Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
Uploaded by
Pimpaka Khampin
282 views
ข้อสอบ O net 52 คณิตศาสตร์
Education
◦
Read more
0
Save
Share
Embed
Embed presentation
Download
Download to read offline
1
/ 21
2
/ 21
3
/ 21
4
/ 21
5
/ 21
6
/ 21
7
/ 21
8
/ 21
9
/ 21
10
/ 21
11
/ 21
12
/ 21
13
/ 21
14
/ 21
15
/ 21
16
/ 21
17
/ 21
18
/ 21
19
/ 21
20
/ 21
21
/ 21
More Related Content
PDF
Dars e-hadith-volume005
by
Hammadia
PDF
Pharmacological Induction of FoxO3 is a Potential Treatment for Sickle Cell D...
by
Golden Helix Inc
PPTX
opdracht3crisis
by
Chantal van Wijnen
PPT
Capstone pics
by
rbracy
PPT
κέντρο δεξιώσεων
by
Κατερίνα Καραμπαΐρη
PDF
συνομιλία τηλέμαχου αθηνάς
by
Κατερίνα Καραμπαΐρη
PDF
οι μαθητές της β1 τάξης μιλούν για την αληθινή φιλία
by
Κατερίνα Καραμπαΐρη
PDF
Authoring Clinical Reports in VarSeq
by
Golden Helix Inc
Dars e-hadith-volume005
by
Hammadia
Pharmacological Induction of FoxO3 is a Potential Treatment for Sickle Cell D...
by
Golden Helix Inc
opdracht3crisis
by
Chantal van Wijnen
Capstone pics
by
rbracy
κέντρο δεξιώσεων
by
Κατερίνα Καραμπαΐρη
συνομιλία τηλέμαχου αθηνάς
by
Κατερίνα Καραμπαΐρη
οι μαθητές της β1 τάξης μιλούν για την αληθινή φιλία
by
Κατερίνα Καραμπαΐρη
Authoring Clinical Reports in VarSeq
by
Golden Helix Inc
Viewers also liked
PPTX
Online Security and How to Make Money Online
by
Nader Alkeinay
PDF
Blog
by
Pimpaka Khampin
PDF
Προξενιό
by
Κατερίνα Καραμπαΐρη
PDF
Using WES in Distant Relationships to Identify Cardiomyopathy Genes
by
Golden Helix Inc
PDF
Ηδιατροφή στην Αρχαία Ελλάδα
by
Κατερίνα Καραμπαΐρη
PPTX
Ilo sözleşmeleri ezber
by
Kemal Kasap
PDF
1 st 2nd activity erasmus+logo contest results
by
Κατερίνα Καραμπαΐρη
PDF
Prediction and Meta-Analysis
by
Golden Helix Inc
PDF
1st 2nd activity in english (Greece)
by
Κατερίνα Καραμπαΐρη
PPTX
Making NGS Data Analysis Clinically Practical: Repeatable and Time-Effective ...
by
Golden Helix Inc
PPTX
My First Entrepreneurial Project
by
Andrew Ellis
PPTX
Albun de fotos carlos chaparro
by
Chino Chaparro
PDF
Ο Σύλλογος "Ορφέας" Νέου Σκοπού
by
Κατερίνα Καραμπαΐρη
PPTX
MM - KBAC: Using mixed models to adjust for population structure in a rare-va...
by
Golden Helix Inc
PPTX
Mastery Time - elizabeth george - mdl501-o section 2
by
lizziegeorge
PDF
CNV Analysis in VarSeq
by
Golden Helix Inc
Online Security and How to Make Money Online
by
Nader Alkeinay
Blog
by
Pimpaka Khampin
Προξενιό
by
Κατερίνα Καραμπαΐρη
Using WES in Distant Relationships to Identify Cardiomyopathy Genes
by
Golden Helix Inc
Ηδιατροφή στην Αρχαία Ελλάδα
by
Κατερίνα Καραμπαΐρη
Ilo sözleşmeleri ezber
by
Kemal Kasap
1 st 2nd activity erasmus+logo contest results
by
Κατερίνα Καραμπαΐρη
Prediction and Meta-Analysis
by
Golden Helix Inc
1st 2nd activity in english (Greece)
by
Κατερίνα Καραμπαΐρη
Making NGS Data Analysis Clinically Practical: Repeatable and Time-Effective ...
by
Golden Helix Inc
My First Entrepreneurial Project
by
Andrew Ellis
Albun de fotos carlos chaparro
by
Chino Chaparro
Ο Σύλλογος "Ορφέας" Νέου Σκοπού
by
Κατερίνα Καραμπαΐρη
MM - KBAC: Using mixed models to adjust for population structure in a rare-va...
by
Golden Helix Inc
Mastery Time - elizabeth george - mdl501-o section 2
by
lizziegeorge
CNV Analysis in VarSeq
by
Golden Helix Inc
More from Pimpaka Khampin
DOC
2557 project02-30-141113102522-conversion-gate02
by
Pimpaka Khampin
PPTX
ใบงานCom 2-8
by
Pimpaka Khampin
PPTX
ใบงานCom 2 8
by
Pimpaka Khampin
PDF
B2e11e1b9030c180a860a8450d5eceff
by
Pimpaka Khampin
PDF
336bad9a270ac2f1456caebe75899ceb
by
Pimpaka Khampin
PDF
1af2b1d5adc77e77b6c34806a023ac3c
by
Pimpaka Khampin
PDF
วิชาเคมี
by
Pimpaka Khampin
PDF
Biology
by
Pimpaka Khampin
PDF
ฟิสิกส์ 7 วิชาสามัญ โดย ideal physics
by
Pimpaka Khampin
PDF
ENG
by
Pimpaka Khampin
PDF
วิธี การสมัคร Gmail เพื่อเอาไปสมัคร blogger
by
Pimpaka Khampin
PDF
ใบงานสำรวจตนเอง
by
Pimpaka Khampin
2557 project02-30-141113102522-conversion-gate02
by
Pimpaka Khampin
ใบงานCom 2-8
by
Pimpaka Khampin
ใบงานCom 2 8
by
Pimpaka Khampin
B2e11e1b9030c180a860a8450d5eceff
by
Pimpaka Khampin
336bad9a270ac2f1456caebe75899ceb
by
Pimpaka Khampin
1af2b1d5adc77e77b6c34806a023ac3c
by
Pimpaka Khampin
วิชาเคมี
by
Pimpaka Khampin
Biology
by
Pimpaka Khampin
ฟิสิกส์ 7 วิชาสามัญ โดย ideal physics
by
Pimpaka Khampin
ENG
by
Pimpaka Khampin
วิธี การสมัคร Gmail เพื่อเอาไปสมัคร blogger
by
Pimpaka Khampin
ใบงานสำรวจตนเอง
by
Pimpaka Khampin
ข้อสอบ O net 52 คณิตศาสตร์
1.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 2 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. Êèǹ·Õ‹ 1 ẺÃкÒµÑÇàÅ×Í¡ áµèÅТéÍÁդӵͺ·Õ‹¶Ù¡µéͧ·Õ‹ÊØ´à¾Õ§¤ÓµÍºà´ÕÂÇ ¨Ó¹Ç¹ 36 ¢éÍ (¢éÍ 1–36) ¢éÍÅÐ 1 ¤Ðá¹¹ 1. ãËé A = {1, 2, 3, . . .} áÅÐ B = {{1, 2}, {3, 4, 5}, 6, 7, 8, . . .} ¢éÍã´à»š¹à·ç¨ 1. A − B ÁÕÊÁÒªÔ¡ 5 µÑÇ 2. ¨Ó¹Ç¹ÊÁÒªÔ¡¢Í§à¾ÒàÇÍÃì૵¢Í§ B − A à·èҡѺ 4 3. ¨Ó¹Ç¹ÊÁÒªÔ¡¢Í§ (A − B) ∪ (B − A) ໚¹¨Ó¹Ç¹¤Ùè 4. A ∩ B ¤×Í૵¢Í§¨Ó¹Ç¹¹Ñº·Õ‹ÁÕ¤èÒÁÒ¡¡ÇèÒ 5 2. ¾Ô¨ÒóҡÒÃãËéà˵ؼŵèÍ仹Ռ à赯 1) A 2) àËç´à»š¹¾×ªÁÕ´Í¡ ¼Å àËç´à»š¹¾×ªªÑŒ¹ÊÙ§ ¢éÍÊÃØ»¢éÒ§µé¹ÊÁà˵ØÊÁ¼Å ¶éÒ A á·¹¢éͤÇÒÁã´ 1. ¾×ªªÑŒ¹ÊÙ§·Ø¡ª¹Ô´ÁÕ´Í¡ 2. ¾×ªªÑŒ¹ÊÙ§ºÒ§ª¹Ô´ÁÕ´Í¡ 3. ¾×ªÁÕ´Í¡·Ø¡ª¹Ô´à»š¹¾×ªªÑŒ¹ÊÙ§ 4. ¾×ªÁÕ´Í¡ºÒ§ª¹Ô´à»š¹¾×ªªÑŒ¹ÊÙ§
2.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 3 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 3. ¾Ô¨ÒóҢéͤÇÒÁµèÍ仹Ռ ¡. ¨Ó¹Ç¹·Õ‹à»š¹·È¹ÔÂÁäÁèÃÙ騺ºÒ§¨Ó¹Ç¹à»š¹¨Ó¹Ç¹ÍµÃáÂÐ ¢. ¨Ó¹Ç¹·Õ‹à»š¹·È¹ÔÂÁäÁèÃÙ騺ºÒ§¨Ó¹Ç¹à»š¹¨Ó¹Ç¹µÃáÂÐ ¢éÍã´¶Ù¡µéͧ 1. ¢éÍ ¡. áÅТéÍ ¢. 2. ¢éÍ ¡. à·èҹь¹ 3. ¢éÍ ¢. à·èҹь¹ 4. ¢éÍ ¡. áÅТéÍ ¢. ¼Ô´ 4. ¡Ó˹´ãËé s, t, u áÅÐ v ໚¹¨Ó¹Ç¹¨ÃÔ§ «Ö‹§ s < t áÅÐ u < v ¾Ô¨ÒóҢéͤÇÒÁµèÍ仹Ռ ¡. s − u < t − v ¢. s − v < t − u ¢éÍã´¶Ù¡µéͧ 1. ¢éÍ ¡. áÅТéÍ ¢. 2. ¢éÍ ¡. à·èҹь¹ 3. ¢éÍ ¢. à·èҹь¹ 4. ¢éÍ ¡. áÅТéÍ ¢. ¼Ô´
3.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 4 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 5. ¼Åà©Å¢ͧÊÁ¡Òà 2|5 − x| = 1 ÍÂÙè㹪èǧ㴠1. (−10, −5) 2. (−6, −4) 3. (−4, 5) 4. (−3, 6) 6. ¶éÒ 3 4 ໚¹¼Åà©ÅÂ˹֋§¢Í§ÊÁ¡Òà 4x2 + bx − 6 = 0 àÁ×‹Í b ໚¹¨Ó¹Ç¹¨ÃÔ§áÅéÇ ÍÕ¡¼Å à©ÅÂ˹֋§¢Í§ÊÁ¡ÒùՌÁÕ¤èҵç¡Ñº¢éÍã´ 1. −2 2. − 1 2 3. 1 2 4. 2 7. ¢éÍã´ÁÕ¤èÒµèÒ§¨Ò¡¢éÍÍ׋¹ 1. (−1)0 2. (−1)0.2 3. (−1)0.4 4. (−1)0.8 8. |4 √ 3 − 5 √ 2| − |3 √ 5 − 5 √ 2| + |4 √ 3 − 3 √ 5| 2 à·èҡѺ¢éÍã´ 1. 0 2. 180 3. 192 4. 200
4.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 5 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 9. ¡Ó˹´ãËé a ໚¹¨Ó¹Ç¹¨ÃÔ§ºÇ¡ áÅÐ n ໚¹¨Ó¹Ç¹¤ÙèºÇ¡ ¾Ô¨ÒóҢéͤÇÒÁµèÍ仹Ռ ¡. n √ a n = |a| ¢. n √ an = |a| ¢éÍã´¶Ù¡µéͧ 1. ¢éÍ ¡. áÅТéÍ ¢. 2. ¢éÍ ¡. à·èҹь¹ 3. ¢éÍ ¢. à·èҹь¹ 4. ¢éÍ ¡. áÅТéÍ ¢. ¼Ô´ 10. ¶éÒ f(x) = −x2 + x + 2 áÅéÇ ¢éÍÊÃØ»ã´¶Ù¡µéͧ 1. f(x) ≥ 0 àÁ×‹Í −1 ≤ x ≤ 2 2. ¨Ø´Ç¡¡ÅѺ¢Í§¡ÃÒ¿¢Í§¿˜§¡ìªÑ¹ f ÍÂÙè㹨µØÀÒ¤·Õ‹Êͧ 3. ¿˜§¡ìªÑ¹ f ÁÕ¤èÒÊÙ§ÊØ´à·èҡѺ 2 4. ¿˜§¡ìªÑ¹ f ÁÕ¤èÒµ‹ÓÊØ´à·èҡѺ 2
5.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 6 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 11. ¤ÇÒÁÊÑÁ¾Ñ¹¸ìã¹¢éÍã´à»š¹¿˜§¡ìªÑ¹ 1. {(1, 2), (2, 3), (3, 2), (2, 4)} 2. {(1, 2), (2, 3), (3, 1), (3, 3)} 3. {(1, 3), (1, 2), (1, 1), (1, 4)} 4. {(1, 3), (2, 1), (3, 3), (4, 1)} 12. ¶éÒ f(x) = √ 3 − x áÅÐ g(x) = −2 + |x − 4| áÅéÇ Df ∪ Rg ¤×Í¢éÍã´ 1. (−∞, 3] 2. [−2, ∞) 3. [−2, 3] 4. (−∞, ∞)
6.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 7 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 13. ¡Ó˹´ãËé¡ÃÒ¿¢Í§¿˜§¡ìªÑ¹ f ໚¹´Ñ§¹ÕŒ ßß½¼ ¼ ß ¤èҢͧ 11f(−11) − 3f(−3)f(3) ¤×Í¢éÍã´ 1. 57 2. 68 3. 75 4. 86
7.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 8 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 14. ÃÙ»ÊÒÁàËÅÕ‹ÂÁÁØÁ©Ò¡Ãٻ˹֋§ Áվ׌¹·Õ‹ 600 µÒÃҧૹµÔàÁµÃ ¶éÒ´éÒ¹»ÃСͺÁØÁ ©Ò¡´éҹ˹֋§ÂÒÇ໚¹ 75% ¢Í§´éÒ¹»ÃСͺÁØÁ©Ò¡ÍÕ¡´éҹ˹֋§áÅéÇ àÊé¹ÃͺÃÙ»ÊÒÁ àËÅÕ‹ÂÁÁØÁ©Ò¡ÃÙ»¹ÕŒ ÂÒǡՋૹµÔàÁµÃ 1. 120 2. 40 3. 60 √ 2 4. 20 √ 2 15. ¢ºÇ¹¾ÒàËôÃÙ»ÊÕ‹àËÅÕ‹ÂÁ¼×¹¼éÒ¢ºÇ¹Ë¹Ö‹§ »ÃСͺ´éǼÙéà´Ô¹à»š¹á¶Ç á¶ÇÅÐà·èÒæ ¡Ñ¹ (ÁÒ¡¡ÇèÒ 1 á¶Ç áÅÐá¶ÇÅÐÁÒ¡¡ÇèÒ 1 ¤¹) â´ÂÁÕ੾ÒмÙéÍÂÙèÃÔÁ´éÒ¹¹Í¡·ÑŒ§ÊÕ‹´éÒ¹¢Í§ ¢ºÇ¹à·èҹь¹ ·Õ‹ÊÇÁªØ´ÊÕá´§ «Ö‹§ÁÕ·ÑŒ§ËÁ´ 50 ¤¹ ¶éÒ x ¤×ͨӹǹá¶Ç¢Í§¢ºÇ¹ ¾ÒàËô áÅÐ N ¤×ͨӹǹ¤¹·Õ‹ÍÂÙèã¹¢ºÇ¹¾ÒàËôáÅéÇ ¢éÍã´¶Ù¡µéͧ 1. 31x − x2 = N 2. 29x − x2 = N 3. 27x − x2 = N 4. 25x − x2 = N
8.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 9 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 16. ÃÙ»ÊÕ‹àËÅÕ‹ÂÁ¼×¹¼éÒÊͧÃÙ» ÁÕ¢¹Ò´à·èҡѹ â´ÂÁÕàÊé¹·á§ÁØÁÂÒÇ໚¹Êͧà·èҢͧ´éÒ¹ ¡ÇéÒ§ ¶éÒ¹ÓÃÙ»ÊÕ‹àËÅÕ‹ÂÁ¼×¹¼éÒ·ÑŒ§ÊͧÁÒÇÒ§µè͡ѹ´Ñ§ÃÙ» ¨Ø´ A áÅШش B ÍÂÙèËèÒ§¡Ñ¹à»š¹ ÃÐÂСՋà·èҢͧ´éÒ¹¡ÇéÒ§ 1. 1.5 2. 3 3. √ 2 4. 2 √ 2 17. â´Â¡ÒÃãªéµÒÃÒ§ËÒÍѵÃÒÊèǹµÃÕ⡳ÁԵԢͧÁØÁ¢¹Ò´µèÒ§æ ·Õ‹¡Ó˹´ãËéµèÍ仹Ռ θ sin θ cos θ 72◦ 0.951 0.309 73◦ 0.956 0.292 74◦ 0.961 0.276 75◦ 0.966 0.259 ÁØÁÀÒÂã¹·Õ‹ÁÕ¢¹Ò´àÅç¡·Õ‹ÊØ´¢Í§ÃÙ»ÊÒÁàËÅÕ‹ÂÁ·Õ‹ÁÕ´éÒ¹·ÑŒ§ÊÒÁÂÒÇ 7, 24 áÅÐ 25 ˹èÇ ÁÕ¢¹Ò´ã¡Åéà¤Õ§¡Ñº¢éÍã´ÁÒ¡·Õ‹ÊØ´ 1. 15◦ 2. 16◦ 3. 17◦ 4. 18◦
9.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 10 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 18. ÁØÁÁØÁ˹֋§¢Í§ÃÙ»ÊÒÁàËÅÕ‹ÂÁÁØÁ©Ò¡ÁÕ¢¹Ò´à·èҡѺ 60 ͧÈÒ ¶éÒàÊé¹ÃͺÃÙ»¢Í§ÃÙ» ÊÒÁàËÅÕ‹ÂÁ¹ÕŒÂÒÇ 3 − √ 3 ¿ØµáÅéÇ ´éÒ¹·Õ‹ÂÒÇ໚¹Íѹ´ÑºÊͧÁÕ¤ÇÒÁÂÒÇà·èҡѺ¢éÍã´ 1. 2 − √ 3 ¿Øµ 2. 2 + √ 3 ¿Øµ 3. 2 √ 3 − 3 ¿Øµ 4. 2 √ 3 + 3 ¿Øµ 19. ¡Åéͧǧ¨Ã»´«Ö‹§¶Ù¡µÔ´µÑŒ§ÍÂÙèÊÙ§¨Ò¡¾×Œ¹¶¹¹ 2 àÁµÃ ÊÒÁÒö¨ÑºÀÒ¾ä´éµ‹Ó·Õ‹ÊØ´·Õ‹ÁØÁ ¡éÁ 45◦ áÅÐÊÙ§·Õ‹ÊØ´·Õ‹ÁØÁ¡éÁ 30◦ ÃÐÂзҧº¹¾×Œ¹¶¹¹ã¹á¹Ç¡Åéͧ ·Õ‹¡Åéͧ¹ÕŒÊÒÁÒö ¨ÑºÀÒ¾ä´é¤×Íà·èÒã´ (¡Ó˹´ãËé √ 3 ≈ 1.73) 1. 1.00 àÁµÃ 2. 1.46 àÁµÃ 3. 2.00 àÁµÃ 4. 3.46 àÁµÃ 20. ¡Ó˹´ãËé 3 2 , 1, 1 2 , . . . ໚¹ÅӴѺàÅ¢¤³Ôµ ¼ÅºÇ¡¢Í§¾¨¹ì·Õ‹ 40 áÅо¨¹ì·Õ‹ 42 à·èҡѺ ¢éÍã´ 1. −18 2. −19 3. −37 4. −38
10.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 11 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 21. ã¹ 40 ¾¨¹ìáá¢Í§ÅӴѺ an = 3 + (−1)n ÁÕ¡Õ‹¾¨¹ì ·Õ‹ÁÕ¤èÒà·èҡѺ¾¨¹ì·Õ‹ 40 1. 10 2. 20 3. 30 4. 40 22. ¡Ó˹´ãËé a1, a2, a3, . . . ໚¹ÅӴѺàâҤ³Ôµ ¶éÒ a2 = 8 áÅÐ a5 = −64 áÅéÇ ¼ÅºÇ¡ ¢Í§ 10 ¾¨¹ìáá¢Í§ÅӴѺ¹ÕŒà·èҡѺ¢éÍã´ 1. 2, 048 2. 1, 512 3. 1, 364 4. 1, 024 23. ·ÒÊÕàËÃÕÂÊÒÁÍѹ´Ñ§¹ÕŒ àËÃÕÂáá´éҹ˹֋§·ÒÊÕ¢ÒÇ ÍÕ¡´éҹ˹֋§·ÒÊÕá´§ àËÃÕ·Ջ Êͧ´éҹ˹֋§·ÒÊÕá´§ ÍÕ¡´éҹ˹֋§·ÒÊÕ¿‡Ò àËÃÕ·ՋÊÒÁ´éҹ˹֋§·ÒÊÕ¿‡Ò ÍÕ¡´éҹ˹֋§ ·ÒÊÕ¢ÒÇ â¹àËÃÕ·ь§ÊÒÁ¢ÖŒ¹¾ÃéÍÁ¡Ñ¹ ¤ÇÒÁ¹èÒ¨Ð໚¹·Õ‹àËÃÕ¨Т֌¹Ë¹éÒµèÒ§Êաѹ ·ÑŒ§ËÁ´à»š¹´Ñ§¢éÍã´ 1. 1 2 2. 1 4 3. 1 8 4. 1 16
11.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 12 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 24. ¡ÅèͧãºË¹Ö‹§ºÃèØÊÅÒ¡ËÁÒÂàÅ¢ 1–10 ËÁÒÂàÅ¢ÅÐ 1 㺠¶éÒÊØèÁËÂÔºÊÅÒ¡¨Ó¹Ç¹Êͧ 㺠â´ÂËÂÔº·ÕÅÐãºáººäÁèãÊè¤×¹ ¤ÇÒÁ¹èÒ¨Ð໚¹·Õ‹¨ÐËÂÔºä´éÊÅÒ¡ËÁÒÂàÅ¢µ‹Ó¡ÇèÒ 5 à¾Õ§˹֋§ãºà·èҹь¹ à·èҡѺ¢éÍã´ 1. 2 9 2. 8 15 3. 2 35 4. 11 156 25. 㹡ÒÃÇÑ´ÊèǹÊÙ§¹Ñ¡àÃÕ¹áµèÅФ¹ã¹ªÑŒ¹ ¾ºÇèҹѡàÃÕ¹·Õ‹ÊÙ§·Õ‹ÊØ´ÊÙ§ 177 ૹµÔàÁµÃ áÅйѡàÃÕ¹·Õ‹àµÕŒÂ·Õ‹ÊØ´ÊÙ§ 145 ૹµÔàÁµÃ ¾Ô¨ÒóÒ૵¢Í§ÊèǹÊÙ§µèÍ仹Ռ S = { H | H ໚¹ÊèǹÊÙ§ã¹Ë¹èÇÂૹµÔàÁµÃ¢Í§¹Ñ¡àÃÕ¹㹪ь¹} T = { H | 145 ≤ H ≤ 177 } ૵㴶×Í໚¹»ÃÔÀÙÁÔµÑÇÍÂèÒ§ (á«Áà»ÅÊ໫) ÊÓËÃѺ¡Ò÷´ÅÍ§ÊØèÁ¹ÕŒ 1. S áÅÐ T 2. S à·èҹь¹ 3. T à·èҹь¹ 4. ·ÑŒ§ S áÅÐ T äÁè໚¹»ÃÔÀÙÁÔµÑÇÍÂèÒ§
12.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 13 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 26. 㹡ÒÃàÅ×Í¡¤³Ð¡ÃÃÁ¡Òêش˹֋§ «Ö‹§»ÃСͺ´éÇ »Ãиҹ Ãͧ»Ãиҹ áÅÐ àŢҹءÒÃÍÂèÒ§ÅÐ 1 ¤¹ ¨Ò¡ËÔ§ 6 ¤¹ áÅЪÒ 4 ¤¹ ¤ÇÒÁ¹èÒ¨Ð໚¹·Õ‹¤³Ð¡ÃÃÁ¡Òà ªØ´¹ÕŒ ¨ÐÁÕ»ÃиҹáÅÐÃͧ»Ãиҹ໚¹ËÔ§à·èҡѺ¢éÍã´ 1. 1 18 2. 1 12 3. 1 9 4. 1 3 27. ¤ÃÙÊ͹ÇÔ·ÂÒÈÒʵÃìÁͺËÁÒÂãËé¹Ñ¡àÃÕ¹ 40 ¤¹ ·Óâ¤Ã§§Ò¹µÒÁ¤ÇÒÁʹ㨠ËÅѧ¨Ò¡ µÃǨÃÒ§ҹâ¤Ã§§Ò¹¢Í§·Ø¡¤¹áÅéÇ ¼ÅÊÃØ»à»š¹´Ñ§¹ÕŒ ¼Å¡ÒûÃÐàÁÔ¹ ¨Ó¹Ç¹â¤Ã§§Ò¹ ´ÕàÂÕ‹ÂÁ 3 ´Õ 20 ¾Íãªé 12 µéͧá¡éä¢ 5 ¢éÍÁÙÅ·Õ‹à¡çºÃǺÃÇÁ à¾×‹ÍãËéä´é¼ÅÊÃØ»¢éÒ§µé¹à»š¹¢éÍÁÙŪ¹Ô´ã´ 1. ¢éÍÁÙÅ»°ÁÀÙÁÔ àªÔ§»ÃÔÁÒ³ 2. ¢éÍÁÙŷصÔÂÀÙÁÔ àªÔ§»ÃÔÁÒ³ 3. ¢éÍÁÙÅ»°ÁÀÙÁÔ àªÔ§¤Ø³ÀÒ¾ 4. ¢éÍÁÙŷصÔÂÀÙÁÔ àªÔ§¤Ø³ÀÒ¾
13.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 14 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 28. ¤èÒà©ÅÕ‹ÂàÅ¢¤³Ôµ¢Í§¹ŒÓ˹ѡ¢Í§¾¹Ñ¡§Ò¹¢Í§ºÃÔÉѷ˹֋§ à·èҡѺ 48.01 ¡ÔâÅ¡ÃÑÁ ºÃÔÉÑ· ¹ÕŒÁÕ¾¹Ñ¡§Ò¹ªÒ 43 ¤¹ áÅо¹Ñ¡§Ò¹ËÔ§ 57 ¤¹ ¶éÒ¤èÒà©ÅÕ‹ÂàÅ¢¤³Ôµ¢Í§¹ŒÓ˹ѡ ¾¹Ñ¡§Ò¹ËÔ§à·èҡѺ 45 ¡ÔâÅ¡ÃÑÁ áÅéÇ ¹ŒÓ˹ѡ¢Í§¾¹Ñ¡§Ò¹ªÒ·ь§ËÁ´ÃÇÁ¡Ñ¹à·èҡѺ ¢éÍã´ 1. 2, 236 ¡ÔâÅ¡ÃÑÁ 2. 2, 279 ¡ÔâÅ¡ÃÑÁ 3. 2, 322 ¡ÔâÅ¡ÃÑÁ 4. 2, 365 ¡ÔâÅ¡ÃÑÁ
14.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 15 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 29. á¼¹ÀÒ¾µé¹-㺢ͧ¹ŒÓ˹ѡã¹Ë¹èÇ¡ÃÑÁ¢Í§ä¢èä¡è 10 ¿Í§ ໚¹´Ñ§¹ÕŒ 5 7 8 6 7 8 9 7 0 4 4 7 8 1 ¢éÍÊÃØ»ã´à»š¹à·ç¨ 1. °Ò¹¹ÔÂÁ¢Í§¹ŒÓ˹ѡ¢Í§ä¢èä¡èÁÕà¾Õ§¤èÒà´ÕÂÇ 2. ¤èÒà©ÅÕ‹ÂàÅ¢¤³ÔµáÅÐÁѸ°ҹ¢Í§¹ŒÓ˹ѡ¢Í§ä¢èä¡èÁÕ¤èÒà·èҡѹ 3. ÁÕä¢èä¡è 5 ¿Í§·Õ‹ÁÕ¹ŒÓ˹ѡ¹éÍ¡ÇèÒ 70 ¡ÃÑÁ 4. ä¢èä¡è·Õ‹ÁÕ¹ŒÓ˹ѡÊÙ§¡ÇèÒ°Ò¹¹ÔÂÁ ÁըӹǹÁÒ¡¡ÇèÒ ä¢èä¡è·Õ‹ÁÕ¹ŒÓ˹ѡà·èҡѺ°Ò¹ ¹ÔÂÁ
15.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 16 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 30. ÊÓËÃѺ¢éÍÁÙÅàªÔ§»ÃÔÁÒ³ã´æ ·Õ‹ÁÕ¤èÒʶԵԵèÍ仹Ռ ¤èÒʶԵÔ㴨еç¡Ñº¤èҢͧ¢éÍÁÙŤèÒ Ë¹Ö‹§àÊÁÍ 1. ¾ÔÊÑ 2. ¤èÒà©ÅÕ‹ÂàÅ¢¤³Ôµ 3. ÁѸ°ҹ 4. °Ò¹¹ÔÂÁ 31. ¢éÍÁÙŵèÍ仹ՌáÊ´§¹ŒÓ˹ѡã¹Ë¹èÇ¡ÔâÅ¡ÃÑÁ ¢Í§¹Ñ¡àÃÕ¹¡ÅØèÁ˹֋§ 41, 88, 46, 42, 43, 49, 44, 45, 43, 95, 47, 48 ¤èÒ¡ÅÒ§ã¹¢éÍã´à»š¹¤èÒ·Õ‹àËÁÒÐÊÁ·Õ‹¨Ð໚¹µÑÇá·¹¢Í§¢éÍÁÙŪش¹ÕŒ 1. ÁѸ°ҹ 2. °Ò¹¹ÔÂÁ 3. ¤èÒà©ÅÕ‹ÂàÅ¢¤³Ôµ 4. ¤èÒà©ÅՋ¢ͧ¤èÒÊÙ§ÊØ´áÅФèÒµ‹ÓÊØ´
16.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 17 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 32. ¤Ðá¹¹Êͺ¤ÇÒÁÃÙé·Ñ‹Ç仢ͧ¹Ñ¡àÃÕ¹ 200 ¤¹¹ÓàʹÍâ´Âãªéá¼¹ÀÒ¾¡Åèͧ´Ñ§¹ÕŒ ½¼ ½¾ ½ ½ ¾ ¢éÍã´à»š¹à·ç¨ 1. ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 12 ¶Ö§ 16 ¤Ðá¹¹ ÁÕà·èҡѺ ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 16 ¶Ö§ 18 ¤Ðá¹¹ 2. ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 12 ¶Ö§ 18 ¤Ðá¹¹ ÁÕà·èҡѺ ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 18 ¶Ö§ 24 ¤Ðá¹¹ 3. ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 10 ¶Ö§ 12 ¤Ðá¹¹ ÁÕà·èҡѺ ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 18 ¶Ö§ 24 ¤Ðá¹¹ 4. ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 10 ¶Ö§ 16 ¤Ðá¹¹ ÁÕà·èҡѺ ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 16 ¶Ö§ 24 ¤Ðá¹¹
17.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 18 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 33. ¨Ò¡¡ÒõÃǨÊͺÅӴѺ·Õ‹¢Í§¤Ðá¹¹Êͺ¢Í§¹Ò ¡ áÅйÒ ¢ ã¹ ÇÔªÒ¤³ÔµÈÒʵÃì ·Õ‹ÁÕ¼Ùéà¢éÒÊͺ 400 ¤¹ »ÃÒ¡®ÇèÒ¹Ò ¡ Êͺä´é¤Ðá¹¹ÍÂÙèã¹µÓá˹觤ÇÍÃìä·Åì·Õ‹ 3 áÅйÒ ¢ Êͺä´é¤Ðá¹¹ÍÂÙèã¹µÓá˹è§à»ÍÃìà«ç¹ä·Åì·Õ‹ 60 ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹Êͺä´é ¤Ðá¹¹ÃÐËÇèÒ§¤Ðá¹¹¢Í§¹Ò ¡ áÅйÒ ¢ ÁÕ»ÃÐÁÒ³¡Õ‹¤¹ 1. 15 ¤¹ 2. 30 ¤¹ 3. 45 ¤¹ 4. 60 ¤¹ 34. ¢éÍÁÙŪش˹֋§ ÁÕºÒ§Êèǹ¶Ù¡¹ÓàʹÍã¹µÒÃÒ§µèÍ仹Ռ ÍѹµÃÀÒ¤ªÑŒ¹ ¤ÇÒÁ¶Õ‹ ¤ÇÒÁ¶Õ‹ÊÐÊÁ ¤ÇÒÁ¶Õ‹ÊÑÁ¾Ñ·¸ì 2–6 7–11 11 0.2 12–16 14 17–21 6 0.3 ªèǧ¤Ðá¹¹ã´à»š¹ªèǧ¤Ðá¹¹·Õ‹ÁÕ¤ÇÒÁ¶Õ‹ÊÙ§ÊØ´ 1. 2–6 2. 7–11 3. 12–16 4. 17–21
18.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 19 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 35. ¨Ó¹Ç¹¼ÙéÇèÒ§§Ò¹·Ñ‹Ç»ÃÐà·Èã¹à´×͹¡Ñ¹ÂÒ¹ »‚¾.È. 2551 Áըӹǹ·ÑŒ§ÊÔŒ¹ 4.29 áʹ ¤¹ µÒÃÒ§à»ÃÕºà·ÕºÍѵÃÒ¡ÒÃÇèÒ§§Ò¹ã¹à´×͹¡Ñ¹ÂÒ¹ »‚¾.È. 2550 ¡Ñº»‚¾.È. 2551 ໚¹´Ñ§¹ÕŒ ÍѵÃÒ¡ÒÃÇèÒ§§Ò¹ã¹à´×͹¡Ñ¹ÂÒ¹ ¾×Œ¹·Õ‹ÊÓÃǨ (¨Ó¹Ç¹¼ÙéÇèÒ§§Ò¹µèͨӹǹ¼ÙéÍÂÙèã¹ ¡ÓÅѧáç§Ò¹¤Ù³ 100) »‚¾.È. 2550 »‚¾.È. 2551 ÀÒ¤ãµé 1.0 1.0 ÀÒ¤µÐÇѹÍÍ¡à©Õ§à˹×Í 0.9 1.3 ÀÒ¤à˹×Í 1.5 1.2 ÀÒ¤¡ÅÒ§ (¡àÇé¹¡ÃØ§à·¾ÁËÒ¹¤Ã) 1.3 0.9 ¡Ãا෾ÁËÒ¹¤Ã 1.2 1.2 ·Ñ‹Ç»ÃÐà·È 1.2 1.1 ¾Ô¨ÒóҢéͤÇÒÁµèÍ仹Ռ ¡. ¨Ó¹Ç¹¼ÙéÇèÒ§§Ò¹ã¹ÀÒ¤ãµéã¹à´×͹¡Ñ¹ÂÒ¹¢Í§»‚¾.È. 2550 áÅТͧ»‚¾.È. 2551 à·èҡѹ ¢. ¨Ó¹Ç¹¼ÙéÍÂÙè㹡ÓÅѧáç§Ò¹·Ñ‹Ç»ÃÐà·Èã¹à´×͹¡Ñ¹ÂÒ¹ »‚¾.È.2551ÁÕ»ÃÐÁÒ³ 39 ÅéÒ¹¤¹ ¢éÍã´¶Ù¡µéͧ 1. ¢éÍ ¡. áÅТéÍ ¢. 2. ¢éÍ ¡. à·èҹь¹ 3. ¢éÍ ¢. à·èҹь¹ 4. ¢éÍ ¡. áÅТéÍ ¢. ¼Ô´
19.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 20 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 36. 㹡ÒÃãªéʶԵÔà¾×‹Í¡ÒõѴÊÔ¹ã¨áÅÐÇÒ§á¼¹ ÊÓËÃѺàÃ׋ͧ·Õ‹¨Ó໚¹µéͧÁÕ¡ÒÃãªé¢éÍÁÙÅáÅÐ ÊÒÃʹà·È ¶éÒ¢Ò´¢éÍÁÙÅáÅÐÊÒÃʹà·È´Ñ§¡ÅèÒÇ ¼ÙéµÑ´ÊԹ㨤Ç÷Ӣь¹µÍ¹ã´¡è͹ 1. à¡çºÃǺÃÇÁ¢éÍÁÙÅ 2. àÅ×Í¡ÇÔ¸ÕÇÔà¤ÃÒÐËì¢éÍÁÙÅ 3. àÅ×Í¡ÇÔ¸Õà¡çºÃǺÃÇÁ¢éÍÁÙÅ 4. ¡Ó˹´¢éÍÁÙÅ·Õ‹¨Ó໚¹µéͧãªé
20.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 21 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. Êèǹ·Õ‹ 2 ¨Ó¹Ç¹ 4 ¢éÍ (¢éÍ 37–40) ¢éÍÅÐ 1 ¤Ðá¹¹ ¤Ó͸ԺÒ 1. ¢éÍÊͺÊèǹ¹ÕŒ ໚¹¢éÍÊͺ·Õ‹Áդӵͺ·Õ‹¶Ù¡µéͧ໚¹¨Ó¹Ç¹àµçÁºÇ¡ËÃ×ÍÈÙ¹Âì «Ö‹§ »ÃСͺ´éǵÑÇàÅ¢äÁèà¡Ô¹ 3 ËÅÑ¡ àÁ׋Íà¢Õ¹ã¹Ãкº°Ò¹ÊÔº 2. 㹡Òõͺ ãËéÃкÒµÑÇàÅ×Í¡·Õ‹µÃ§¡ÑºµÑÇàÅ¢ã¹áµèÅÐËÅÑ¡¢Í§¤ÓµÍº â´ÂµéͧÃкÒ µÑÇàÅ×Í¡·ÑŒ§ 3 ËÅÑ¡ ¤×Í ËÅÑ¡ÃéÍ ËÅÑ¡ÊÔº áÅÐËÅѡ˹èÇ µÒÁÅӴѺ (¡Ã³Õ·Õ‹¤ÓµÍº·Õ‹ µéͧ¡ÒõͺäÁèÁÕàÅ¢ËÅѡ㴠ãËéÃкÒÂàÅ¢ 0 ã¹ËÅÑ¡¹ÑŒ¹) 3. ¼Ùéà¢éÒÊͺµéͧÃкÒ¤ӵͺä´é¶Ù¡µéͧ·ÑŒ§ 3 ËÅÑ¡ ¨Ö§¨Ðä´é¤Ðṹ㹢é͹ь¹æ µÑÇÍÂèÒ§¡ÒÃÃкÒ¤ӵͺ 1. ¶éҤӵͺ·Õ‹µéͧ¡Òõͺ¤×Í 0 ãËéÃкÒÂàÅ¢ 0 0 0 ã¹ËÅÑ¡ÃéÍ ËÅÑ¡ÊÔº áÅÐËÅѡ˹èÇ µÒÁÅӴѺ 2. ¶éҤӵͺ·Õ‹µéͧ¡Òõͺ¤×Í 47 ãËéÃкÒÂàÅ¢ 0 4 7 ã¹ËÅÑ¡ÃéÍ ËÅÑ¡ÊÔº áÅÐËÅѡ˹èÇ µÒÁÅӴѺ 3. ¶éҤӵͺ·Õ‹µéͧ¡Òõͺ¤×Í 209 ãËéÃкÒÂàÅ¢ 2 0 9 ã¹ËÅÑ¡ÃéÍ ËÅÑ¡ÊÔº áÅÐËÅѡ˹èÇ µÒÁÅӴѺ
21.
ÃËÑÊÇÔªÒ 04 ¤³ÔµÈÒʵÃì
˹éÒ 22 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 37. 㹡ÒÃÊͺ¢Í§¹Ñ¡àÃÕ¹ªÑŒ¹»ÃжÁÈÖ¡ÉÒ¡ÅØèÁ˹֋§ ¾ºÇèÒ ÁÕ¼ÙéÊͺ¼èÒ¹ÇÔªÒµèÒ§æ ´Ñ§¹ÕŒ ¤³ÔµÈÒʵÃì 36 ¤¹ Êѧ¤ÁÈÖ¡ÉÒ 50 ¤¹ ÀÒÉÒä·Â 44 ¤¹ ¤³ÔµÈÒʵÃìáÅÐÊѧ¤ÁÈÖ¡ÉÒ 15 ¤¹ ÀÒÉÒä·ÂáÅÐÊѧ¤ÁÈÖ¡ÉÒ 12 ¤¹ ¤³ÔµÈÒʵÃìáÅÐÀÒÉÒä·Â 7 ¤¹ ·ÑŒ§ÊÒÁÇÔªÒ 5 ¤¹ ¨Ó¹Ç¹¼ÙéÊͺ¼èÒ¹ÍÂèÒ§¹éÍÂ˹֋§ÇÔªÒÁÕ¡Õ‹¤¹ 38. ã¹Êǹ»†ÒáËè§Ë¹Ö‹§ à¨éҢͧ»ÅÙ¡µé¹ÂÙ¤ÒÅÔ»µÑÊ໚¹á¶Ç´Ñ§¹ÕŒ á¶Çáá 12 µé¹ á¶Ç·Õ‹Êͧ 14 µé¹ á¶Ç·Õ‹ÊÒÁ 16 µé¹ â´Â»ÅÙ¡à¾Ô‹Áàªè¹¹ÕŒ µÒÁÅӴѺàÅ¢¤³Ôµ ¶éÒà¨éҢͧ»ÅÙ¡µé¹ ÂÙ¤ÒÅÔ»µÑÊäÇé·ÑŒ§ËÁ´ 15 á¶Ç ¨ÐÁÕµé¹ÂÙ¤ÒÅÔ»µÑÊã¹Êǹ»†Ò¹ÕŒ·ÑŒ§ËÁ´¡Õ‹µé¹ 39. µÙé¹ÔÃÀÑÂÁÕÃкºÅçÍ¡·Õ‹à»š¹ÃËÑÊ»ÃСͺ´éǵÑÇàŢⴴ 0 ¶Ö§ 9 ¨Ó¹Ç¹ 3 ËÅÑ¡ ¨Ó¹Ç¹ ÃËÑÊ·ÑŒ§ËÁ´·Õ‹ÁÕºÒ§ËÅÑ¡«ŒÓ¡Ñ¹ ¤×Íà·èÒã´ 40. ¨Ó¹Ç¹ÇÔ¸Õ㹡ÒèѴãËéËÔ§ 3 ¤¹ áÅЪÒ 3 ¤¹ ¹Ñ‹§àÃÕ§¡Ñ¹à»š¹á¶Ç â´ÂãËéÊÒÁÕÀÃÃÂÒ ¤Ùè˹֋§¹Ñ‹§µÔ´¡Ñ¹àÊÁÍ ÁÕ·ÑŒ§ËÁ´¡Õ‹ÇÔ¸Õ
Download