Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Recurrent Neural Networks have shown to be very powerful models as they can propagate context over several time steps. Due to this they can be applied effectively for addressing several problems in Natural Language Processing, such as Language Modelling, Tagging problems, Speech Recognition etc. In this presentation we introduce the basic RNN model and discuss the vanishing gradient problem. We describe LSTM (Long Short Term Memory) and Gated Recurrent Units (GRU). We also discuss Bidirectional RNN with an example. RNN architectures can be considered as deep learning systems where the number of time steps can be considered as the depth of the network. It is also possible to build the RNN with multiple hidden layers, each having recurrent connections from the previous time steps that represent the abstraction both in time and space.
Login to see the comments