT
hishsshT
hfhiffhT
CC
d
D
R
CCkR
CCkR



)( sfT mCCKR 
Model Equations (cont..)




























































s
f
fifs
f
s
f
fif
s
s
f
fifs
f
f
fZ
Q
Q
m
ur
KZ
Q
Q
m
Q
Q
m
ur
KZ
mC
Q
Q
m
ur
KZ
Q
Q
mC
C
1
2
exp1
1
2
exp11
2
exp1 00


Module exit concentrations:
)( 00 fZf
s
f
ssZ CC
Q
Q
CC 
For feed phase…
For strip phase…
70
Problem Statement
6 EQUATIONS
6 UNKNOWNS
Cif, Cimf, Cims
Cis, Chif, Chis
71
Co2+
(aq) + 2(HR)2(org) CoR2·2(HR)(org) + 2H+
)(2)(
)()(
)2(
0
0
2
0
2
imsimf
m
hfhiff
imsimf
m
fiff
imfif
hifimf
ex
CC
d
D
CCk
CC
d
D
CCk
CLC
CC
K




)(2)(
)()(
)2(
0
0
2
0
2
imsimf
m
hishss
imsimf
m
siss
imsis
hisims
ex
CC
d
D
CCk
CC
d
D
CCk
CLC
CC
K




Equilibration data
72
Aqueous
[Co2+
]initial
mM
D2EHPA
conc
%(v/v)
Organic
[(HR)2]initial
mM
Aqueous
[Co2+
]eqm
mM
Organic
[(HR)2]eqm
mM
Organic
[CoR2(HR)2]eqm
mM
Aqueous
[H+
]eqm
mM
Kex
1 15 445.807 0.796 445.399 0.204 0.409 2.16 x 10-7
1 20 594.410 0.608 593.625 0.392 0.785 1.13 x 10-6
3 10 297.205 2.685 296.575 0.315 0.630 5.29 x 10-7
3 15 445.807 2.225 444.258 0.775 1.549 4.23 x 10-6
3 20 594.410 1.790 591.990 1.210 2.420 1.13 x 10-5
2
)(2)(
2
2
)()(2
])[(][
][)](2[
orgaq
aqorg
ex
HRCu
HHRCuR
K 



Why buffer the feed phase?
73
0
20
40
60
80
100
0 10 20 30 40 50 60
%Extractionofcobaltions
Time (min)
0
20
40
60
80
100
0 40 80 120 160
%Extractionofcobaltions
Time (min)
Buffered feed (4.5 pH) Non-buffered feed
Operating conditions:
Feed = 3mM Co2+ ions
Extractant = 20% (v/v) D2EHPA
in kerosene
Strip acid = 2M H2SO4
Dm = 1.5 x 10-10 m2/s (Cobalt-D2EHPA
complex)
Effect of feed pH
74
Operating conditions:
Feed = 3mM Co2+ ions
Ligand = 20% (v/v)
D2EHPA
Flow rate = 100
ml/min (both)
Strip acid = 2M H2SO4
0
20
40
60
0 10 20 30 40 50 60 70
%Extractionofcobalti
Time (min)
6pH-Exp 6pH-Pred
4.5pH-Exp 4.5pH-Pred
3.5pH-Exp 3.5pH-Pred
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Extractionofcobaltion
Time (min)
Effect of initial feed concentration
75
Operating conditions:
Feed = Buffer (4.5 pH)
Ligand = 20% (v/v) D2EHPA
Flow rate = 100
ml/min (both)
3mMCo-Exp 3mMCo-Pred
2mMCo-Exp 2mMCo-Pred
1mMCo-Exp 1mMCo-Pred
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Extractionofcobaltions
Time (min)
0
0.5
1
1.5
2
2.5
3
0 10 20 30 40 50 60 70
Concentrationofcobaltions
instripreservoir(mM)
Time (min)
Effect of initial D2EHPA
concentration76
Operating conditions:
Feed = 3mM Co2+ ions
Buffer (4.5 pH)
Flow rate = 100
ml/min (both)
Strip acid = 2M H2SO4
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Extractionofcobaltions
Time (min)
0
20
40
60
0 10 20 30 40 50 60 70
%Extractionofcobalti
Time (min)
10%D2EHPA-Exp 10%D2EHPA-Pred
20%D2EHPA-Exp 20%D2EHPA-Pred
30%D2EHPA-Exp 30%D2EHPA-Pred
Effect of strip phase acidity
77
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Extractionofcobaltions
Time (min)
Operating conditions:
Feed = 3mM Co2+ ions
Buffer (4.5 pH)
Ligand = 20% (v/v) D2EHPA
Flow rate = 100
ml/min (both)
0
20
40
60
0 10 20 30 40 50 60 7
%Extractionofcobaltions
Time (min)
3MH2SO4-Exp 3MH2SO4-Pred
2MH2SO4-Exp 2MH2SO4-Pred
1MH2SO4-Exp 1MH2SO4-Pred
0.5MH2SO4-Exp 0.5MH2SO4-Pred
Effect of flow rates
78
0
20
40
60
80
100
0 10 20 30 40 50 60 70
%Extractionofcobaltions
Time (min)
Operating conditions:
Feed = 3mM Co2+ ions
Buffer (4.5 pH)
Ligand = 20% (v/v) D2EHPA
Strip acid = 2M H2SO4
0
20
40
60
80
0 10 20 30 40 50 60 70
%Extractionofcobaltions
Time (min)
100 ml/min-Exp 100 ml/min-Pred
200 ml/min-Exp 200 ml/min-Pred
300 ml/min-Exp 300 ml/min-Pred
400 ml/min-Exp 400 ml/min-Pred
Conclusions
 The counter-ions (H+) transport across the HFSLM affects the
transport of Co2+ ions. Hence, buffer is added to the feed
phase
 Higher the feed phase pH higher is the rate of extraction of
Co2+ ions
 The strip acidity has no effect on the transport of Co2+ ions in
the range of 0.5-3M H2SO4
 Increase in D2EHPA concentration yields in higher rates of
extraction of Co2+ ions
 The % transport of Co2+ ions is independent of flow rates
Reynolds number greater than 3.5
 The increase in flow rate results in increased feed-side mass
transfer coefficient (kf); it increases from 2 x 10-5 m/s at 100
79
Publications
80
Publications (cont…)
81
Publications (cont…)
82
Publications (Under peer review)
Submitted to Separation Science and Technology
 P. V. Vernekar, Y. D. Jagdale, A. W. Patwardhan , A.
V. Patwardhan , S. A. Ansari , P. K. Mohapatra & V.
K. Manchanda, Non-dispersive solvent extraction of
Neodymium using N,N,N',N'-tetraoctyl diglycolamide
(TODGA).
Submitted to Separation Science and Technology
 P. V. Vernekar, Y. D. Jagdale, A. W. Patwardhan , A.
V. Patwardhan , S. A. Ansari , P. K. Mohapatra & V.
K. Manchanda, Simultaneous extraction of Neodymium
and Uranium using hollow fiber supported liquid
membrane.
83
Conferences
84
 P. V. Vernekar, Y. D. Jagdale, A. W. Patwardhan , A. V.
Patwardhan , S. A. Ansari , P. K. Mohapatra & V. K.
Manchanda, Mathematical model for the extraction of metal
ions using hollow fiber supported liquid membrane operated in
a recycling mode, DAE-BRNS Symposium on Emerging
Trends in Separation Science and Technology (SESTEC-
2012), February 27 - March 01, 2012, SVKM’s Mithibai
College, Vile Parle, Mumbai – 400 056, India. (Oral
Presentation)
 P. V. Vernekar, Y. D. Jagdale, Mathematical modelling for
liquid membrane separation processes in hollow fibre
membrane Contactors, International Conference on Advances
in Chemical Engineering (ACE-2013), February 22-24, 2013,
IIT Roorkee, India. (Oral Presentation)
Thank You
85

More Related Content

What's hot

Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processDaniel Wheeler
 
EUCASS 2009 presentation
EUCASS 2009 presentationEUCASS 2009 presentation
EUCASS 2009 presentationruizanthony
 
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...Daniel Wheeler
 
Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...PFHub PFHub
 
Modeling dispersion under unsteady groundwater flow conditions
Modeling dispersion under unsteady groundwater flow conditionsModeling dispersion under unsteady groundwater flow conditions
Modeling dispersion under unsteady groundwater flow conditionsAmro Elfeki
 
Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…Frank-Michael Jäger
 
Mesoscopic simulation of incompressible fluid flow in
Mesoscopic simulation of incompressible fluid flow inMesoscopic simulation of incompressible fluid flow in
Mesoscopic simulation of incompressible fluid flow ineSAT Publishing House
 
Mesoscopic simulation of incompressible fluid flow in porous media
Mesoscopic simulation of incompressible fluid flow in porous mediaMesoscopic simulation of incompressible fluid flow in porous media
Mesoscopic simulation of incompressible fluid flow in porous mediaeSAT Journals
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsDaniel Wheeler
 
NIAC Phase 2 Poster
NIAC Phase 2 PosterNIAC Phase 2 Poster
NIAC Phase 2 PosterChad Truitt
 
CFD analysis of flow through packed bed bunker
CFD analysis of flow through packed bed bunkerCFD analysis of flow through packed bed bunker
CFD analysis of flow through packed bed bunkerkailas53muke
 

What's hot (14)

Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation process
 
EUCASS 2009 presentation
EUCASS 2009 presentationEUCASS 2009 presentation
EUCASS 2009 presentation
 
Optimizing solid core_30955
Optimizing solid core_30955Optimizing solid core_30955
Optimizing solid core_30955
 
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
 
Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...
 
Modeling dispersion under unsteady groundwater flow conditions
Modeling dispersion under unsteady groundwater flow conditionsModeling dispersion under unsteady groundwater flow conditions
Modeling dispersion under unsteady groundwater flow conditions
 
Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…
 
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical CompoundsUse of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
 
Mesoscopic simulation of incompressible fluid flow in
Mesoscopic simulation of incompressible fluid flow inMesoscopic simulation of incompressible fluid flow in
Mesoscopic simulation of incompressible fluid flow in
 
High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...
High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...
High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...
 
Mesoscopic simulation of incompressible fluid flow in porous media
Mesoscopic simulation of incompressible fluid flow in porous mediaMesoscopic simulation of incompressible fluid flow in porous media
Mesoscopic simulation of incompressible fluid flow in porous media
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methods
 
NIAC Phase 2 Poster
NIAC Phase 2 PosterNIAC Phase 2 Poster
NIAC Phase 2 Poster
 
CFD analysis of flow through packed bed bunker
CFD analysis of flow through packed bed bunkerCFD analysis of flow through packed bed bunker
CFD analysis of flow through packed bed bunker
 

Viewers also liked

LBA&D homepage presentation
LBA&D homepage presentationLBA&D homepage presentation
LBA&D homepage presentationLydia Bobo
 
Tecnologia aplicada a la educacion activ. i angel guzman
Tecnologia aplicada a la educacion activ. i angel guzmanTecnologia aplicada a la educacion activ. i angel guzman
Tecnologia aplicada a la educacion activ. i angel guzmanBlanes48
 
Portfolio daysi castro lopez revised
Portfolio daysi castro lopez revisedPortfolio daysi castro lopez revised
Portfolio daysi castro lopez reviseddayslob
 
Tecnologia aplicada a la educ. activ. iii angel guzman
Tecnologia aplicada a la educ. activ. iii angel guzmanTecnologia aplicada a la educ. activ. iii angel guzman
Tecnologia aplicada a la educ. activ. iii angel guzmanBlanes48
 
Tecnologia aplicada a la educ. activ. iv y v angel guzman
Tecnologia aplicada a la educ. activ. iv y v angel guzmanTecnologia aplicada a la educ. activ. iv y v angel guzman
Tecnologia aplicada a la educ. activ. iv y v angel guzmanBlanes48
 
FinalDiitJspProjectuu
FinalDiitJspProjectuuFinalDiitJspProjectuu
FinalDiitJspProjectuuIlias Ahmed
 
Defensive Programming 2013-03-18
Defensive Programming 2013-03-18Defensive Programming 2013-03-18
Defensive Programming 2013-03-18Laura A Schild
 
Portfolio Daysi CastroLopez revised
Portfolio Daysi CastroLopez revisedPortfolio Daysi CastroLopez revised
Portfolio Daysi CastroLopez reviseddayslob
 
Portafolio daysi castro lopez
Portafolio daysi castro lopezPortafolio daysi castro lopez
Portafolio daysi castro lopezdayslob
 
Professional Writing Sample
Professional Writing SampleProfessional Writing Sample
Professional Writing SampleShanae Speller
 
Gencos rehabilitation 27.03.2013
Gencos rehabilitation 27.03.2013Gencos rehabilitation 27.03.2013
Gencos rehabilitation 27.03.2013SULTAN ZAFAR
 
Gencos Rehabilitation 27.03.2013
Gencos Rehabilitation 27.03.2013Gencos Rehabilitation 27.03.2013
Gencos Rehabilitation 27.03.2013SULTAN ZAFAR
 

Viewers also liked (15)

LBA&D homepage presentation
LBA&D homepage presentationLBA&D homepage presentation
LBA&D homepage presentation
 
Tecnologia aplicada a la educacion activ. i angel guzman
Tecnologia aplicada a la educacion activ. i angel guzmanTecnologia aplicada a la educacion activ. i angel guzman
Tecnologia aplicada a la educacion activ. i angel guzman
 
Portfolio daysi castro lopez revised
Portfolio daysi castro lopez revisedPortfolio daysi castro lopez revised
Portfolio daysi castro lopez revised
 
Tecnologia aplicada a la educ. activ. iii angel guzman
Tecnologia aplicada a la educ. activ. iii angel guzmanTecnologia aplicada a la educ. activ. iii angel guzman
Tecnologia aplicada a la educ. activ. iii angel guzman
 
Health system
Health systemHealth system
Health system
 
Tecnologia aplicada a la educ. activ. iv y v angel guzman
Tecnologia aplicada a la educ. activ. iv y v angel guzmanTecnologia aplicada a la educ. activ. iv y v angel guzman
Tecnologia aplicada a la educ. activ. iv y v angel guzman
 
FinalDiitJspProjectuu
FinalDiitJspProjectuuFinalDiitJspProjectuu
FinalDiitJspProjectuu
 
Defensive Programming 2013-03-18
Defensive Programming 2013-03-18Defensive Programming 2013-03-18
Defensive Programming 2013-03-18
 
Comparing SAS Files
Comparing SAS FilesComparing SAS Files
Comparing SAS Files
 
Portfolio Daysi CastroLopez revised
Portfolio Daysi CastroLopez revisedPortfolio Daysi CastroLopez revised
Portfolio Daysi CastroLopez revised
 
Portafolio daysi castro lopez
Portafolio daysi castro lopezPortafolio daysi castro lopez
Portafolio daysi castro lopez
 
Professional Writing Sample
Professional Writing SampleProfessional Writing Sample
Professional Writing Sample
 
Golden Girls London
Golden Girls LondonGolden Girls London
Golden Girls London
 
Gencos rehabilitation 27.03.2013
Gencos rehabilitation 27.03.2013Gencos rehabilitation 27.03.2013
Gencos rehabilitation 27.03.2013
 
Gencos Rehabilitation 27.03.2013
Gencos Rehabilitation 27.03.2013Gencos Rehabilitation 27.03.2013
Gencos Rehabilitation 27.03.2013
 

Similar to PhD slides

Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solution
Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solutionMagnetic chitosan nanoparticles for removal of cr(vi) from aqueous solution
Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solutionhbrothers
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidescdtpv
 
Liquid-like’ Films
Liquid-like’ FilmsLiquid-like’ Films
Liquid-like’ FilmsAlokmay Datta
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangorcdtpv
 
Parameter Estimation of Pollutant Removal for Subsurface Horizontal Flow Cons...
Parameter Estimation of Pollutant Removal for Subsurface Horizontal Flow Cons...Parameter Estimation of Pollutant Removal for Subsurface Horizontal Flow Cons...
Parameter Estimation of Pollutant Removal for Subsurface Horizontal Flow Cons...mkbsbs
 
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas AnalysisALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas AnalysisNova Fabrica Ltd
 
Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids Ehsan B. Haghighi
 
Time-Frequency Representation For Estimating Young’s Modulus And Poisson’s Ra...
Time-Frequency Representation For Estimating Young’s Modulus And Poisson’s Ra...Time-Frequency Representation For Estimating Young’s Modulus And Poisson’s Ra...
Time-Frequency Representation For Estimating Young’s Modulus And Poisson’s Ra...IJERA Editor
 
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Fundación Ramón Areces
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...M. Faisal Halim
 
EP Thesis Defence 2016
EP Thesis Defence 2016EP Thesis Defence 2016
EP Thesis Defence 2016Elia Previtera
 
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe  MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe Dierk Raabe
 
Uncertainties in Transient Capture-Zone Estimates
Uncertainties in Transient Capture-Zone EstimatesUncertainties in Transient Capture-Zone Estimates
Uncertainties in Transient Capture-Zone EstimatesVelimir (monty) Vesselinov
 
Carrier kinetics analysis with two-defect level model in a CdS/CIGSe junction...
Carrier kinetics analysis with two-defect level model in a CdS/CIGSe junction...Carrier kinetics analysis with two-defect level model in a CdS/CIGSe junction...
Carrier kinetics analysis with two-defect level model in a CdS/CIGSe junction...Ashwin Hariharan
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discoveryAnubhav Jain
 

Similar to PhD slides (20)

Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solution
Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solutionMagnetic chitosan nanoparticles for removal of cr(vi) from aqueous solution
Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solution
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxides
 
Liquid-like’ Films
Liquid-like’ FilmsLiquid-like’ Films
Liquid-like’ Films
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
 
Parameter Estimation of Pollutant Removal for Subsurface Horizontal Flow Cons...
Parameter Estimation of Pollutant Removal for Subsurface Horizontal Flow Cons...Parameter Estimation of Pollutant Removal for Subsurface Horizontal Flow Cons...
Parameter Estimation of Pollutant Removal for Subsurface Horizontal Flow Cons...
 
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas AnalysisALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
 
Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids
 
Time-Frequency Representation For Estimating Young’s Modulus And Poisson’s Ra...
Time-Frequency Representation For Estimating Young’s Modulus And Poisson’s Ra...Time-Frequency Representation For Estimating Young’s Modulus And Poisson’s Ra...
Time-Frequency Representation For Estimating Young’s Modulus And Poisson’s Ra...
 
physics lab manual.pdf
physics lab manual.pdfphysics lab manual.pdf
physics lab manual.pdf
 
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
 
ISE pdf
ISE pdfISE pdf
ISE pdf
 
Pore scale dynamics and the interpretation of flow processes - Martin Blunt, ...
Pore scale dynamics and the interpretation of flow processes - Martin Blunt, ...Pore scale dynamics and the interpretation of flow processes - Martin Blunt, ...
Pore scale dynamics and the interpretation of flow processes - Martin Blunt, ...
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
 
EP Thesis Defence 2016
EP Thesis Defence 2016EP Thesis Defence 2016
EP Thesis Defence 2016
 
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe  MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
 
Uncertainties in Transient Capture-Zone Estimates
Uncertainties in Transient Capture-Zone EstimatesUncertainties in Transient Capture-Zone Estimates
Uncertainties in Transient Capture-Zone Estimates
 
Carrier kinetics analysis with two-defect level model in a CdS/CIGSe junction...
Carrier kinetics analysis with two-defect level model in a CdS/CIGSe junction...Carrier kinetics analysis with two-defect level model in a CdS/CIGSe junction...
Carrier kinetics analysis with two-defect level model in a CdS/CIGSe junction...
 
proposal presentation file-linked
proposal presentation file-linkedproposal presentation file-linked
proposal presentation file-linked
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
2015-Moosa-CNTs
2015-Moosa-CNTs2015-Moosa-CNTs
2015-Moosa-CNTs
 

PhD slides

  • 1. Research Scholar: Prasad V. Vernekar Research Supervisor: Dr. A. W. Patwardhan 21st September 2013
  • 2. Motivation  Separation of minor actinides from simulated high level waste (SHLW) using Hollow fiber supported liquid membrane (HFSLM) and Non- dispersive solvent extraction (NDSX)  Metal ion separations using HFSLM  Scale up for industrial applications  Various parameters affect the metal ion permeation across the membranes  Need for a Mathematical model to represent transport mechanism in membranes 2
  • 3. Objective  Separation of metal ions/actinides using:  Hollow fiber supported liquid membrane (HFSLM) process  Non-dispersive solvent extraction (NDSX) process  Modeling and simulation of HFSLM process  Extend the model to represent NDSX process  The model should be able to estimate separation efficiencies for different process 3
  • 4. Overview  What is Hollow fiber supported liquid membrane (HFSLM) ?  Study of different systems (5 cases)  Experimental set up  Transport mechanism  Model Development  Model Validation against experimental data  Conclusions 4
  • 5. What is HFSLM? Carrier fluid (extractant) 5
  • 6. HFSLM Specifications 6 HFSLM module Liqui-Cel® X50 (2.5"x8") Fiber type Polypropylene X50 fibers Number of fibers (N) 9950 Fiber internal radius (ri), μm 120 Fiber outer radius (ro), μm 150 Effective module outer diameter (da), cm 4.67 Effective module inner diameter (di), cm 2.2 Effective pore size (rp), μm 0.03 Porosity (ε), % 40 Tortuosity (τ) 2.5 Effective fiber length (L), cm 15
  • 7. Extraction of Nd3+ ions from aqueous nitrate media using N,N,N’,N’-tetraoctyl diglycolamide (TODGA) using HFSLM CASE 17
  • 8. System details 8  Process  HFSLM  Feed phase  Nd(NO3)3 in nitric acid media  Extractant  N,N,N’,N’-tetraoctyl diglycolamide (TODGA)  Phase modifier  N,N-dihexyl octanamide (DHOA)  Diluent  n-dodecane
  • 12. Danesi’s permeability based model Danesi’s equation for HFSLM process 12 t V AP C Ct 1 ln 0            NPLr Q i T   LNrA i2 Where, A = Total effective surface area of hollow fiber P = Permeability coefficient V = Total volume of the feed solution N = Total number of fibers Ф = Parameter of module QT = Volumetric flow rate y = 7.497E-02x 0 20 40 60 80 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (min) ln[C0/Ct] Assumption: Concentration of the complex species on the strip-side is zero 3.5M HNO3 (Source: Danesi, P. R., Journal of Membrane Science 1984, 20,
  • 13. Danesi’s permeability based model 2M HNO3 13 y = 5.887E-02x 0 20 40 60 80 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (min) ln[C0/Ct] y = 7.254E-03x 0 50 100 150 200 0 0.2 0.4 0.6 0.8 1 1.2 Time (min) ln[C0/Ct] 1M HNO3 Feed phase : 1g/l Nd3+ in aqueous nitrate medium Organic phase : 0.1M TODGA diluted with n-dodecane + 0.5M DHOA (phase modifier)
  • 14. Membrane diffusivity 14 so i mlm i f kr r Pr r kP  11 3 , 3 3 3 , 3 3 3 )(33 ][][][][][ ]3)([ orgfree d orgfree org ex TODGANO K TODGANONd TODGANONd K       Where, Pm = Membrane permeability = Kdkm km = Membrane mass transfer coefficient Assumption: Strip-side resistance is negligible 3 , 3 3 ][][ 11 orgfreeexmlm i f TODGANOKkr r kP    y = 16.014x + 39.958 0 20 40 60 80 0 200 400 600 800 1000 1200 1400 Kex[NO3]3[TODGA]3 1/P m mem m t D k  Estimated values: kf = 4.2 x 10-6 m/s Dmem = 7.0 x 10- 10 m2/s
  • 15. Assumptions  Fluid is Newtonian and isotropic  Isothermal operation  Fully developed laminar flow condition  The overall mass transfer coefficient (K) is constant over the length of hollow fiber module  Mass transfer is modeled by Film Theory  The Complexation/De-complexation reactions are instantaneous  The strip-side film offers negligible resistance 15
  • 16. Equilibrium-based approach ……..……...Bulk of feed phase to the feed-membrane interface ....Feed-membrane interface to the strip-membrane interface ………….…Strip-membrane interface to the bulk of strip phase tcoefficientransfermassOverall ][][ ][][ , 1 2 3 ),(, 3 32 3 ),(, 3 31       K k km TODGANOK C C k TODGANOK C C k where freeorgssex is ims freeorgffex if imf With steady state assumption we have, Rate of mass transfer of metal ions (RT) )( )( )( sissT imsimf o m TCMT ifffT CCkR CC d D RR CCkR    K C k k C k k kkD d k C k k C R sf sm o f sf T 1111 1 2 1 2 1 1 2                            )( sfT mCCKR  16
  • 17. Feed-side mass transfer coefficient (kf) 3 1 2 3 1 64.1 64.1           LD ud D kd PeSh fifi Where, di = Internal diameter (of fiber) = 2rif uf = Velocity (of fluid in fiber) L = Length (of hollow fiber module) D = Diffusivity (of metal ion) Leveque equation 17 (Source: Yang and Cussler, AIChE Journal, 1986, 32(11): 1910-1916)
  • 18. Metal ion diffusivity 6.0 5.018 )(103.117 A B AB v TM D     Where, DAB = Diffusivity of solute ‘A’ through solvent ‘B’ (m2/s) φ = Association factor for solvent MB = Molecular weight of solvent ‘B’ (kg/kmol) T = Temperature (K) μ = Viscosity of solution (kg/(m.s)) vA = Solute molal volume at normal boiling point (m3/kmol) Wilke-Chang Equation 18 (Source: Wilke and Chang (1955) AIChE Journal, 1(2): 264-270)
  • 19. Strip-side mass transfer coefficient (ks) 6.033.0 33.0 93.0 47.033.0 8.03 1 83.03 1 6.03 1 Re022.0 Re25.1 Re8.0 Re206.0 Re38.0 Re1.12 ScSh Sc L d Sh ScSh ScSh ScSh ScSh e             Where, de = Equivalent diameter (for shell-side fluid) us = Velocity (of fluid in shell)     se es ud D Sc D dk Sh    Re Correlations available in literature 19 … (Wakao & Kaquei, 1982)… (Tan et al, 2003) … (Puigenne et al, 1997) … (Pierre et al, 2001) … (Yang & Cussler, 1986) … (Knudsen & Katz, 1958)
  • 20. Model Equations Material balance across fiber at any location (z) dzrNRdCQ ifTff   2 dz ur K dC mCC dzmCCKdCur fif f sf sfffif   2 )( 1 2)(    Where, ε = Porosity of hollow fiber module N = Total number of fibers Integrating over the module length we have,    dz ur K dC mCC fif f sf 2 )( 1 fiff urNQ 2   Therefore, 20 z + dz Z Fiber Length Feed In (Cf0) Strip out (CsZ) Feed out (CfZ) Strip in (Cs0) Direction of Mass transfer SLM z
  • 23. Problem Statement 3 0 3 3 0 3 0 3 3 )3(][ )()( )3(][ imffif imf ex imsimf m ifffT imsss ims ex CLNOC C K CC d D CCkR CLNOC C K        )(][ )()( )(][ 03 0 03 himffhif himf H himshimf hm hifhffhT himsshs hims H CLNOC C K CC d D CCkR CLNOC C K        6 EQUATIONS 6 UNKNOWNS Cif, Cimf, Cims Chif, Chimf, Chims H+ (aq) + NO3 - (aq) + TODGA(org) TODGA·HNO3(org) 23 Nd3+ (aq) + 3NO3 - (aq) + 3TODGA(org) Nd(NO3)3 ·3TODGA(org) Gujar R.B. et al. (2009) Proceedings of the Nuclear and Radiochemistry Symposium, NUCAR-2009, January 7-10, 2009 Kex = 1000 KH = 4.1 Ansari S.A. et al. (2005) Solvent Extraction and Ion Exchange, 23: 463–479 Kex KH
  • 24. Base case 24 Dm = 6.0 x 10-12 m2/s (Nd-TODGA complex) -10 2 Experimental conditions: • Feed phase: 0.56 g/l Nd3+ at 3 M HNO3 (500 ml) • Carrier: 0.1M TODGA + 0.5M DHOA in n-dodecane • Strip phase: Distilled water (500 ml) • Feed / strip phase flow rates: 200 ml/min 0 1 2 3 4 0 10 20 30 40 50 60 70 HNO3concentrationinfeedreservoir(M) Time (min) Experimental Prediction 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Nd3+ionsLeftinthefeedreservoir Time (min) Experimental Prediction kf = 1.68 x 10-5 m/s ks = 7.25 x 10-5 m/s
  • 25. 0 20 40 60 80 100 0 30 60 90 120 150 180 210 %Nd3+ ionsLeftinfeedReservoir Time (min) Effect of feed phase acidity 25 0 20 40 60 80 100 0 30 60 90 120 150 180 210 %Nd3+ionLeftinfeedReservoir Time (min) 0.5MHNO3-Exp 0.5MHNO3-Pred 2MHNO3-Exp 2MHNO3-Pred 3.5MHNO3-Exp 3.5MHNO3-Pred 0.01 0.1 1 10 100 0 30 60 90 120 150 180 210 k1 Time (min) Experimental conditions: • Feed phase: 0.83 g/l Nd3+ (at 0.5 M HNO3), 0.82 g/l Nd3+ (at 2 M HNO3), 0.56 g/l Nd3+ (at 3.5 M HNO3) (500 ml) • Carrier: 0.1M TODGA + 0.5M DHOA in n-dodecane • Strip phase: distilled water (500 ml)
  • 26. Effect of initial TODGA concentration26 Experimental conditions: • Feed phase: 0.56 g/l Nd3+ at 3.5 M HNO3 (500 ml) • Carrier: TODGA + 0.5 M DHOA in n-dodecane • Strip phase: distilled water (500 ml) • Feed / strip phase flow rates: 200 ml/min 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Nd3+ ionsleftinfeedReservoir Time (min) 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Nd3+ ionsleftinfeedReservoir Time (min) 0.05MTODGA-Exp 0.05MTODGA-Pred 0.1MTODGA-Exp 0.1MTODGA-Pred 0.15MTODGA-Exp 0.15MTODGA-Pred
  • 27. Effect of initial feed concentration 27 Experimental conditions: • Feed phase: Nd3+ at 3 M HNO3 (500 ml) • Carrier: 0.1M TODGA + 0.5M DHOA in n-dodecane • Strip phase: distilled water (500 ml) • Feed / strip phase flow rates: 200 ml/min 0 20 40 60 80 100 0 50 100 150 200 %Nd3+ionsleftinfeedreservoir Time (min) 0 20 40 60 80 100 0 20 40 60 80 100 120 140 160 180 200 Time (min) 5.36g/l Nd-Exp 5.36g/l Nd-Pred 2.21g/l Nd-Exp 2.21g/l Nd-Pred 1g/l Nd-Exp 1g/l Nd-Pred 0.56g/l Nd-Exp 0.56g/l Nd-Pred
  • 28. Effect of TODGA stoichiometry 28 Experimental conditions: • Feed phase: 5.36 g/l Nd3+ at 3 M HNO3 (500 ml) • Carrier: 0.1M TODGA + 0.5M DHOA in n-dodecane • Strip phase: distilled water (500 ml) • Feed / strip phase flow rates: 200 ml/min  Ansari et al (2005) Solvent Extraction and Ion Exchange, 23: 463–479  Sasaki et al (2001) Solvent Extraction and Ion Exchange, 19(1): 91–103 Nd3+ (aq) + 3NO3 - (aq) + 4TODGA(org) Nd(NO3)3 ·4TODGA(org) 0 20 40 60 80 100 0 50 100 150 200 250 300 350 %Nd3+ionsleftinfeedreservoir Time (min) 5.36g/lNd-Exp 4TODGA (5.36g/lNd)-Pred
  • 29. Effect of feed flow rates 29 Experimental conditions: • Feed phase: 0.56 g/l Nd3+ at 3 M HNO3 (500 ml) • Carrier: 0.1M TODGA + 0.5M DHOA in n-dodecane • Strip phase: distilled water (500 ml) 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Nd3+ionsleftinfeedreservoir Time (min) 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Nd3+ionsleftinfeedreservoir Time (min) 200 ml/min-Exp 200 ml/min-Pred 100 ml/min-Pred 50 ml/min-Pred
  • 30. Conclusions  The extraction of Nd3+ ions does not exhibit simple 1st order behavior  HNO3 plays a significant role in complexation of Nd3+ ions with TODGA and needs to be investigated  The proposed model also hints that ‘n’ may be in the range of 3 < n < 4 for more than 1 g/l Nd3+ concentrations  Model predictions suggest that extraction of Nd3+ ions is independent of flow rates for Reynolds number greater than 1.8  With HFSLM process, 100% extraction of solute ions is possible with minimal extractant/solvent inventory  HFSLM would be the preferred choice for extraction (or selective removal) of acids, pharmaceutical species or anions 30
  • 31. Role of cations H+ and Na+ on the transport of Nd3+ ions using HFSLM CASE 231
  • 32. System details 32  Process  HFSLM  Feed phase  Nd(NO3)3 in (HNO3+ NaNO3) media  Extractant  N,N,N’,N’-tetraoctyl diglycolamide (TODGA)  Phase modifier  N,N-dihexyl octanamide (DHOA)  Diluent  n-dodecane
  • 33. Equilibration experiment results 33 Sr. No [HNO3] (M) [NaNO3] (M) Kd (for Nd3+ ions) Kex 1 3 - 140 10042 2 2.5 0.5 110 7816 3 2 1 71 5162 4 1.5 1.5 71 5140 5 1 2 45 3238 6 0.5 2.5 25 1789 7 - 3 5 315 3 ),( 3 )(3 ][][ freeorgaq d ex TODGANO K K   [Nd3+]initial = 1 g/l [TODGA]initial = 0.1 M Total nitrate ion (NO3 -) concentration is kept constant at 3M
  • 34. HFSLM experimental data 34 Experimental conditions: • Feed phase: 1 g/l Nd3+ (500 ml) • Carrier: 0.1M TODGA + 0.5M DHOA in NPH • Strip phase: distilled water (500 ml) • Feed / strip phase flow rates: 170 ml/min0 20 40 60 80 100 0 10 20 30 40 50 60 %Nd3+ionsleftinfeedReservoir Time (min) 0 20 40 60 80 100 0 10 20 30 40 50 60 %Nd3+ionsleftinfeedReservoir Time (min) 0MNaNO3-3MHNO3-exp 1.5MNaNO3-1.5MHNO3-Exp 3MNaNO3-0MHNO3-Exp
  • 35. HFSLM experimental data (contd…)35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0 10 20 30 40 50 60 70 HNO3concentrationinstripreservoir(M) Time (min) 0.35 0.4 0.45 ervoir(M) 3MHNO3 2MHNO3-1MNaNO3 1.5MHNO3-1.5MNaNO3 0.5MHNO3-2.5MNaNO3 66.88 79.56 80.16 88.29 86.07 84 81.8 0 20 40 60 80 100 0 0.5 1 1.5 2 2.5 3 %ExtractionofNd3+ ions HNO3 concentration(M) → ←NaNO3 concentration(M) At the end of 30 minutes of extraction run Acid transport to the strip phase
  • 36. Model Predictions 36 Dm = 6.0 x 10-12 m2/s (Nd-TODGA complex) Dhm = 1.2 x 10-10 m2/s (Acid-TODGA 0 20 40 60 80 100 0 30 60 90 120 150 %Nd3+ionsLeftinfeedReservoir Time (min) 3MHNO3-Exp 3MHNO3-Pred 1.5MHNO3-1.5MNaNO3-Exp 1.5MHNO3-1.5MNaNO3-Pred 3MNaNO3-Exp 3MNaNO3-Pred 0 10 20 30 40 50 60 0 30 60 90 120 150 k1 Time (min)
  • 37. Model Predictions (cont…) 37 0 20 40 60 80 100 0 50 100 150 200%Nd3+ ionsLeftinfeedReservoir Time (min) 40 60 80 100 d3+ionsLeftinfeedReservoir 3MHNO3-Exp 3MHNO3-Pred 0.5MHNO3-2.5MNaNO3-Exp 0.5MHNO3-2.5MNaNO3-Pred 0.5MHNO3-Exp 0.5MHNO3-Pred 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Nd3+ionsLeftinfeedReservoir Time (min) 3MHNO3-Exp 3MHNO3-Pred 2MHNO3-1MNaNO3-Exp 2MHNO3-1MNaNO3-Pred 2MHNO3-Exp 2MHNO3-Pred
  • 38. Conclusions  A very high value of 10042 was observed for Kex when only HNO3 was used in comparison with 315 for the case of NaNO3 only.  Extraction of Nd3+ ions is slow in absence of HNO3 (i.e. only NaNO3 present)  There is possible participation of H+ ions (HNO3) in TODGA complexation reactions with trivalent metal ions  Highest rate of extraction was achieved with equimolar concentrations of HNO3 and NaNO3 38
  • 39. Role of cations H+ and Na+ on the transport of Nd3+ ions using non- dispersive solvent extraction (NDSX) and its comparison with HFSLM CASE 339
  • 40. System details 40  Process  NDSX and its comparison with HFSLM  Feed phase  Nd(NO3)3 in (HNO3+ NaNO3) media  Extractant  N,N,N’,N’-tetraoctyl diglycolamide (TODGA)  Phase modifier  N,N-dihexyl octanamide (DHOA)
  • 43. Equilibrium-based approach mss freeorgfex if imf CC k m k TODGANOK C C k where      1 2 3 ),( 3 31 1 1 ][][ , Rate of mass transfer of metal ions (RT)                     1 2 1 1 2 111 k k kkD d k C k k C R sm o f sf T 43 )( 1 )3(][ )()( 00 3 0 3 3 0 imsimf m sm msimf imffex imf if imsimf m ifffT CC d D kD d CC CLNOK C C CC d D CCkR              3 EQUATIO NS 3 UNKNOWNS Cif, Cimf , Cims
  • 44. Equilibration experiment results 44 Sr. No [Nd3+ ] (g/l) [HNO3] (M) [TODGA] (M) DNd Kex 1 1 3 0.05 2.2 32590 2 1 3 0.15 16.8 2812 3 1 3 0.1 7.1 10042 4 2 3 0.1 2.1 7063 5 3 3 0.1 1.6 5540 6 4 3 0.1 1.1 5447 7 5 3 0.1 1.15 5272 8 1 2 0.1 9.18 8615 9 1 1 0.1 3.24 4388
  • 45. Effect of feed acidity 45 NOTE: Data is at the end of 30 minutes of extraction run 85.28 83 88.9 90.9 95.37 92.9 95.34 0 20 40 60 80 100 120 0 0.5 1 1.5 2 2.5 3 %ExtractionofNd3+ions HNO3 concentration(M) → ←NaNO3 concentration(M)
  • 46. Acid balance for NDSX runs 46 Case Initial aqueous phase concentrations (M) Final aqueous phase concentration of HNO3 (M) Drop in HNO3 concentration (M)HNO3 NaNO3 1 1 - 0.91 0.09 2 2 - 1.8 0.2 3 3 - 2.6 0.4 4 2.5 0.5 2.3 0.2 5 2 1 1.77 0.23 6 1.5 1.5 1.31 0.19 7 1 2 0.88 0.12 8 0.5 2.5 0.44 0.06 9 - 3 Not applicable Not applicable Experimental conditions • Feed phase: 1 g/l Nd3+ (500 ml) • Extractant: 0.1M TODGA + 0.5M DHOA in NPH (500 ml) • Feed / organic phase flow rates: 170 ml/min
  • 47. Effect of acidity 47 0 20 40 60 80 100 0 50 100 150 200 %Nd3+ionsleftinfeedreservoir Time (min) 3MHNO3-Exp 3MHNO3-Pred 1.5MHNO3-1.5MNaNO3-Exp 1.5MHNO3-1.5MNaNO3-Pred 3MNaNO3-Exp 3MNaNO3-Pred Dm = 9.0 x 10-12 m2/s (Nd-TODGA complex) Dhm = 1.2 x 10-10 m2/s (Acid-TODGA 0 20 40 60 80 100 0 50 100 150 200 k1 Time (min) For 3M HNO3 case: • Aqueous-film resistance varies from 7% to 63% during NDSX process For 3M NaNO3 case: • Diffusion resistance varies from 96% to 92% during NDSX process
  • 48. Effect of acidity 48 1MHNO3 only-Exp 1MHNO3 only-Pred 1MHNO3-2MNaNO3-Exp 1MHNO3-2MNaNO3-Pred 0 20 40 60 80 100 0 50 100 150 %Nd3+ionsLeftinfeedReservoir Time (min) 0 10 20 30 40 50 0 50 100 150 k1 Time (min) For 1M HNO3 case: • Diffusion resistance varies from 97% to 95% during NDSX process For 1M HNO3-2M NaNO3case: • Aqueous-film resistance varies from 6% to 44% during NDSX process
  • 49. Comparison of HFSLM with NDSX49 Experimental conditions: • Feed phase: 1 g/l Nd3+ (500 ml) • Extractant: 0.1M TODGA + 0.5M DHOA in n-dodecane (500 ml) • Feed / organic phase flow rates: 170 ml/min 0 20 40 60 80 100 0 10 20 30 40 50 60 %Nd3+ionsLeftinfeedReservoir Time (min) NDSX-Exp NDSX-Pred HFSLM-Exp HFSLM-Pred 3M HNO3 0 20 40 60 80 100 0 10 20 30 40 50 60 k1 Time (min) NDSX-Pred HFSLM-Pred
  • 50. Comparison of HFSLM with NDSX50 Experimental conditions: • Feed phase: 1 g/l Nd3+ (500 ml) • Extractant: 0.1M TODGA + 0.5M DHOA in n-dodecane (500 ml) • Feed / organic phase flow rates: 170 ml/min 0 20 40 60 80 100 0 10 20 30 40 50 60 %Nd3+ionsLeftinfeedReservoir Time (min) NDSX-Exp NDSX-Pred HFSLM-Exp HFSLM-Pred 1.5M HNO3 - 1.5M NaNO3 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 k1 Time (min) NDSX-Pred HFSLM-Pred
  • 51. Comparison of HFSLM with NDSX51 Experimental conditions: • Feed phase: 1 g/l Nd3+ (500 ml) • Extractant: 0.1M TODGA + 0.5M DHOA in n-dodecane (500 ml) • Feed / organic phase flow rates: 170 ml/min 0 20 40 60 80 100 0 50 100 150 200 %Nd3+ ionsLeftinfeedReservoir Time (min) NDSX-Exp NDSX-Pred HFSLM-Exp HFSLM-Pred 3M NaNO3 0 2 4 6 8 10 0 50 100 150 200 k1 Time (min) NDSX-Pred HFSLM-Pred
  • 52. Conclusions  For 3M HNO3 case, controlling resistance changes from diffusion control to aqueous-film resistance control during NDSX run  For 3M NaNO3 case, diffusion step is predominantly mass transfer controlling throughout the extraction run  NDSX is relatively faster than HFSLM extraction under identical operating conditions (Exception: absence of H+ ions)  With just NaNO3 present, acid transport is absent hence there is an enhanced stripping at the strip-organic interface for HFSLM process and hence HFSLM gives better % extraction  With just HNO3 present, acid transport to the strip side is considerable. This suppresses the stripping reaction at the strip- organic interface for HFSLM and hence NDSX gives comparatively better % extraction  NDSX is similar to solvent extraction technique but with large value of interfacial mass transfer area 52
  • 53. Study of competitive transport of Nd3+ and U6+ ions across HFSLM CASE 453
  • 54. System details 54  Process  HFSLM  Feed phase  Nd(NO3)3 and UO2(NO3)2 in HNO3 media  Extractant  N,N,N’,N’-tetraoctyl diglycolamide (TODGA)  Phase modifier  isodecanol
  • 56. Complexation reactions Neodymium Transport Acid Transport 56 Nd3+ (aq) + 3NO3 - (aq) + 3TODGA(org) Nd(NO3)3 ·3TODGA(org) H+ (aq) + NO3 - (aq) + TODGA(org) TODGA·HNO3(org) Uranium Transport UO2 2+ (aq) + 2NO3 - (aq) + nTODGA(org) UO2(NO3)2 ·nTODGA(org) ])()([])()([3][][ 232333 nfreeinitial TODGANOUOnTODGANONdTODGATODGA  TODGA balance }{}{2}{3][][ )(0)0(0)(02)0(02)(01)0(01)0(,3)(,3 tthfthfttftfttftftfttf CCCCCCNONO      Nitrate ion balance
  • 57. Transport Mechanism Membrane phase Source phase Receiver phase Feed side film Strip side film Carrier: TODGA Diluent: n- dodecane 57 Cf1 Cif1 Cimf1 Cims1 Cis1 = Cs1 Cf2 Cfmf2 Cims2 Cis2 = Cs2 Cif2 Neodymium ionsUranium
  • 58. Module exit concentrations                                                             s f fifs f s f fif s s f fifs f f fZ Q Q m ur ZK Q Q m Q Q m ur ZK Cm Q Q m ur ZK Q Q mC C 1 1 1 1 1 0111 1 101 1 1 2 exp1 1 2 exp11 2 exp1   Nd3+ ions )( 101011 fZf s f ssZ CC Q Q CC  58                                                             s f fifs f s f fif s s f fifs f f fZ Q Q m ur ZK Q Q m Q Q m ur ZK Cm Q Q m ur ZK Q Q mC C 2 2 2 2 2 0222 2 202 2 1 2 exp1 1 2 exp11 2 exp1   )( 202022 fZf s f ssZ CC Q Q CC  UO2 2+ ions
  • 59. Problem Statement 3 210 3 31 1 1 11 0 1 111 3 210 3 31 1 1 )3(][ )()( )3(][ imfimffif imf ex imsimf m ifffT imsimsss ims ex nCCLNOC C K CC d D CCkR nCCLNOC C K        )(][ )()( )(][ 03 0 03 himffhif himf H himshimf hm hifhffhT himsshs hims H CLNOC C K CC d D CCkR CLNOC C K        9 EQUATIONS 9 UNKNOWNS Cif1, Cimf1, Cims1 Cif2, Cimf2, Cims2 Chif, Chimf, Chims 59 n imfimffif imf ex imsimf m ifffT n imsimsss ims ex nCCLNOC C K CC d D CCkR nCCLNOC C K )3(][ )()( )3(][ 210 3 32 2 2 22 0 2 222 210 3 32 2 2       
  • 60. TODGA stoichiometry 60 [HNO3] n Major extracted species Log Kex 1 M 1.74 UO2(NO3)2·(TODGA)2 2.14 3 M 1.18 UO2(NO3)2·(TODGA) 1.03 (Source: Panja et al., Journal of Membrane Science, 337 (2009) 274– 281) For Uranyl nitrate - TODGA complexation The value of Kex for 2M HNO3 system was estimated by interpolation of the data in the above table and found to be Log (Kex) = 1.6
  • 61. Model validation for 3M HNO3 61 • Feed phase: 1 g/l Nd3+ ions + 1g/l UO2 2+ ions at 3M HNO3 (500 ml) • Carrier: 0.1M TODGA + 5% (v/v) isodecanol in n-dodecane • Strip phase: distilled water (500 ml) • Feed / strip phase flow rates: 170 Dm1 = 1.1 x 10-11 m2/s (Nd-TODGA complex) Dm2 = 4 x 10-12 m2/s (U-TODGA complex) Dhm = 1.2 x 10-10 m2/s (HNO3-TODGA complex) 0 10 20 30 40 50 0 10 20 30 40 50 60 70 80 k1 Time (min) Nd-Predicted U-Predicted 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Metalionsleftinfeedreservoir Time (min) Nd-Exp Nd-Pred U-Exp U-Pred
  • 62. Model validation for 3M HNO3 62 0 20 40 60 80 100 0 20 40 60 80 100 %Metalionsleftinfeedreservoir Time (min) Nd-Exp Nd-Pred U-Exp U-Pred 0 20 40 60 80 100 0 20 40 60 80 100 %Metalionsleftinfeedreservoir Time (min) Nd-Exp Nd-Pred U-Exp U-Pred [UO2 2+]initial = 2 g/l [UO2 2+]initial = 3 g/l
  • 63. Model validation for 2M HNO3 63 0 20 40 60 80 100 0 30 60 90 120 150 %Metalionsleftinfeedreservoir Time (min) Nd-Exp Nd-Pred U-Exp U-Pred 0 20 40 60 80 100 0 30 60 90 120 150 %Metalionsleftinfeedreservoir Time (min) Nd-Exp Nd-Pred U-Exp U-Pred 1 TODG A 2 TODG A
  • 64. Conclusions 64  TODGA provokes competition between Nd3+ and UO2 2+ ions  There is significant transport of both the Nd3+ and UO2 2+ ions  The rate of extraction of Nd3+ ions is approximately six times than that of UO2 2+ ions  100% extraction of Nd3+ ions takes place in almost 30 minutes even with high concentration of UO2 2+ ions  There is an enhancement in the rate of extraction of UO2 2+ ions once 100% extraction of Nd3+ ions has been completed
  • 65. Extraction of Co2+ ions using bis(2- ethylhexyl) phosphoric acid (D2EHPA) in HFSLM CASE 565
  • 66. System details 66  Process  HFSLM  Feed phase  CoSO4 7H2O solution (dissolved in a buffer of sodium acetate and acetic acid)  Extractant  di-2-ethylhexyl phosphoric acid (D2EHPA)  Diluent  Kerosene
  • 67. Complexation reaction Co2+ (aq) + 2(HR)2(org) CoR2·2(HR)(org) + 2H+ 2 )(2 )( )( 2 )(2 2 )(2)( 2 2 )()(2 ])[( ][ ][ )](2[ tcoefficienonDistributi ])[(][ ][)](2[ constantExtraction                  org aq dex aq org d orgaq aqorg ex HR H KK Cu HRCuR K HRCu HHRCuR K Metal Transport 67 (D2EHPA) (metal complex)
  • 69. Equilibrium-based approach 69 1 2 2 ),(2 2 2 ),(2 1 ][ ])[( ][ ])[( k k m H HR K C C k H HR K C C k s freeorg ex is ims f freeorg ex if imf                    With steady state assumption we have, K C k k C k k kkD d k C k k C R sf sm o f sf T 1111 1 2 1 2 1 1 2                            Co2+ transfer rate )( )( )( sissT imsimf o m TCMT ifffT CCkR CC d D RR CCkR    H+ transfer rate )(2 )( )( imsimf o m hT hishsshT hfhiffhT CC d D R CCkR CCkR    )( sfT mCCKR 
  • 71. Problem Statement 6 EQUATIONS 6 UNKNOWNS Cif, Cimf, Cims Cis, Chif, Chis 71 Co2+ (aq) + 2(HR)2(org) CoR2·2(HR)(org) + 2H+ )(2)( )()( )2( 0 0 2 0 2 imsimf m hfhiff imsimf m fiff imfif hifimf ex CC d D CCk CC d D CCk CLC CC K     )(2)( )()( )2( 0 0 2 0 2 imsimf m hishss imsimf m siss imsis hisims ex CC d D CCk CC d D CCk CLC CC K    
  • 72. Equilibration data 72 Aqueous [Co2+ ]initial mM D2EHPA conc %(v/v) Organic [(HR)2]initial mM Aqueous [Co2+ ]eqm mM Organic [(HR)2]eqm mM Organic [CoR2(HR)2]eqm mM Aqueous [H+ ]eqm mM Kex 1 15 445.807 0.796 445.399 0.204 0.409 2.16 x 10-7 1 20 594.410 0.608 593.625 0.392 0.785 1.13 x 10-6 3 10 297.205 2.685 296.575 0.315 0.630 5.29 x 10-7 3 15 445.807 2.225 444.258 0.775 1.549 4.23 x 10-6 3 20 594.410 1.790 591.990 1.210 2.420 1.13 x 10-5 2 )(2)( 2 2 )()(2 ])[(][ ][)](2[ orgaq aqorg ex HRCu HHRCuR K    
  • 73. Why buffer the feed phase? 73 0 20 40 60 80 100 0 10 20 30 40 50 60 %Extractionofcobaltions Time (min) 0 20 40 60 80 100 0 40 80 120 160 %Extractionofcobaltions Time (min) Buffered feed (4.5 pH) Non-buffered feed Operating conditions: Feed = 3mM Co2+ ions Extractant = 20% (v/v) D2EHPA in kerosene Strip acid = 2M H2SO4 Dm = 1.5 x 10-10 m2/s (Cobalt-D2EHPA complex)
  • 74. Effect of feed pH 74 Operating conditions: Feed = 3mM Co2+ ions Ligand = 20% (v/v) D2EHPA Flow rate = 100 ml/min (both) Strip acid = 2M H2SO4 0 20 40 60 0 10 20 30 40 50 60 70 %Extractionofcobalti Time (min) 6pH-Exp 6pH-Pred 4.5pH-Exp 4.5pH-Pred 3.5pH-Exp 3.5pH-Pred 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Extractionofcobaltion Time (min)
  • 75. Effect of initial feed concentration 75 Operating conditions: Feed = Buffer (4.5 pH) Ligand = 20% (v/v) D2EHPA Flow rate = 100 ml/min (both) 3mMCo-Exp 3mMCo-Pred 2mMCo-Exp 2mMCo-Pred 1mMCo-Exp 1mMCo-Pred 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Extractionofcobaltions Time (min) 0 0.5 1 1.5 2 2.5 3 0 10 20 30 40 50 60 70 Concentrationofcobaltions instripreservoir(mM) Time (min)
  • 76. Effect of initial D2EHPA concentration76 Operating conditions: Feed = 3mM Co2+ ions Buffer (4.5 pH) Flow rate = 100 ml/min (both) Strip acid = 2M H2SO4 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Extractionofcobaltions Time (min) 0 20 40 60 0 10 20 30 40 50 60 70 %Extractionofcobalti Time (min) 10%D2EHPA-Exp 10%D2EHPA-Pred 20%D2EHPA-Exp 20%D2EHPA-Pred 30%D2EHPA-Exp 30%D2EHPA-Pred
  • 77. Effect of strip phase acidity 77 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Extractionofcobaltions Time (min) Operating conditions: Feed = 3mM Co2+ ions Buffer (4.5 pH) Ligand = 20% (v/v) D2EHPA Flow rate = 100 ml/min (both) 0 20 40 60 0 10 20 30 40 50 60 7 %Extractionofcobaltions Time (min) 3MH2SO4-Exp 3MH2SO4-Pred 2MH2SO4-Exp 2MH2SO4-Pred 1MH2SO4-Exp 1MH2SO4-Pred 0.5MH2SO4-Exp 0.5MH2SO4-Pred
  • 78. Effect of flow rates 78 0 20 40 60 80 100 0 10 20 30 40 50 60 70 %Extractionofcobaltions Time (min) Operating conditions: Feed = 3mM Co2+ ions Buffer (4.5 pH) Ligand = 20% (v/v) D2EHPA Strip acid = 2M H2SO4 0 20 40 60 80 0 10 20 30 40 50 60 70 %Extractionofcobaltions Time (min) 100 ml/min-Exp 100 ml/min-Pred 200 ml/min-Exp 200 ml/min-Pred 300 ml/min-Exp 300 ml/min-Pred 400 ml/min-Exp 400 ml/min-Pred
  • 79. Conclusions  The counter-ions (H+) transport across the HFSLM affects the transport of Co2+ ions. Hence, buffer is added to the feed phase  Higher the feed phase pH higher is the rate of extraction of Co2+ ions  The strip acidity has no effect on the transport of Co2+ ions in the range of 0.5-3M H2SO4  Increase in D2EHPA concentration yields in higher rates of extraction of Co2+ ions  The % transport of Co2+ ions is independent of flow rates Reynolds number greater than 3.5  The increase in flow rate results in increased feed-side mass transfer coefficient (kf); it increases from 2 x 10-5 m/s at 100 79
  • 83. Publications (Under peer review) Submitted to Separation Science and Technology  P. V. Vernekar, Y. D. Jagdale, A. W. Patwardhan , A. V. Patwardhan , S. A. Ansari , P. K. Mohapatra & V. K. Manchanda, Non-dispersive solvent extraction of Neodymium using N,N,N',N'-tetraoctyl diglycolamide (TODGA). Submitted to Separation Science and Technology  P. V. Vernekar, Y. D. Jagdale, A. W. Patwardhan , A. V. Patwardhan , S. A. Ansari , P. K. Mohapatra & V. K. Manchanda, Simultaneous extraction of Neodymium and Uranium using hollow fiber supported liquid membrane. 83
  • 84. Conferences 84  P. V. Vernekar, Y. D. Jagdale, A. W. Patwardhan , A. V. Patwardhan , S. A. Ansari , P. K. Mohapatra & V. K. Manchanda, Mathematical model for the extraction of metal ions using hollow fiber supported liquid membrane operated in a recycling mode, DAE-BRNS Symposium on Emerging Trends in Separation Science and Technology (SESTEC- 2012), February 27 - March 01, 2012, SVKM’s Mithibai College, Vile Parle, Mumbai – 400 056, India. (Oral Presentation)  P. V. Vernekar, Y. D. Jagdale, Mathematical modelling for liquid membrane separation processes in hollow fibre membrane Contactors, International Conference on Advances in Chemical Engineering (ACE-2013), February 22-24, 2013, IIT Roorkee, India. (Oral Presentation)

Editor's Notes

  1. Separation of metal ions
  2. What is the range of Schmidt number for the use of these correlation?
  3. The equations derived in this case only hold in a region of low product recovery. When the metal concentration is high, the concentration of the unbound carrier is close to zero and the membrane flux is constant with time and along the hollow-fiber axial coordinate.
  4. How was buffer prepared?
  5. The equations derived in this case only hold in a region of low product recovery. When the metal concentration is high, the concentration of the unbound carrier is close to zero and the membrane flux is constant with time and along the hollow-fiber axial coordinate.