SlideShare a Scribd company logo
서비스 개편시 PostgreSQL 도입기
배민스토어 셀러개발팀 진소린, 김태정
1
서비스 소개
2
목차
- 우리 서비스에서 도입 배경
- 활용 사례
3
(구) 배민스토어 역사
4
예전에 우리 서비스는요…
배민 내 커머스 서비스에 결합된 부가적인 서비스
참고: MySQL 5.7
모놀리식 구조
5
우리가 했던 목표는
“셀러가 판매를 더 잘 할 수 있게”
다른 서비스와 독립적인 서비스 개발
6
7
개발자들의 고민
OOP ? Relational?
다중 값 속성
OOP ? Relational?
8
OOP ? Relational?
다중 값 속성(C,S,V)
9
CREATE TABLE product (
id bigint PRIMARY KEY,
search_tag_csv varchar(200)
);
INSERT INTO product VALUES
(1, '견과류,견과,건과일,건과');
@Column(name = "search_tag_csv")
String searchTag;
List<String> getSearchTag() {
return
List.of(searchTagCsv.split(","));
}
OOP ? Relational?
다중 값 속성(Mapping Table)
10
CREATE TABLE product (
id bigint PRIMARY KEY,
// …
);
CREATE TABLE product_search_tags (
product_id bigint,
search_tag varchar(20),
);
@ElementCollection
@CollectionTable(
name = "product_search_tags",
joinColumns = @JoinColumn(name =
"product_id"))
@Column(name = "search_tag")
List<String> searchTag;
OOP ? Relational?
다중 값 속성(PG배열)
11
CREATE TABLE product (
id bigint PRIMARY KEY,
search_tag varchar(20)[10],
// …
);
INSERT INTO product VALUES (1,
'따앙콩', 100,
ARRAY['견과류','견과','건과일','건과
','하루견과','견과믹스']
);
import
org.hibernate.annotations.Type;
@Column(name = "search_tag")
@Type(type = "list-array")
List<String> searchTag;
// hibernate-types 라이브러리 사용
• 스펙: 상점은 공동대표자가 될 수 있다
• N>10 인 경우는 없다
• 고민
• 일정 촉박
• 어떻게 간단하게 모델링 할까?
12
객체 속성
객체 속성(Mapping Table)
13
CREATE TABLE shop (
id bigint PRIMARY KEY,
// …
);
CREATE TABLE shop_owner (
shop_id bigint,
name varchar(20)
);
@ElementCollection
@CollectionTable(
name = “shop_owner",
joinColumns = @JoinColumn(name =
“shop_id"))
List<ShopOwner> owners;
객체 속성(Mapping Table)
14
가게id 성명 생년월일
2 이나영 1980-01-01
2 김태정 1999-01-01
2 진소린 2000-01-01
Id 상호명
1 우아한형제들
2 나영커피
3 냠냠
가게 테이블
대표자 테이블
객체 속성(PG JSONB)
15
CREATE TABLE shop (
id bigint PRIMARY KEY,
owner jsonb,
);
import org.hibernate.annotations.Type;
@Column(name = "owner")
@Type(type = "jsonb")
List<ShopOwner> owners;
class ShopOwner {
String name;
LocalDate birthday;
}
그 외 타입들
• 범위 (Range)
• timestamp with time zone range -> Range<Instant>
• 시작일시 ~ 종료일시를 한 컬럼으로 표현할 때 유용
16
가공 및 인덱싱 가능
varchar[], tstzrange, jsonb, ...
17
결과
PostgreSQL의 다양한 기능을 활용하여
Impedance mismatch 감소
개발 기간 단축
18
업무에서 PostgreSQL 활용 사례
19
Schema : 연관 테이블 그룹핑
20
연관 테이블 그룹핑
Cluster
Database
Table
Schema
21
AWS RDS Cluster
단일 DB
도메인: 주문, 상품, 가게, 정산…
주문
상품
가게
정산
연관 테이블 그룹핑
Cluster
Table
Schema
22
AWS RDS Cluster
도메인: 주문, 상품, 가게, 정산…
주문
상품
가게
정산
Database
개발자 A
공통DB
(개발환경) 개발자 별로 개인 DB
22
DB 권한 관리
23
DB객체
상품
옵션
주문
결제
주문/결제 사용자
상품개발자 주문개발자 QA
24
QA 김태정, QA 진소린
김태정
진소린
User
CRUD Read(Select)
UPDATE
특정 컬럼
CRUD
Role/Group(권한)
(우리가) 자주 사용하는 운영 쿼리
25
운영쿼리 - Returning #1
UPDATE users
SET firstname = 'Rin'
WHERE lastname = 'Jin'
RETURNING *
26
UPDATE users
SET firstname = 'Rin'
WHERE lastname = 'Jin'
SELECT *
FROM users
WHERE lastname = 'Jin'
운영쿼리 - Returning #2
UPDATE users t
SET firstname = 'Rin'
FROM users old
WHERE t.id = old.id AND t.lastname = 'Jin'
RETURNING t.id, old.firstname old_value, t.firstname new_value
27
28
운영쿼리 - 데이터 백업 후 삭제
WITH deleted AS (
DELETE FROM users
WHERE lastname = 'Kim'
RETURNING *
)
INSERT INTO users_backup
SELECT *
FROM deleted
RETURNING *
변경된 데이터를 즉시 눈으로 검증 가능함
만약 문제가 발생하면 준비해 둔 복원 쿼리로 백업 테이블에서 복원이 가능함
자주 변경되는 운영 테이블에 트랜잭션을 걸고 작업하지 않아도 됨
29
운영쿼리 - 데이터 백업 후 삭제
운영쿼리 - 더미 데이터 생성하기
30
generate_series (start T, stop T [, step T ]) " setof T
운영쿼리 - 더미 데이터 생성하기
31
SELECT generate_series(1, 10);
운영쿼리 - 더미 데이터 생성하기
32
INSERT INTO users (id, firstname, lastname)
SELECT u.id + s id,
u.firstname || '#' || s,
u.lastname || '#' || s * 3
FROM users u,
generate_series(100, 200, 2) s;
33
http://bit.ly/3fZ058g
끝!

More Related Content

What's hot

Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
MongoDB
 
AWS Aurora 운영사례 (by 배은미)
AWS Aurora 운영사례 (by 배은미)AWS Aurora 운영사례 (by 배은미)
AWS Aurora 운영사례 (by 배은미)
I Goo Lee.
 
[Pgday.Seoul 2020] SQL Tuning
[Pgday.Seoul 2020] SQL Tuning[Pgday.Seoul 2020] SQL Tuning
[Pgday.Seoul 2020] SQL Tuning
PgDay.Seoul
 
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander ZaitsevClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
Altinity Ltd
 
[Pgday.Seoul 2018] 이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
[Pgday.Seoul 2018]  이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG[Pgday.Seoul 2018]  이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
[Pgday.Seoul 2018] 이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
PgDay.Seoul
 
mongodb와 mysql의 CRUD 연산의 성능 비교
mongodb와 mysql의 CRUD 연산의 성능 비교mongodb와 mysql의 CRUD 연산의 성능 비교
mongodb와 mysql의 CRUD 연산의 성능 비교
Woo Yeong Choi
 
Twitter의 snowflake 소개 및 활용
Twitter의 snowflake 소개 및 활용Twitter의 snowflake 소개 및 활용
Twitter의 snowflake 소개 및 활용
흥배 최
 
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
NAVER D2
 
[Pgday.Seoul 2017] 8. PostgreSQL 10 새기능 소개 - 김상기
[Pgday.Seoul 2017] 8. PostgreSQL 10 새기능 소개 - 김상기[Pgday.Seoul 2017] 8. PostgreSQL 10 새기능 소개 - 김상기
[Pgday.Seoul 2017] 8. PostgreSQL 10 새기능 소개 - 김상기
PgDay.Seoul
 
[135] 오픈소스 데이터베이스, 은행 서비스에 첫발을 내밀다.
[135] 오픈소스 데이터베이스, 은행 서비스에 첫발을 내밀다.[135] 오픈소스 데이터베이스, 은행 서비스에 첫발을 내밀다.
[135] 오픈소스 데이터베이스, 은행 서비스에 첫발을 내밀다.
NAVER D2
 
Mvcc in postgreSQL 권건우
Mvcc in postgreSQL 권건우Mvcc in postgreSQL 권건우
Mvcc in postgreSQL 권건우
PgDay.Seoul
 
[Pgday.Seoul 2021] 2. Porting Oracle UDF and Optimization
[Pgday.Seoul 2021] 2. Porting Oracle UDF and Optimization[Pgday.Seoul 2021] 2. Porting Oracle UDF and Optimization
[Pgday.Seoul 2021] 2. Porting Oracle UDF and Optimization
PgDay.Seoul
 
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
PostgreSQL-Consulting
 
MariaDB 마이그레이션 - 네오클로바
MariaDB 마이그레이션 - 네오클로바MariaDB 마이그레이션 - 네오클로바
MariaDB 마이그레이션 - 네오클로바
NeoClova
 
[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기
NAVER D2
 
ECS+Locust로 부하 테스트 진행하기
ECS+Locust로 부하 테스트 진행하기ECS+Locust로 부하 테스트 진행하기
ECS+Locust로 부하 테스트 진행하기
Yungon Park
 
Intro ProxySQL
Intro ProxySQLIntro ProxySQL
Intro ProxySQL
I Goo Lee
 
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc...
HTTP Analytics for 6M requests per second using ClickHouse, by  Alexander Boc...HTTP Analytics for 6M requests per second using ClickHouse, by  Alexander Boc...
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc...
Altinity Ltd
 
Maxscale 소개 1.1.1
Maxscale 소개 1.1.1Maxscale 소개 1.1.1
Maxscale 소개 1.1.1
NeoClova
 
FIFA 온라인 3의 MongoDB 사용기
FIFA 온라인 3의 MongoDB 사용기FIFA 온라인 3의 MongoDB 사용기
FIFA 온라인 3의 MongoDB 사용기
Jongwon Kim
 

What's hot (20)

Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
 
AWS Aurora 운영사례 (by 배은미)
AWS Aurora 운영사례 (by 배은미)AWS Aurora 운영사례 (by 배은미)
AWS Aurora 운영사례 (by 배은미)
 
[Pgday.Seoul 2020] SQL Tuning
[Pgday.Seoul 2020] SQL Tuning[Pgday.Seoul 2020] SQL Tuning
[Pgday.Seoul 2020] SQL Tuning
 
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander ZaitsevClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
 
[Pgday.Seoul 2018] 이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
[Pgday.Seoul 2018]  이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG[Pgday.Seoul 2018]  이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
[Pgday.Seoul 2018] 이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
 
mongodb와 mysql의 CRUD 연산의 성능 비교
mongodb와 mysql의 CRUD 연산의 성능 비교mongodb와 mysql의 CRUD 연산의 성능 비교
mongodb와 mysql의 CRUD 연산의 성능 비교
 
Twitter의 snowflake 소개 및 활용
Twitter의 snowflake 소개 및 활용Twitter의 snowflake 소개 및 활용
Twitter의 snowflake 소개 및 활용
 
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
 
[Pgday.Seoul 2017] 8. PostgreSQL 10 새기능 소개 - 김상기
[Pgday.Seoul 2017] 8. PostgreSQL 10 새기능 소개 - 김상기[Pgday.Seoul 2017] 8. PostgreSQL 10 새기능 소개 - 김상기
[Pgday.Seoul 2017] 8. PostgreSQL 10 새기능 소개 - 김상기
 
[135] 오픈소스 데이터베이스, 은행 서비스에 첫발을 내밀다.
[135] 오픈소스 데이터베이스, 은행 서비스에 첫발을 내밀다.[135] 오픈소스 데이터베이스, 은행 서비스에 첫발을 내밀다.
[135] 오픈소스 데이터베이스, 은행 서비스에 첫발을 내밀다.
 
Mvcc in postgreSQL 권건우
Mvcc in postgreSQL 권건우Mvcc in postgreSQL 권건우
Mvcc in postgreSQL 권건우
 
[Pgday.Seoul 2021] 2. Porting Oracle UDF and Optimization
[Pgday.Seoul 2021] 2. Porting Oracle UDF and Optimization[Pgday.Seoul 2021] 2. Porting Oracle UDF and Optimization
[Pgday.Seoul 2021] 2. Porting Oracle UDF and Optimization
 
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
 
MariaDB 마이그레이션 - 네오클로바
MariaDB 마이그레이션 - 네오클로바MariaDB 마이그레이션 - 네오클로바
MariaDB 마이그레이션 - 네오클로바
 
[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기
 
ECS+Locust로 부하 테스트 진행하기
ECS+Locust로 부하 테스트 진행하기ECS+Locust로 부하 테스트 진행하기
ECS+Locust로 부하 테스트 진행하기
 
Intro ProxySQL
Intro ProxySQLIntro ProxySQL
Intro ProxySQL
 
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc...
HTTP Analytics for 6M requests per second using ClickHouse, by  Alexander Boc...HTTP Analytics for 6M requests per second using ClickHouse, by  Alexander Boc...
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc...
 
Maxscale 소개 1.1.1
Maxscale 소개 1.1.1Maxscale 소개 1.1.1
Maxscale 소개 1.1.1
 
FIFA 온라인 3의 MongoDB 사용기
FIFA 온라인 3의 MongoDB 사용기FIFA 온라인 3의 MongoDB 사용기
FIFA 온라인 3의 MongoDB 사용기
 

Similar to [pgday.Seoul 2022] 서비스개편시 PostgreSQL 도입기 - 진소린 & 김태정

파이썬 데이터베이스 연결 2탄
파이썬 데이터베이스 연결 2탄파이썬 데이터베이스 연결 2탄
파이썬 데이터베이스 연결 2탄
SeongHyun Ahn
 
AWS 6월 웨비나 | AWS에서 MS SQL 서버 운영하기 (김민성 솔루션즈아키텍트)
AWS 6월 웨비나 | AWS에서 MS SQL 서버 운영하기 (김민성 솔루션즈아키텍트)AWS 6월 웨비나 | AWS에서 MS SQL 서버 운영하기 (김민성 솔루션즈아키텍트)
AWS 6월 웨비나 | AWS에서 MS SQL 서버 운영하기 (김민성 솔루션즈아키텍트)
Amazon Web Services Korea
 
[Retail & CPG Day 2019] 마켓컬리 서비스 AWS 이관 및 최적화 여정 - 임상석, 마켓컬리 개발 리더
[Retail & CPG Day 2019] 마켓컬리 서비스 AWS 이관 및 최적화 여정 - 임상석, 마켓컬리 개발 리더[Retail & CPG Day 2019] 마켓컬리 서비스 AWS 이관 및 최적화 여정 - 임상석, 마켓컬리 개발 리더
[Retail & CPG Day 2019] 마켓컬리 서비스 AWS 이관 및 최적화 여정 - 임상석, 마켓컬리 개발 리더
Amazon Web Services Korea
 
[Retail & CPG Day 2019] Amazon.com의 무중단, 대용량 DB패턴과 국내사례 (Lotte e-commerce) - ...
[Retail & CPG Day 2019] Amazon.com의 무중단, 대용량 DB패턴과 국내사례 (Lotte e-commerce) - ...[Retail & CPG Day 2019] Amazon.com의 무중단, 대용량 DB패턴과 국내사례 (Lotte e-commerce) - ...
[Retail & CPG Day 2019] Amazon.com의 무중단, 대용량 DB패턴과 국내사례 (Lotte e-commerce) - ...
Amazon Web Services Korea
 
GraphQL in Action - REST와 이별할 때 생각해야 하는 것들
GraphQL in Action - REST와 이별할 때 생각해야 하는 것들GraphQL in Action - REST와 이별할 때 생각해야 하는 것들
GraphQL in Action - REST와 이별할 때 생각해야 하는 것들
Kivol
 
Mongo db 최범균
Mongo db 최범균Mongo db 최범균
Mongo db 최범균
beom kyun choi
 
10월 웨비나 - AWS 상에서 Microsoft SQL Server 운영의 모범 사례 살펴보기 (최정욱 솔루션즈 아키텍트)
10월 웨비나 - AWS 상에서 Microsoft SQL Server 운영의 모범 사례 살펴보기 (최정욱 솔루션즈 아키텍트)10월 웨비나 - AWS 상에서 Microsoft SQL Server 운영의 모범 사례 살펴보기 (최정욱 솔루션즈 아키텍트)
10월 웨비나 - AWS 상에서 Microsoft SQL Server 운영의 모범 사례 살펴보기 (최정욱 솔루션즈 아키텍트)
Amazon Web Services Korea
 
모바일 게임과 앱을 위한 오픈소스 게임서버 엔진 프로젝트 CloudBread 프로젝트
모바일 게임과 앱을 위한 오픈소스 게임서버 엔진 프로젝트 CloudBread 프로젝트모바일 게임과 앱을 위한 오픈소스 게임서버 엔진 프로젝트 CloudBread 프로젝트
모바일 게임과 앱을 위한 오픈소스 게임서버 엔진 프로젝트 CloudBread 프로젝트
Dae Kim
 
Micro Service Architecture의 이해
Micro Service Architecture의 이해Micro Service Architecture의 이해
Micro Service Architecture의 이해
Terry Cho
 
Fundamentals of Oracle SQL
Fundamentals of Oracle SQLFundamentals of Oracle SQL
Fundamentals of Oracle SQL
JAEGEUN YU
 
실전 DataSnap!
실전 DataSnap!실전 DataSnap!
실전 DataSnap!
Devgear
 
실시간 복제 데이터를 이관시키는 방법.pdf
실시간 복제 데이터를 이관시키는 방법.pdf실시간 복제 데이터를 이관시키는 방법.pdf
실시간 복제 데이터를 이관시키는 방법.pdf
ssuser8638d51
 
From MSSQL to MariaDB
From MSSQL to MariaDBFrom MSSQL to MariaDB
From MSSQL to MariaDB
I Goo Lee
 
MySQL_MariaDB-성능개선-202201.pptx
MySQL_MariaDB-성능개선-202201.pptxMySQL_MariaDB-성능개선-202201.pptx
MySQL_MariaDB-성능개선-202201.pptx
NeoClova
 
Tadpole DB Hub 1.0.0
Tadpole DB Hub 1.0.0Tadpole DB Hub 1.0.0
Tadpole DB Hub 1.0.0
cho hyun jong
 
DDD로 복잡함 다루기
DDD로 복잡함 다루기DDD로 복잡함 다루기
DDD로 복잡함 다루기
beom kyun choi
 
4. 대용량 아키텍쳐 설계 패턴
4. 대용량 아키텍쳐 설계 패턴4. 대용량 아키텍쳐 설계 패턴
4. 대용량 아키텍쳐 설계 패턴
Terry Cho
 
실전! AWS 기반 데이터베이스 마이그레이션::최홍식::AWS Summit Seoul 2018
실전! AWS 기반 데이터베이스 마이그레이션::최홍식::AWS Summit Seoul 2018실전! AWS 기반 데이터베이스 마이그레이션::최홍식::AWS Summit Seoul 2018
실전! AWS 기반 데이터베이스 마이그레이션::최홍식::AWS Summit Seoul 2018
Amazon Web Services Korea
 
[오픈소스컨설팅]이기종 WAS 클러스터링 솔루션- Athena Dolly
[오픈소스컨설팅]이기종 WAS 클러스터링 솔루션- Athena Dolly[오픈소스컨설팅]이기종 WAS 클러스터링 솔루션- Athena Dolly
[오픈소스컨설팅]이기종 WAS 클러스터링 솔루션- Athena Dolly
Ji-Woong Choi
 

Similar to [pgday.Seoul 2022] 서비스개편시 PostgreSQL 도입기 - 진소린 & 김태정 (20)

파이썬 데이터베이스 연결 2탄
파이썬 데이터베이스 연결 2탄파이썬 데이터베이스 연결 2탄
파이썬 데이터베이스 연결 2탄
 
AWS 6월 웨비나 | AWS에서 MS SQL 서버 운영하기 (김민성 솔루션즈아키텍트)
AWS 6월 웨비나 | AWS에서 MS SQL 서버 운영하기 (김민성 솔루션즈아키텍트)AWS 6월 웨비나 | AWS에서 MS SQL 서버 운영하기 (김민성 솔루션즈아키텍트)
AWS 6월 웨비나 | AWS에서 MS SQL 서버 운영하기 (김민성 솔루션즈아키텍트)
 
[Retail & CPG Day 2019] 마켓컬리 서비스 AWS 이관 및 최적화 여정 - 임상석, 마켓컬리 개발 리더
[Retail & CPG Day 2019] 마켓컬리 서비스 AWS 이관 및 최적화 여정 - 임상석, 마켓컬리 개발 리더[Retail & CPG Day 2019] 마켓컬리 서비스 AWS 이관 및 최적화 여정 - 임상석, 마켓컬리 개발 리더
[Retail & CPG Day 2019] 마켓컬리 서비스 AWS 이관 및 최적화 여정 - 임상석, 마켓컬리 개발 리더
 
[Retail & CPG Day 2019] Amazon.com의 무중단, 대용량 DB패턴과 국내사례 (Lotte e-commerce) - ...
[Retail & CPG Day 2019] Amazon.com의 무중단, 대용량 DB패턴과 국내사례 (Lotte e-commerce) - ...[Retail & CPG Day 2019] Amazon.com의 무중단, 대용량 DB패턴과 국내사례 (Lotte e-commerce) - ...
[Retail & CPG Day 2019] Amazon.com의 무중단, 대용량 DB패턴과 국내사례 (Lotte e-commerce) - ...
 
GraphQL in Action - REST와 이별할 때 생각해야 하는 것들
GraphQL in Action - REST와 이별할 때 생각해야 하는 것들GraphQL in Action - REST와 이별할 때 생각해야 하는 것들
GraphQL in Action - REST와 이별할 때 생각해야 하는 것들
 
Mongo db 최범균
Mongo db 최범균Mongo db 최범균
Mongo db 최범균
 
10월 웨비나 - AWS 상에서 Microsoft SQL Server 운영의 모범 사례 살펴보기 (최정욱 솔루션즈 아키텍트)
10월 웨비나 - AWS 상에서 Microsoft SQL Server 운영의 모범 사례 살펴보기 (최정욱 솔루션즈 아키텍트)10월 웨비나 - AWS 상에서 Microsoft SQL Server 운영의 모범 사례 살펴보기 (최정욱 솔루션즈 아키텍트)
10월 웨비나 - AWS 상에서 Microsoft SQL Server 운영의 모범 사례 살펴보기 (최정욱 솔루션즈 아키텍트)
 
모바일 게임과 앱을 위한 오픈소스 게임서버 엔진 프로젝트 CloudBread 프로젝트
모바일 게임과 앱을 위한 오픈소스 게임서버 엔진 프로젝트 CloudBread 프로젝트모바일 게임과 앱을 위한 오픈소스 게임서버 엔진 프로젝트 CloudBread 프로젝트
모바일 게임과 앱을 위한 오픈소스 게임서버 엔진 프로젝트 CloudBread 프로젝트
 
Micro Service Architecture의 이해
Micro Service Architecture의 이해Micro Service Architecture의 이해
Micro Service Architecture의 이해
 
Fundamentals of Oracle SQL
Fundamentals of Oracle SQLFundamentals of Oracle SQL
Fundamentals of Oracle SQL
 
실전 DataSnap!
실전 DataSnap!실전 DataSnap!
실전 DataSnap!
 
실시간 복제 데이터를 이관시키는 방법.pdf
실시간 복제 데이터를 이관시키는 방법.pdf실시간 복제 데이터를 이관시키는 방법.pdf
실시간 복제 데이터를 이관시키는 방법.pdf
 
From MSSQL to MariaDB
From MSSQL to MariaDBFrom MSSQL to MariaDB
From MSSQL to MariaDB
 
MySQL_MariaDB-성능개선-202201.pptx
MySQL_MariaDB-성능개선-202201.pptxMySQL_MariaDB-성능개선-202201.pptx
MySQL_MariaDB-성능개선-202201.pptx
 
Redis
RedisRedis
Redis
 
Tadpole DB Hub 1.0.0
Tadpole DB Hub 1.0.0Tadpole DB Hub 1.0.0
Tadpole DB Hub 1.0.0
 
DDD로 복잡함 다루기
DDD로 복잡함 다루기DDD로 복잡함 다루기
DDD로 복잡함 다루기
 
4. 대용량 아키텍쳐 설계 패턴
4. 대용량 아키텍쳐 설계 패턴4. 대용량 아키텍쳐 설계 패턴
4. 대용량 아키텍쳐 설계 패턴
 
실전! AWS 기반 데이터베이스 마이그레이션::최홍식::AWS Summit Seoul 2018
실전! AWS 기반 데이터베이스 마이그레이션::최홍식::AWS Summit Seoul 2018실전! AWS 기반 데이터베이스 마이그레이션::최홍식::AWS Summit Seoul 2018
실전! AWS 기반 데이터베이스 마이그레이션::최홍식::AWS Summit Seoul 2018
 
[오픈소스컨설팅]이기종 WAS 클러스터링 솔루션- Athena Dolly
[오픈소스컨설팅]이기종 WAS 클러스터링 솔루션- Athena Dolly[오픈소스컨설팅]이기종 WAS 클러스터링 솔루션- Athena Dolly
[오픈소스컨설팅]이기종 WAS 클러스터링 솔루션- Athena Dolly
 

More from PgDay.Seoul

[Pgday.Seoul 2020] 포스트그레스큐엘 자국어화 이야기
[Pgday.Seoul 2020] 포스트그레스큐엘 자국어화 이야기[Pgday.Seoul 2020] 포스트그레스큐엘 자국어화 이야기
[Pgday.Seoul 2020] 포스트그레스큐엘 자국어화 이야기
PgDay.Seoul
 
[Pgday.Seoul 2019] AppOS 고성능 I/O 확장 모듈로 성능 10배 향상시키기
[Pgday.Seoul 2019] AppOS 고성능 I/O 확장 모듈로 성능 10배 향상시키기[Pgday.Seoul 2019] AppOS 고성능 I/O 확장 모듈로 성능 10배 향상시키기
[Pgday.Seoul 2019] AppOS 고성능 I/O 확장 모듈로 성능 10배 향상시키기
PgDay.Seoul
 
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
PgDay.Seoul
 
[Pgday.Seoul 2019] Advanced FDW
[Pgday.Seoul 2019] Advanced FDW[Pgday.Seoul 2019] Advanced FDW
[Pgday.Seoul 2019] Advanced FDW
PgDay.Seoul
 
[Pgday.Seoul 2018] PostgreSQL 11 새 기능 소개
[Pgday.Seoul 2018]  PostgreSQL 11 새 기능 소개[Pgday.Seoul 2018]  PostgreSQL 11 새 기능 소개
[Pgday.Seoul 2018] PostgreSQL 11 새 기능 소개
PgDay.Seoul
 
[Pgday.Seoul 2018] PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
[Pgday.Seoul 2018]  PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha[Pgday.Seoul 2018]  PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
[Pgday.Seoul 2018] PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
PgDay.Seoul
 
[Pgday.Seoul 2018] PostgreSQL Authentication with FreeIPA
[Pgday.Seoul 2018]  PostgreSQL Authentication with FreeIPA[Pgday.Seoul 2018]  PostgreSQL Authentication with FreeIPA
[Pgday.Seoul 2018] PostgreSQL Authentication with FreeIPA
PgDay.Seoul
 
[Pgday.Seoul 2018] AWS Cloud 환경에서 PostgreSQL 구축하기
[Pgday.Seoul 2018]  AWS Cloud 환경에서 PostgreSQL 구축하기[Pgday.Seoul 2018]  AWS Cloud 환경에서 PostgreSQL 구축하기
[Pgday.Seoul 2018] AWS Cloud 환경에서 PostgreSQL 구축하기
PgDay.Seoul
 
[Pgday.Seoul 2018] Greenplum의 노드 분산 설계
[Pgday.Seoul 2018]  Greenplum의 노드 분산 설계[Pgday.Seoul 2018]  Greenplum의 노드 분산 설계
[Pgday.Seoul 2018] Greenplum의 노드 분산 설계
PgDay.Seoul
 
[Pgday.Seoul 2018] replacing oracle with edb postgres
[Pgday.Seoul 2018] replacing oracle with edb postgres[Pgday.Seoul 2018] replacing oracle with edb postgres
[Pgday.Seoul 2018] replacing oracle with edb postgres
PgDay.Seoul
 
[Pgday.Seoul 2017] 6. GIN vs GiST 인덱스 이야기 - 박진우
[Pgday.Seoul 2017] 6. GIN vs GiST 인덱스 이야기 - 박진우[Pgday.Seoul 2017] 6. GIN vs GiST 인덱스 이야기 - 박진우
[Pgday.Seoul 2017] 6. GIN vs GiST 인덱스 이야기 - 박진우
PgDay.Seoul
 
[Pgday.Seoul 2017] 5. 테드폴허브(올챙이) PostgreSQL 확장하기 - 조현종
[Pgday.Seoul 2017] 5. 테드폴허브(올챙이) PostgreSQL 확장하기 - 조현종[Pgday.Seoul 2017] 5. 테드폴허브(올챙이) PostgreSQL 확장하기 - 조현종
[Pgday.Seoul 2017] 5. 테드폴허브(올챙이) PostgreSQL 확장하기 - 조현종
PgDay.Seoul
 
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
PgDay.Seoul
 
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
PgDay.Seoul
 
[Pgday.Seoul 2017] 4. Composite Type/JSON 파라미터를 활용한 TVP구현(with C#, JAVA) - 지현명
[Pgday.Seoul 2017] 4. Composite Type/JSON 파라미터를 활용한 TVP구현(with C#, JAVA) - 지현명[Pgday.Seoul 2017] 4. Composite Type/JSON 파라미터를 활용한 TVP구현(with C#, JAVA) - 지현명
[Pgday.Seoul 2017] 4. Composite Type/JSON 파라미터를 활용한 TVP구현(with C#, JAVA) - 지현명
PgDay.Seoul
 
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
PgDay.Seoul
 
[Pgday.Seoul 2017] 2. PostgreSQL을 위한 리눅스 커널 최적화 - 김상욱
[Pgday.Seoul 2017] 2. PostgreSQL을 위한 리눅스 커널 최적화 - 김상욱[Pgday.Seoul 2017] 2. PostgreSQL을 위한 리눅스 커널 최적화 - 김상욱
[Pgday.Seoul 2017] 2. PostgreSQL을 위한 리눅스 커널 최적화 - 김상욱
PgDay.Seoul
 
PostgreSQL 9.6 새 기능 소개
PostgreSQL 9.6 새 기능 소개PostgreSQL 9.6 새 기능 소개
PostgreSQL 9.6 새 기능 소개
PgDay.Seoul
 
pg_hba.conf 이야기
pg_hba.conf 이야기pg_hba.conf 이야기
pg_hba.conf 이야기
PgDay.Seoul
 
Pg report 20161010_02
Pg report 20161010_02Pg report 20161010_02
Pg report 20161010_02
PgDay.Seoul
 

More from PgDay.Seoul (20)

[Pgday.Seoul 2020] 포스트그레스큐엘 자국어화 이야기
[Pgday.Seoul 2020] 포스트그레스큐엘 자국어화 이야기[Pgday.Seoul 2020] 포스트그레스큐엘 자국어화 이야기
[Pgday.Seoul 2020] 포스트그레스큐엘 자국어화 이야기
 
[Pgday.Seoul 2019] AppOS 고성능 I/O 확장 모듈로 성능 10배 향상시키기
[Pgday.Seoul 2019] AppOS 고성능 I/O 확장 모듈로 성능 10배 향상시키기[Pgday.Seoul 2019] AppOS 고성능 I/O 확장 모듈로 성능 10배 향상시키기
[Pgday.Seoul 2019] AppOS 고성능 I/O 확장 모듈로 성능 10배 향상시키기
 
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
 
[Pgday.Seoul 2019] Advanced FDW
[Pgday.Seoul 2019] Advanced FDW[Pgday.Seoul 2019] Advanced FDW
[Pgday.Seoul 2019] Advanced FDW
 
[Pgday.Seoul 2018] PostgreSQL 11 새 기능 소개
[Pgday.Seoul 2018]  PostgreSQL 11 새 기능 소개[Pgday.Seoul 2018]  PostgreSQL 11 새 기능 소개
[Pgday.Seoul 2018] PostgreSQL 11 새 기능 소개
 
[Pgday.Seoul 2018] PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
[Pgday.Seoul 2018]  PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha[Pgday.Seoul 2018]  PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
[Pgday.Seoul 2018] PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
 
[Pgday.Seoul 2018] PostgreSQL Authentication with FreeIPA
[Pgday.Seoul 2018]  PostgreSQL Authentication with FreeIPA[Pgday.Seoul 2018]  PostgreSQL Authentication with FreeIPA
[Pgday.Seoul 2018] PostgreSQL Authentication with FreeIPA
 
[Pgday.Seoul 2018] AWS Cloud 환경에서 PostgreSQL 구축하기
[Pgday.Seoul 2018]  AWS Cloud 환경에서 PostgreSQL 구축하기[Pgday.Seoul 2018]  AWS Cloud 환경에서 PostgreSQL 구축하기
[Pgday.Seoul 2018] AWS Cloud 환경에서 PostgreSQL 구축하기
 
[Pgday.Seoul 2018] Greenplum의 노드 분산 설계
[Pgday.Seoul 2018]  Greenplum의 노드 분산 설계[Pgday.Seoul 2018]  Greenplum의 노드 분산 설계
[Pgday.Seoul 2018] Greenplum의 노드 분산 설계
 
[Pgday.Seoul 2018] replacing oracle with edb postgres
[Pgday.Seoul 2018] replacing oracle with edb postgres[Pgday.Seoul 2018] replacing oracle with edb postgres
[Pgday.Seoul 2018] replacing oracle with edb postgres
 
[Pgday.Seoul 2017] 6. GIN vs GiST 인덱스 이야기 - 박진우
[Pgday.Seoul 2017] 6. GIN vs GiST 인덱스 이야기 - 박진우[Pgday.Seoul 2017] 6. GIN vs GiST 인덱스 이야기 - 박진우
[Pgday.Seoul 2017] 6. GIN vs GiST 인덱스 이야기 - 박진우
 
[Pgday.Seoul 2017] 5. 테드폴허브(올챙이) PostgreSQL 확장하기 - 조현종
[Pgday.Seoul 2017] 5. 테드폴허브(올챙이) PostgreSQL 확장하기 - 조현종[Pgday.Seoul 2017] 5. 테드폴허브(올챙이) PostgreSQL 확장하기 - 조현종
[Pgday.Seoul 2017] 5. 테드폴허브(올챙이) PostgreSQL 확장하기 - 조현종
 
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
 
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
 
[Pgday.Seoul 2017] 4. Composite Type/JSON 파라미터를 활용한 TVP구현(with C#, JAVA) - 지현명
[Pgday.Seoul 2017] 4. Composite Type/JSON 파라미터를 활용한 TVP구현(with C#, JAVA) - 지현명[Pgday.Seoul 2017] 4. Composite Type/JSON 파라미터를 활용한 TVP구현(with C#, JAVA) - 지현명
[Pgday.Seoul 2017] 4. Composite Type/JSON 파라미터를 활용한 TVP구현(with C#, JAVA) - 지현명
 
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
 
[Pgday.Seoul 2017] 2. PostgreSQL을 위한 리눅스 커널 최적화 - 김상욱
[Pgday.Seoul 2017] 2. PostgreSQL을 위한 리눅스 커널 최적화 - 김상욱[Pgday.Seoul 2017] 2. PostgreSQL을 위한 리눅스 커널 최적화 - 김상욱
[Pgday.Seoul 2017] 2. PostgreSQL을 위한 리눅스 커널 최적화 - 김상욱
 
PostgreSQL 9.6 새 기능 소개
PostgreSQL 9.6 새 기능 소개PostgreSQL 9.6 새 기능 소개
PostgreSQL 9.6 새 기능 소개
 
pg_hba.conf 이야기
pg_hba.conf 이야기pg_hba.conf 이야기
pg_hba.conf 이야기
 
Pg report 20161010_02
Pg report 20161010_02Pg report 20161010_02
Pg report 20161010_02
 

[pgday.Seoul 2022] 서비스개편시 PostgreSQL 도입기 - 진소린 & 김태정