SlideShare a Scribd company logo
Welcome to
The d and f-Block
Elements
Coinage Metals
(Cu, Ag, Au)
Some ancient
metal artifacts
“Dancing Girl”
Copper,
iron used
to make
weapons.
These f-block
elements are
used in nuclear
power plants.
Made up of
bronze metal
used in Harappan
civilization.
d-Block
elements
3d series
5d series
4d series
6d series
Pneumonic for d-Series
Sachin
Tendulkar
Very
Crazy
Man
Free
Coaching to
Nitin’s
Cou
Zin
Yes
Zebras
Never but
Most
Technicians
Run
Rhymes
Purely sweet
And
Cute
Larry
Have fun
Travelling
World and
Reach
Out
Ireland and
Please
Ask
Her
f-Block
elements
Lanthanoids
Actinoids
d-Block Elements
Generally, d-block elements are
called transition elements
Because their chemical properties
are transitional between
those of s- & p-block elements
Metals that have
incomplete d subshell
either in neutral atom
or in their ions.
Known as
transition metals
d-Block & f-block elements are
known as transition and inner
transition elements, respectively
Transition Elements
: [Ar]
: [Ar]
Incomplete d
subshell
Fe
Neutral
Fe3+
Ion
3d6 4s2
3d5 4s0
Incomplete d
subshell
Inner Transition Elements
f-Block elements are called
inner transition elements
Because their valence shell
electrons lie in anti-penultimate
energy level
Example: Cerium (58)
[Xe] 4f1 5d1 6s2
Non-transition d-Block Elements
Zn (30) : 3d10 4s2
[Ar]
Cd (48) : 4d10 5s2
[Kr]
Hg (80) : 4f14 5d10 6s2
[Xe]
Zn2+ : 3d10 4s0
[Ar]
Cd2+ : 4d10 5s0
[Kr]
Hg2+ : 4f14 5d10 6s0
[Xe]
Known as
non-transition
metals
Zn, Cd, Hg of group 12
have full d10 configuration in
their ground state as well as
in their common oxidation
states.
Transition d-Block Elements
Incomplete in
ionic state
: [Kr]
Ag
(41)
Neutral 4d10 5s1
: [Kr]
Ag+
Ion 4d10 5s0
: [Kr]
Ag2+
Ion 4d9 5s0
Silver is a transition
element as it has
incomplete d-orbital in
its +2 oxidation state.
Position in the
periodic table
Electronic
configuration
General
properties
Transition
elements
Position
of d-Block
elements
(n-1)d1-10 ns1-2
Inner d-orbital
General configuration
Electronic Configuration of d-Block Elements
Last electron enters in the d-orbital
Example
Sc(21) 1s2 2s2 2p6 3s2 3p6 3d1 4s2
Co(27) 1s2 2s2 2p6 3s2 3p6 3d7 4s2
Electrons filling in 3d elements
For 3d-series elements, electrons
enters in 3d orbitals which is
occupied generally after 4s
orbital.
Examples
Cr(24) [Ar] 3d4 4s2
Cr(24) [Ar] 3d5 4s1
✔
❌
Cr(24) [Ar] 3d5 4s1
Mo(42) [Kr] 4d4 5s2
Cr(24) [Ar] 3d5 4s1
✔
❌
Mo(42) [Kr] 4d5 5s1
Cu(29) [Ar] 3d9 4s2
Cr(24) [Ar] 3d5 4s1
✔
❌
Cu(29) [Ar] 3d10 4s1
Cr(24) [Ar] 3d4 4s2
Cr(24) [Ar] 3d5 4s1
✔
❌
Cr(24) [Ar] 3d5 4s1
Cr(24) [Ar] 3d4 4s2
Cr(24) [Ar] 3d5 4s1
✔
❌
Cr(24) [Ar] 3d5 4s1
Ag(47) [Kr] 4d9 5s2
Cr(24) [Ar] 3d5 4s1
✔
❌
Ag(47) [Kr] 4d10 5s1
The electronic configuration has several exceptions because of very little
difference in energy of (n-1)d and ns electrons. This can be reflected in
electronic configuration of Cr (half filled) and Cu (fully filled) in 3d series.
Cr(24) [Ar] 3d4 4s2
Cr(24) [Ar] 3d5 4s1
✔
❌
Examples
Cr(24) [Ar] 3d5 4s1
Pd(46) [Kr] 4d8 5s2
Cr(24) [Ar] 3d5 4s1
✔
❌
Pd(46) [Kr] 4d10 5s0
Pt(78) [Xe] 4f14 5d8 6s2
Cr(24) [Ar] 3d5 4s1
✔
❌
Pt(78) [Xe] 4f14 5d9 6s1
Au(79) [Xe] 4f14 5d9 6s2
Cr(24) [Ar] 3d5 4s1
✔
❌
Au(79) [Xe] 4f14 5d10 6s1
Physical properties
Atomic properties
Chemical properties
General
properties
Transition elements exhibit certain
characteristic properties due to
partially filled d-orbitals.
Physical Properties
All the transition
elements display typical
metallic properties
High tensile strength
High thermal and electrical conductivity
Malleability
Ductility
Metallic lustre
Hard and less volatile
High melting and boiling points
High tensile strength
High thermal conductivity
High electrical conductivity
Malleability: Metals
are highly malleable
Ductility: They are ductile
and can be drawn into
very thin wire
Metallic lustre: Metals
are lusturous in nature
Volatility: Metals are
non-volatile in nature
High boiling point High melting point
Metals generally
have high melting
and boiling points
Melting Point of Transition Elements
Melting point of transition metal
is high because of the
involvement of greater number
of electrons from (n-1)d in
addition to the ns electrons in
the interatomic metallic
bonding.
Melting Point of Transition Elements
Greater the number of
unpaired electrons
Higher will be the
melting point
General rule
3d metals rise to a
maximum at d5
Then, fall regularly
as the atomic
number increases
Except for
anomalous
values of
Mn and Tc
In any row,
Boiling Point of Transition Elements
Transition elements
have high boiling point
due to high enthalpy
of atomisation
Enthalpy of Atomisation
It is the enthalpy
change on breaking
one mole of bonds
completely to obtain
atoms in the gaseous
phase.
A2(g) 2A(g)
Transition elements exhibit higher
enthalpies of atomization due to
high effective nuclear charge and
large number of valence electrons.
Form very strong metallic bonds.
Arise due to unpaired electrons
in the (n−1)d subshell.
Stronger is the
resultant bonding
Greater the number of
valence electrons
Boiling Point of Transition Elements
Higher will be the
boiling point.
General rule
Boiling Point of Transition Elements
900
800
700
600
500
400
300
200
100
∆
a
H°/kJ
mol
-1
Atomic number
3d Series
4d Series
5d Series The maxima at about the
middle of each series
indicate that one unpaired electron
per d orbital is particularly
favourable for
strong interatomic interaction.
Boiling Point of Transition Elements
Boiling point of transition
elements increases down
the group.
900
800
700
600
500
400
300
200
100
∆
a
H°/kJ
mol
-1
Atomic number
3d Series
4d Series
5d Series
Boiling Point of Transition Elements
Zn, Cd and Hg have
low boiling point
Zero unpaired
electrons
Weak metallic bonding
Lowest boiling and
melting point
Cd
Zn
Hg
Atomic radii and
ionic radii
Ionisation enthalpy
Atomic
properties
> Fe Co Ni Cu Zn
Sc Ti V Cr Mn
> > > ≈ ≈ ≈ < <
Decreases gradually
Nearly constant Increases
Atomic Radii – 3d Series
Due to poor shielding by d electrons,
attraction increases more than repulsion
Repulsion almost
balances out attraction
No. of (n-1)d electrons are
very high
Repulsion dominates
attraction
Atomic Radii of Transition Elements
+
e–
e–
Repulsive
force
Attractive
force
New
electron
e–
Increased
nuclear
charge
+
Nuclear
charge
increases
Attraction
on
outermost
e- increases
Left to right
electron
in (n-1)d
subshell
Repulsion
between
electrons
increases
Atomic Radii of 3d, 4d and 5d Series
Radius of 4d series is
similar to radius of
5d series
Due to lanthanoid
contraction
12
13
14
15
16
17
18
19
Radius/mm
Sc Ti V Cr Mn Fe Co Ni Cu Zn
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
La Hf Ta W Re Os Ir Pt Au Hg
The imperfect shielding
of one electron by another
in the same set of orbitals.
The filling of 4f before 5d
orbital results in a regular
decrease in atomic radii.
Lanthanoid Contraction(Effect on Radii)
Titanium (Ti) 4s2 3d2
Zirconium (Zr) 5s2 4d2
Hafnium (Hf) 4f14 6s2 5d2
Ti < Zr ≈ Hf
Down
the
group
147 pm
160 pm
159 pm
Lanthanoid Contraction
Shielding power
of orbitals
s > p > d > f
Size
decreases
Nuclear attraction on
outermost e− increases
Reason 1
Lanthanoid Contraction
Titanium (Ti, 22)
Zirconium (Zr, 40)
Hafnium (Hf, 72)
+32 increase in
positive charge
+18 increase in
positive charge
Reason 2
Drastic increment
in charge
Increase in attraction
Decrease in radii
Lanthanoid Contraction
Lanthanoid contraction essentially
compensates for the expected
increase in atomic size with
increasing atomic number.
Due to lanthanoid contraction,
4d and 5d elements have very
similar physical and chemical
properties.
Due to decrease in radii and
increase in atomic mass,
density of transition
elements is generally high.
Density
increases
down the
group
Density increases
from Sc to Cu along
the period
Accompanied by the filling
of the inner d-orbitals
Ionisation enthalpy increases
Due to an increase
in nuclear charge
Trends in Ionisation Enthalpy
Reason
In general, from
left to right ionization
enthalpy increases
Gradually.
3d series I.E1 (kJmol-1) I.E2 (kJmol-1) I.E3 (kJmol-1)
Sc 631 1235 2393
Ti 656 1309 2657
V 650 1414 2833
Cr 653 1592 2990
Mn 717 1509 3260
Fe 762 1561 2962
Co 758 1644 3243
Ni 736 1752 3402
Cu 745 1958 3556
Zn 906 1734 3837
Ionisation Enthalpy Values For 3d Series
Ionisation Enthalpy
First
ionisation
enthalpy
Zinc have significantly
higher ionisation
enthalpy than copper
>
rZn rCu
>
I.E.Zn I.E.Cu
3d10 4s2 3d10 4s1
More stable High I.E.
Fully filled
Due to completely filled d and s
electrons in Zn, its first ionisation
energy is more than Cu.
Chemical Properties
Oxidation state
Standard electrode
potential and reactivity
Magnetic properties
Colour
Formation of complex
compounds
Catalytic properties
Formation of interstitial
compounds
Alloy formation
Oxidation State of Transition Elements
Due to incomplete
filling of d-orbitals
Transition elements
show a great variety
of oxidation states
Mn2+
Mn6+
Mn7+
Manganese in different
oxidation states
Oxidation states form
regular pyramid
Oxidation States of 3d Series Elements
Ti V Cr Mn Fe Co Ni Cu Zn
Sc
+3
+2
+3
+4
+2
+3
+4
+5
+2
+3
+4
+5
+6
+2
+3
+4
+5
+6
+7
+2
+3
+4
+6
+2
+3
+4
+2
+3
+4
+2
+1
+2
Oxidation State of 3d Transition Elements
d0
configuration
Noble gas
configuration
Stable
Common
oxidation states
V5+
Sc3+
Ti4+
Cr6+
Mn7+
Ti2+ [Ar]3d2 4s0
Ti3+ [Ar]3d1 4s0
Ti4+
[Ar]3d0 4s0
More stable
Inert gas
configuration
Ti(IV) is more
stable than
Ti(III) or Ti(II)
Mn2+(25)
Fe3+(26)
3d5 4s0
Half-filled orbital
Stable
Oxidation State of 3d Transition Elements
Common oxidation states
Zn2+ 3d10 4s0
Fully filled
More stable
Oxidation State of 3d Transition Elements
Requires high energy
for removing electron
[Ar]
:
Sc+
3d1 4s1
: [Ar]
Sc2+
3d1 4s0
[Ar]
:
Sc
3d1 4s2
Oxidation State Stability - Down the Group
Lower oxidation states are
favoured by heavier elements
p-block
Higher oxidation states are favoured
by the heavier elements
d-block
Easier to remove
valence electrons
Inert pair effect
Oxidation State Stability - Down the Group
Stability order
Mo (VI) & W (VI) Cr (VI)
>
Example
Dichromate ion
(Cr2O7 ) in acidic
medium is a
strong oxidising
agent
2–
MoO3 and WO3
are not oxidising
agents
Oxidation state normally
differ by unit of 2.
p-block
Oxidation state normally
differ by unity
d-block
Successive removal of
electrons from d-orbital
Inert pair effect
Low oxidation state is favoured
by metals when a complex
compound has ligands
Oxidation State in d-block Elements
Which are not just strong σ-donors
but also π-acceptors like in Ni(CO)4
and Fe(CO)5, etc.
Fe and Ni in Fe(CO)5 and Ni(CO)4
have zero oxidation states despite
the d block elements favouring
higher oxidation states
Halides of 3d metals
Oxidation
Number
Group 3 4 5 6 7 8 9 10 11 12
+6 CrF6
+5 VF5 CrF5
+4 TiX4 VX4
I CrX4 MnF4
+3 TiX3 VX3 CrX3 MnF3 FeX3
I CoF3
+2 TiX2
III
VX2 CrX2 MnX2 FeX2 CoX2 NiX2
CuX2
II ZnX2
+1 CuXIII
X : F → I
XI : F → Br
XII : F, Cl
XIII: Cl → I
Stability of Higher Oxidation States
Example: CoF3
Stability
through
Higher bond enthalpy
(higher covalent
compound)
Example:
VF5, CrF6
Higher lattice energy
Fluorine stabilizes
the highest
oxidation state
Instability of CuII Iodides
2Cu2+ + 4I –
Cu2I2 (s) + I2
Cu2+ oxidises I
–
to I2
Oxides of 3d Metals
Oxidation
number
Group 3 4 5 6 7 8 9 10 11 12
+7 Mn2O7
+6 CrO3
+5 V2O5
+4 TiO2 V2O4 CrO2 MnO2
+3 Sc2O3 Ti2O3 V2O3 Cr2O3 Mn2O3 Fe2O3
Mn3O4 Fe3O4 Co3O4
+2 TiO VO (CrO) MnO FeO CoO NiO CuO ZnO
+1 Cu2O
* * *
* : Mixed oxides
Oxides of 3d Metals
The ability of oxygen
to stabilise these high
oxidation states exceeds
that of fluorine.
MnF4 Mn2O7
Highest Mn
fluoride
Highest Mn
oxide
Oxides are more
stable than halides
due to ability of oxygen
to form multiple bonds
with metals.
Reactivity of Transition Metals
Reactivity of
transition elements
Stability of various
oxidation states
Transition metals vary
widely in their chemical
reactivity.
The study of standard
electrode potential is
important to understand the
Trends in standard
electrode potentials
M2+ M
(E
0
)
M2+/M
M3+ M2+
(E
0
)
M3+/M2+
Standard electrode potentials
are measurements of the
equilibrium potentials.
Mn+
+ ne– M, E0
Mn+/M
Standard
reduction
potential
Cu (s) Cu (g); △sH
Cu (g) Cu2+ (g); △iH
Cu2+ (g) Cu2+ (aq); △HydH
High
Low
+
Sublimation
enthalpy(+ve)
Hydration enthalpy(-ve)
Ionisation enthalpy
(I.E.1 + I.E.2), +ve
The high energy required to
transform Cu (s) to Cu2+ (g)
Enthalpy of
atomisation &
ionisation energies
Not balanced by its
hydration energy
Cu shows positive standard electrode potential
Inability to liberate
H2 from acid
Cu (s) + 2HCl (aq) CuCl2 (aq) + H2 (g)
Zn (s) + 2HCl (aq) ZnCl2 (aq) + H2 (g)
❌
Result
Whereas,
Only oxidising acids (HNO3,
hot conc. H2SO4) react with
Cu to liberate NO2 and SO2
and oxidise Cu to Cu2+
Reaction of metals
with HCl
Iron Nails
Reaction of metals
with HCl
Nickel Balls
Copper Spring
Reaction of Cu with
hot and conc. H2SO4
Cu + 2H2SO4 CuSO4 + SO2↑ + 2H2O
1 2
4
3
M2+/M
Trends in the E0
Standard Electrode Potential
In +2 state, Mn shows d5, Ni with d8 has
completely filled t2g and Zn has
completely filled d10). So, they show
more negative E0 values than expected
Hydration Energy
Ni2+ ion has the highest negative
enthalpy of hydration among the
elements of 3d series.
12
13
14
15
16
17
18
19
Radius/nm
Sc Ti V Cr Mn Fe Co Ni Cu Zn
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
La Hf Ta W Re Os Ir Pt Au Hg
Due to high
charge
density
Chemical Reactivity
Transition metals vary
widely in their chemical
reactivity.
Many are electropositive
and dissolve in mineral
acids.
A few metals are noble or
remain unreactive towards
single acids.
Chemical Reactivity
Due to increase in the sum of first
two ionisation enthalpies
The E
0
values indicate
decreasing tendency to form
divalent cation
M2+/M
Less negative
E0 values
Across the series
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
-2
-1.5
-1
-0.5
0
0.5
Observed
values
Calculated
values
Standard
electrode
potential
(V)
Each electron has an
associated magnetic
moment, due to
Spin angular
momentum
Orbital angular
momentum
Magnetic Properties
Electron
Direction of spin
Electron
Nucleus
Transition elements are
paramagnetic in nature.
μ n(n + 2)
√
=
Where,
n
No. of unpaired
electron(s)
=
Magnetic
moment
Spin-only
magnetic
moment (in BM)
5 unpaired
electrons
μ = 5(5 + 2)
√
5.92 BM
=
Mn2+ [Ar] 3d54s0
Magnetic Moments of Mn2+ Ion
Calculated and Observed Magnetic Moments(BM)
Ion Configuration
Unpaired
electron(s)
Magnetic moment
Calculated Observed
Sc3+ 3d0 0 0 0
Ti3+ 3d1 1 1.73 1.75
Tl2+ 3d2 2 2.84 2.76
V2+ 3d3 3 3.87 3.86
Cr2+ 3d4 4 4.90 4.80
Mn2+ 3d5 5 5.92 5.96
Fe2+ 3d6 4 4.90 5.3-5.5
Co2+ 3d7 3 3.87 4.4-5.2
Ni2+ 3d8 2 2.84 2.9-3.4
Cu2+ 3d9 1 1.73 1.8-2.2
Zn2+ 3d10 0 0
Magnetic moment
increases with number
of unpaired electrons.
Formation of Coloured Ions:3d Metal Ions
Ti
3+
Cr3+ Mn2+ Fe3+
Ti3+ : Purple
Cr3+ : Green
Mn2+ : Light pink
Fe3+ : yellow
Co2+ : pink
Ni2+ : green
Cu2+ : blue
Cu2+
Co2+ Ni
2+
Formation of Coloured Ions
Due to this excitation,
the compounds shows
a color.
When an electron
from a lower energy
d orbital is excited to
a higher energy
d-orbital
Complex Compounds
Example: [Fe(CN)6]3–, [PtCl4]2–, etc.
Compounds in which the metal
atoms/ions bind to a number of
anions/neutral molecules, by sharing
of electrons and forming complex
species with characteristic properties.
Haemoglobin
Brown Ring Test
In nitrate solution, add FeSO4,
slowly add H2SO4 solution such
that acid forms a layer below
aqueous solution.
A brown ring will be formed at
the junction of the two layers.
Comparatively
smaller sizes
High ionic charges
Availability of d-orbitals
for bond formation
Reasons for
complex
formation
Formation of Complex Compounds
Catalytic Property of Transition Metals
Adopt multiple
oxidation states
Transition metals show
catalytic property due to
the ability to
Form complexes
Iron(III) catalyses the reaction
between iodide and persulphate ions.
Catalytic action,
2I
–
+ S2O8 I2 + 2SO4
2– 2–
2Fe3+ + 2I
–
2Fe2+ + I2
2Fe2+ + S2O8 2SO4 + 2Fe3+
2– 2–
Catalytic Property of Transition Metals
Formation of Interstitial Compounds
Formation of Interstitial Compounds
Interstitial compounds
are formed when small
atoms like H, C, or N
are trapped inside the
crystal lattices of
metals.
TiC
Usually,
non-stoichiometric
compounds are
neither typically
ionic nor covalent.
Mn4N
Fe3H
VH0.56
TiH1.7
Characteristics of Interstitial Compounds
High melting points.
i
Very hard.
ii
Retain metallic
conductivity.
iii
Chemically inert.
iv
Higher than
those of pure
metals
Some borides
approach diamond
in hardness.
Alloy
An alloy is a
blend of metals
prepared by
mixing the
components.
Alloys may be homogeneous solid
solutions in which the atoms of one
metal are distributed randomly among
the atoms of the other.
Alloy Formation
Alloy Formation
Transition metals form alloys
due to similar radii along with
the other characteristics
Are hard
a
Often have high
melting points
b
Show better
conductivity
c
Properties
of alloys:
Within about 15% of
each other
Alloy Formation
Steel
Ferrous alloys
Stainless Steel
Cr, V, W, Mo, and Mn are used
to produce various varieties.
Alloy Formation
Steel
Main metal Other element
Iron Carbon
Stainless steel
Main metal Other metals
Iron
Chromium,
Nickel
Alloy Formation
Brass
Main metal Other metal
Copper Zinc
Bronze
Main metal Other metal
Copper Tin
Oxides
Oxoanions
Compounds of
transition
elements
K2Cr2O7 KMnO4
Metal Oxides
Oxidation
Number
Group 3 4 5 6 7 8 9 10 11 12
+7 Mn2O7
+6 CrO3
+5 V2O5
+4 TiO2 V2O4 CrO2 MnO2
+3 Sc2O3 Ti2O3 V2O3 Cr2O3 Mn2O3 Fe2O3
Mn3O4 Fe3O4 Co3O4
+2 TiO VO (CrO) MnO FeO CoO NiO CuO ZnO
+1 Cu2O
Metal oxides are formed
by reaction of metals with
oxygen at high
temperature.
Ionic character
Melting point
Acidic or basic nature
Properties
of metal
oxides
Properties of Transition Metal Oxides
Ionic Character of Transition Metal Oxides
Oxidation
number
of a metal
in metal
oxide
increases
Ionic
character
of the oxide
decreases.
Mn2O7 Covalent green oil
Ionic character ∝ Melting point
Hence, CrO3 and V2O5 have low
melting points
Transition Metal Oxides: Melting Points
Oxidation number ∝
1
Ionic character
Oxidation
number
of a metal
in metal
oxide
increases
Acidic
character of
the oxide
increases.
Important Oxides of Transition Metals
Mn2O7 + H2O 2HMnO4
3CrO3 + 2H2O H2CrO4+ H2Cr2O7
Strong acid
Strong acid
More basic
V2O3
Less basic
V2O4
Amphoteric
V2O5
+3 +4 +5
Important Oxides of Transition Metals
Oxides of Vanadium
Basic
CrO
Amphoteric
Cr2O3
Acidic
CrO3
+2 +3 +6
Oxides of Chromium
Potassium Dichromate
K2Cr2O7
Preparation
Properties
Structure
Uses
Preparation of K2Cr2O7
Yellow solution
Filtered
Fusion of chromite
ore with Na2CO3
i
4FeCr2O4 + 2Na2CO3 +7O2 8Na2CrO4 + 2Fe2O3 + 8CO2
2Na2CrO4 + 2H
+
Na2Cr2O7 + 2Na+ + H2O
Orange solution
Reaction with
H2SO4
ii
Na2Cr2O7 + 2KCl K2Cr2O7 + 2NaCl
Orange
solution
Crystallised
More soluble
than K2Cr2O7
Reaction with KCl
ii
Preparation of K2Cr2O7
Preparation of K2Cr2O7
Chromate Dichromate
CrO4 Cr2O7
2– 2–
+H
+
+OH−
Weak acid
Alkaline
solution
Oxidising
nature
Strong oxidising agent
Na2Cr2O7 K2Cr2O7
In organic
chemistry
As a primary
standard in
volumetric
analysis
Also greater solubility
in the polar solvent like
CH3COOH
As a primary
standard in
volumetric
analysis
Properties of K2Cr2O7
K2Cr2O7
In acidic
medium Oxidising action
E
0
= 1.33 V
Cr2O7 + 14H
+
+ 6e– 2Cr
3+
+ 7H2O
+6 2–
Standard electrode potential
Properties of K2Cr2O7
Breathe
analyser
Cr6+ ion
(Orange)
Cr3+ ion
(Green)
When orange K2Cr2O7 reacts with
alcohol, it converts into green solution
containing chromium sulfate.
Properties of K2Cr2O7
Oxidation by
acidified K2Cr2O7
Half reactions
Iodides to Iodine 6I
–
→ 3I2 + 6e–
Sulphides to Sulphur 3H2S → 6H
+
+ 3S + 6e–
Tin (II) to Tin (IV) 3Sn2+ → 3Sn4+ + 6e–
Fe (II) to Fe (III) 6Fe2+ → 6Fe3+ + 6e–
When orange
K2Cr2O7 reacts
with alcohol, it
converts into
green solution
containing
chromium
sulfate.
Chromium (VI) peroxide (CrO5)
Oxide of Chromium
Cr2O7 + 2H
+
+ 4H2O2 2CrO5 + 5H2O
2–
Preparation
Bright blue
compound
Structure
Chromium (VI) Peroxide (CrO5)
Butterfly
structure
_1 _1
_1 _1
_2
+6
Peroxy
bond
Peroxy
bond
Chromate: Structure
Tetrahedral
d3s
hybridised
Chromate ion
Tetrahedral
Tetrahedral
Dichromate ion
Used in leather
industry
To prepare
azo compounds
Preparation
Physical properties
Structure
Chemical properties
Uses
KMnO4
Potassium Permanganate: Preparation
2MnO2 + 4KOH + O2 2K2MnO4 + 2H2O
Black solid Dark green
Fusion of pyrolusite
(MnO2)
i
3MnO4 + 4H+ 2MnO4 + MnO2 + 2H2O
−
2−
Disproportionation of
manganate (MnO4 )
ii
2−
Dark purple
Disproportionation reaction
in presence of an oxidising
agent(KNO3 or KClO3)
Potassium Permanganate: Preparation
Commercial
method
MnO2 MnO4
Fused with KOH,
oxidised with air or KNO3
2−
Step-1
MnO4 MnO4
Electrolytic oxidation
in alkaline solution
2− −
Step-2
Laboratory
method
Oxidation of manganese(II) ion
2Mn2+ + 5S2O8 + 8H2O 2MnO4 + 10SO4 + 16H
+
2− − 2−
Green Purple
Manganate ion Permanganate ion
Colour of MnO4 and MnO4 Ions
2_ _
Intense color
(dark purple)
Magnetic Property of KMnO4
Heating
effect
Dark
purple
Green Black
2KMnO4 K2MnO4 + MnO2 + O2
∆
513 K
Diamagnetic
(no unpaired
electron)
Paramagnetic
(one unpaired
electron)
Potassium Permanganate: Structure
Tetrahedral
Manganate ion Permanganate ion
Oxidising properties
of KMnO4 in
Potassium Permanganate: Chemical Properties
Acidic
medium
Neutral or
faintly alkaline
medium
Alkaline
medium
Oxidising
nature
MnO4 + 8H
+
+ 5e
–
Mn
2+
+ 4H2O
–
+7
E
0
= 1.52 V
In acidic
medium
Oxidising nature of
KMnO4 in acidic medium
6HCl + 2KMnO4 + 5NaHSO3 -> 3H2O + 2KCl + 2MnCl2 + 5NaHSO4
Potassium Permanganate: Chemical Properties
Green Yellow
10I
–
+ 2MnO4 + 16H
+
2Mn2+ + 8H2O + 5I2
–
5Fe2+ + MnO4 + 8H+
Mn2+ + 4H2O + 5Fe3+
–
Liberation of I2 from I
–
solution:
Conversion of Fe(II) to Fe(III):
Oxidising nature of
KMnO4 in acidic medium
Potassium Permanganate: Chemical Properties
5C2O4 + 2MnO4 + 16H
+
2Mn2+ + 8H2O + 10CO2
–
2–
5NO2 + 2MnO4 + 6H
+
2Mn2+ + 5NO3 + 3H2O
– –
–
Oxidation of oxalate ion:
Oxidation of Nitrite ion:
2KMnO4(aq) + 16HCl(aq) 2KCl(aq) + 2MnCl2(aq) + 8H2O(l) + 5Cl2(g)
❌
Endpoint
Permanganate titration is
not carried out in the presence of
hydrochloric acid because some of the
hydrochloric acid gets oxidised to chlorine
gas. Hence, we do not get the correct
endpoint for the given titration.
Potassium Permanganate: Chemical Properties
MnO4 + 4H
+
+ 3e
–
MnO2 + 2H2O
–
+7 +4
In neutral
medium
E
0
= 1.69 V
Potassium Permanganate: Chemical Properties
8MnO4 + 3S2O3 + H2O 8MnO2 + 6SO4
2–
+ 2OH –
2–
–
Thiosulphate is oxidised to sulphate:
2MnO4
–
+ I–
+ H2O 2MnO2 + 2OH –
+ IO3
–
Oxidation of iodide to iodate:
Oxidising nature of
KMnO4 in neutral
medium
Potassium Permanganate: Chemical Properties
The oxidation of
manganous salt to MnO2
2MnO4 + 3Mn
2+
+ 2H2O 5MnO2 + 4H
+
–
ZnSO4 or ZnO
catalyst
Potassium Permanganate: Chemical Properties
In alkaline
medium
E
0
= 0.56 V
MnO4 + e
–
MnO4
+7 +6
– 2–
For bleaching of
wool and textiles
Decolourising
of oils
Decolourising
of oils
Uses of KMnO4
Ferric Chloride
(FeCl3)
Green Vitriol
(FeSO4)
Iron (II) oxide
(FeO)
Copper Oxide
(CuO)
Blue Vitriol
(CuSO4.5H2O)
White Vitriol
(ZnSO4)
Zinc Chloride
(ZnCl2)
Silver Nitrate
(AgNO3)
Some
Important
d-Block
Compounds
Silver Nitrate (AgNO3)
It is called as lunar caustic because on contact
with skin it produces a burning sensation like that
with caustic soda along with the formation of finely
divided silver (black coloured).
Ag + 2HNO3 AgNO3 + NO2 + H2O
When metallic Ag is dissolved in
conc. HNO3 it produces AgNO3.
Preparation
Properties of AgNO3
2AgNO3 2Ag + 2NO2 + O2
Black metallic
residue
2AgNO3 + 2NaOH H2O + 2NaNO3 + Ag2O
Ag2O + C6H12O6 2Ag + C6H12O7
Glucose Gluconic acid
Silver Oxide
1
2
Silver mirror
test
(Thermal
Decomposition)
Δ
Properties of AgNO3
2AgNO3 + Na2S2O3 2NaNO3 + Ag2S2O3
Ag2S2O3 + 3Na2S2O3 2Na3[Ag(S2O3)2]
White ppt.
Soluble
AgNO3 + NaCl/NaBr/NaI NaNO3 + AgCl/AgBr/AgI
White/pale yellow/Yellow ppt.
3
4
Properties of AgNO3
2AgNO3 + K2CrO4 2KNO3 + Ag2CrO4
Brick red
ppt.
2AgNO3 + K2Cr2O7 2KNO3 + Ag2Cr2O7
Reddish
brown ppt.
3AgNO3 + Na3PO4 3NaNO3 + Ag3PO4
Yellow ppt.
5
6
7
Uses of AgNO3
For identifying presence of
Cl‒, Br‒ and I‒ ions
1
Tollen's reagent
2
For making AgBr, used in
photography.
3
In the preparation of inks
and hair dyes.
4
In preparation of
silver mirror
5
Zinc Chloride (ZnCl2)
ZnCO3 2HCl ZnCl2 H2O CO2
ZnO 2HCl ZnCl2 H2O
+
+
+
+
+
It is a deliquescent white solid
when anhydrous.
Preparation
Zinc Chloride (ZnCl2)
03
ZnO.ZnCl2 is used in
dental fillings.
02
As dehydrating agent
when anhydrous.
01
For impregnating timber to
prevent destruction by insects.
Uses
Zinc Sulphate (ZnSO4)
Zn dil. H2SO4 ZnSO4 H2
ZnO dil. H2SO4 ZnSO4 H2O
+
+
+
+
Colourless, crystalline solid,
soluble in water which is used in
dietary supplements. It was
historically called as white vitriol.
Preparation
Zinc Sulphate (ZnSO4)
03
Used in the prevention and
treatment of zinc deficiency.
02
Lithopone(ZnS + BaSO4) is
used as white pigment.
01 In eye lotions.
Uses
Blue Vitriol (CaSO4)
CuO dil. H2SO4 CuSO4 H2O
Cu(OH)2 dil. H2SO4 CuSO4 2H2O
+
+
+
+
Preparation
It is used as a herbicide and a
fungicide, as battery electrolytes
and as mordant during a
vegetable dyeing process.
Properties
It is crystallised
as CuSO4.5H2O
and it is called
as blue vitriol.
Copper Oxide (CuO)
Preparation CuCO3.Cu(OH)2 2CuO H2O CO2
Cu(OH)2 CuO H2O
+
+
+
Malachite Green
Δ
Δ
Properties It is insoluble in water.
It decomposes when
heated above 1100°C
4CuO 2Cu2O O2
+
> 1100°C
Black Red
1 2
FeO
FeC2O4 FeO CO CO2
+ +
Δ
In absence of air
Preparation
It is stable at high
temperatures and on cooling
slowly disproportionates
into Fe3O4 and Fe.
4FeO Fe3O4 Fe
+
Properties
Green Vitriol (FeSO4)
Fe(scarp) H2SO4 FeSO4 H2
FeS dil. H2SO4 FeSO4 H2S
+
+
+
+
Preparation
Properties It undergoes oxidation forming
basic ferric sulphate
1
It act as a reducing agent
2
It is crystallised as green
vitriol(FeSO4.7H2O)
3
Ferric Chloride (FeCl3)
2Fe 3Cl2 (dry) 2FeCl3
+
Preparation
Δ
Iron wire
Anhydrous
2Fe(OH)3 + 3HCl FeCl3 + 3H2O
The solution on evaporation and cooling
deposits yellow crystals of hydrated ferric
chloride, FeCl3.6H2O.
Dark red
deliquescent solid
Ferric Chloride (FeCl3)
Properties
It dissolves in water. The solution is
acidic in nature due to its hydrolysis. The
solution is stabilised by the addition of
HCl to prevent hydrolysis.
FeCl3 + 3H2O Fe(OH)3 + 3HCl
FeCl3 + 3NH4OH Fe(OH)3 + 3NH4Cl
Reddish
brown ppt.
Ferric Chloride (FeCl3)
Properties
FeCl3 + 3NH4CNS Fe(SCN)3 + 3NH4Cl
4FeCl3 + 3K4[Fe(CN)6] Fe4[Fe(CN)6]3 + 12KCl
Prussian blue
(Ferri ferrocyanide)
Potassium
ferrocyanide
Deep red color
complex
f-Block
elements
Periodic Table
d-Block
elements
Point to Remember
La and Ac closely resemble the
lanthanoids and actinoids,
respectively.
Included in discussion of the
respective series besides the 14
elements.
Lanthanoids
Atomic and ionic size
Electronic configurations
Oxidation states
Physical properties
Chemical properties
Uses
Lanthanoids
(Ln)
Lanthanoids: Electronic Configuration
Variable occupancy
4f
1-14
5d
0-1
6s
2
d1 d0
Ce, Gd, Lu
All other
elements
General
configuration
Lanthanoids: Electronic Configuration
Electronic configurations of
lanthanum and lanthanoids Atomic
number
Name Symbol
Electronic
configuration
Ln
57 Lanthanum La 5d1 6s2
58 Cerium Ce 4f1 5d1 6s2
59 Praseodymium Pr 4f3 6s2
60 Neodymium Nd 4f4 6s2
61 Promethium Pm 4f5 6s2
62 Samarium Sm 4f6 6s2
63 Europium Eu 4f7 6s2
64 Gadolinium Gd 4f7 5d1 6s2
Lanthanoids: Electronic Configuration
Atomic
number
Name Symbol
Electronic
configuration
Ln
65 Terbium Tb 4f9 6s2
66 Dysprosium Dy 4f10 6s2
67 Holmium Ho 4f11 6s2
68 Erbium Er 4f12 6s2
69 Thulium Tm 4f13 6s2
70 Ytterbium Yb 4f14 6s2
71 Lutetium Lu 4f14 5d1 6s2
Electronic configurations of
lanthanum and lanthanoids
Lanthanoids
(left to right)
Lanthanoids: Atomic and Ionic Size
Overall decrease in
atomic and ionic radii
Due to lanthanoid
contraction
La → Lu
Lanthanoids: Atomic Sizes
170
175
180
185
190
195
200
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
Atomic number
Atomic
radii/pm
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Overall decrease
in atomic size
Half filled
f-orbital
Lanthanoids: Ionic Sizes
Tb4+
Pr4+
Ce4+
57 59 61 63 65 67 69 71
90
100
110
La3+
Ce3+
Pr3+
Nd3+
Pm3+
Sm3+
Eu3+
Gd3+
Tb3+
Dy3+
Ho3+
Er3+
Tm3+
Yb3+
Lu3+
Tm2+
Yb2+
Atomic number
Ionic
radii/pm
Sm2+
Eu2+
Overall decrease
in ionic size
Electron
density is
equally
distributed
One region
where electron
density falls to
zero
Two regions
where electron
density falls to
zero
Three regions
where electron
density falls to
zero
Decrease in sizes
fairly regular for Ln
as compared to
transition elements
Lanthanoid
Contraction
Common
oxidation state
Lanthanoids: Oxidation States
Common oxidation
state is Ln(lll)
Occasionally +2 and +4
oxidation states are also
obtained Extra stability of
empty, half-filled
and fully filled f
subshell
Easy removal of
two 6s and one 5d
(or 4f) electrons
except Eu and Yb
Lanthanoids: Oxidation States
Ce4+ Ce3+ E
o
= + 1.74 V
[Xe] 4f
0
[Xe] 4f
1
Tb4+ Tb3+
[Xe] 4f
7
[Xe] 4f
8
Eu2+ Eu3+
[Xe] 4f
7
[Xe] 4f
6
Yb2+ Yb3+
[Xe] 4f
14
[Xe] 4f
13
All these ions shift
back to +3 state
hence they act as
reducing or
oxidising agents.
Samarium(Sm) Metal
Gadolinium(Gd) Metal
Lanthanoids are silvery
white soft metals and
tarnish rapidly in air.
Samarium (Steel Hard) The hardness increases with
increasing atomic number,
samarium being steel hard.
High melting points
Their melting points range
between 1000 to 1200 K
but samarium melts at
1623 K.
Density
Density and other
properties change
smoothly except for Eu
and Yb and occasionally
for Sm and Tm.
High thermal conductivity
High electrical conductivity
They are good conductors
of heat and electricity.
Trivalent
lanthanoid ions
Pr+3
(aq. solution)
Sm+3
(aq. solution)
Many trivalent lanthanoid
ions are coloured both in the
solid state and in aqueous
solutions due to incomplete
filling of f-orbitals except
La3+ and Lu3+
La3+ Lu3+
No unpaired
electron
Colour of Lanthanoid Ions
[Xe] 4f0 [Xe] 4f14
Colourless
f0 type f14 type
La3+ & Ce4+ Yb2+ & Lu3+
Other than these,
all other ions are
paramagnetic.
Magnetic Properties
Hence, they are good
reducing agents.
Ionisation enthalpies are fairly
low and comparable to
alkaline earth metals.
Point to Remember
Extra stability of f0
, f7
and f
14
orbitals
La3+, Gd3+ and Lu3+
have abnormally low third
ionisation enthalpy values.
Lanthanoids: Ionisation Enthalpy
Low values of
ionization
enthalpy (III)
[Xe] 4f
0
5d
1
[Xe] 4f
0
La
2+
La
3+
[Xe] 4f
7
5d
1
[Xe] 4f
7
Gd
2+
Gd
3+
[Xe] 4f
14
5d
1
[Xe] 4f
14
Lu2+
Lu3+
Ln3+ (aq) + 3e– Ln (s)
-2.2 to -2.4 v
E
o
≈
Except
Eu = -2.0 V
E
o
values
Good reducing
agents due to
low IE values
The earlier members of the
series are quite reactive
However, with increasing
atomic number, they behave
more like aluminium.
Lanthanoids : Chemical Properties
Typically form compounds which
are ionic and trivalent(Ln3+)
Like calcium
Chemical Reaction of Lanthanoids
Basic
Ln2O3 H2
LnX3
With halogens
Ln2S3 Heated with S
LnN
LnC2, Ln3C and Ln2C3
With
C,
2773
K
Ln(OH)3 + H2
Ln
Basic
Alloy steels Catalysts in
petroleum cracking
Phosphors Phosphors in
television
screen
Uses of Inner Transition Metals
Mischmetall
Mischmetal
bullets and
shells
Mischmetal in
lighter flint
It consists of a
lanthanoid metal
(~ 95%), iron (~ 5%)
and traces of
S, C, Ca and Al.
Radioactive and used
in nuclear reactors
Hiroshima and
Nagasaki bomb attack
Chernobyl
disaster Radiotherapy
Actinoids
Actinoids are radioactive
elements
Earlier
members
Latter
members
Relatively,
long half-lives
Half-life: A
day to 3
minutes
Prepared only in
nanogram quantities
Lr
(lawrencium)
After uranium, 12 more
elements has been artificial
synthesized (atomic number
more than 92) and are called
the transuranium elements
Uranium is the
heaviest naturally
occurring element.
Atomic and ionic size
Electronic configurations
Oxidation states
General characteristics
Actinoids (An)
Actinoids: Electronic Configuration
Electronic configurations of
actinium and actinoids Atomic
number
Name Symbol
Electronic configuration
An An3+
89 Actinium Ac 6d1 7s2 5f0
90 Thorium Th 6d2 7s2 5f1
91 Protactinium Pa 5f2 6d17s2 5f2
92 Uranium U 5f3 6d17s2 5f3
93 Neptunium Np 5f4 6d17s2 5f4
94 Plutonium Pu 5f6 7s2 5f5
95 Americium Am 5f7 7s2 5f6
Actinoids: Electronic Configuration
Electronic configurations of
actinium and actinoids Atomic
number
Name Symbol
Electronic configuration
An An3+
96 Curium Cm 5f7 6d1 7s2 5f7
97 Berkelium Bk 5f9 7s2 5f8
98 Californium Cf 5f10 7s2 5f9
99 Einstenium Es 5f11 7s2 5f10
100 Fermium Fm 5f127s2 5f11
101 Mendelevium Md 5f13 7s2 5f12
102 Nobelium No 5f14 7s2 5f13
103 Lawrencium Lr 5f146d1 7s2 5f14
Actinoids: Electronic Configuration
Electronic configurations of
actinium and actinoids Atomic
number
Name Symbol
Electronic configuration
An An3+
89 Actinium Ac 6d1 7s2 5f0
90 Thorium Th 6d2 7s2 5f1
91 Protactinium Pa 5f2 6d17s2 5f2
92 Uranium U 5f3 6d17s2 5f3
93 Neptunium Np 5f4 6d17s2 5f4
94 Plutonium Pu 5f6 7s2 5f5
95 Americium Am 5f7 7s2 5f6
Actinoids: Electronic Configuration
Electronic
configurations of
actinium and
actinoids
Atomic
number
Name Symbol
Electronic
configuration
An An3+
96 Curium Cm 5f7 6d1 7s2 5f7
97 Berkelium Bk 5f9 7s2 5f8
98 Californium Cf 5f10 7s2 5f9
99 Einstenium Es 5f11 7s2 5f10
100 Fermium Fm 5f127s2 5f11
101 Mendelevium Md 5f13 7s2 5f12
102 Nobelium No 5f14 7s2 5f13
103 Lawrencium Lr 5f146d1 7s2 5f14
Half
filled
f7
Fully
filled
f14
The difference between the
energy levels of 5f and 6d
orbitals are small
Thus in Ac, Th, Pa, U and Np
electrons may occupy either
5d or 6f orbitals.
5f orbital extend in
space, comparatively
more than 4f orbital,
hence 5f electrons
participate in bonding
to a greater extent
Actinoids: Atomic and Ionic sizes
Gradual decrease in the
size of atoms or An3+
ions across the series
Due to actinoid
contraction
Oxidation states form
regular pyramid
Oxidation States of Actinium and Actinoids
+3
+4
+3
+4
+5
+3
+4
+3
+4
+3 +3 +3
Pu Am Cm Bk Cf Es Fm Md No
Np
Pa U
Th
Ac Lr
+3 +3 +3
+3
+3
+3
+3
+4 +4 +4
+4
+5
+5
+5
+5
+6
+6
+6
+6
+7 +7
The actinoids resemble
the lanthanoids in
having more
compounds in +3 state
than in the +4 state.
Actinoids : General Characteristics
Physical
properties
Actinoid metals are all silvery
in appearance but display a
variety of structures.
Due to irregularities in
metallic radii which are
far greater than in
lanthanoids
Actinoids : Chemical Properties
Actinoids are highly
reactive metals
H2O (Boil)
1
Most non-metals
2
HCl
3
HNO3
4
✔
✔
✔
HNO3
4
Hydrochloric acid attacks all
metals but most metals are
less affected by nitric acid.
Due to formation of
protective oxide layer.
Alloying metals like Cr, Mn,
Ni are used in production of
Iron and steels which
are most important
construction materials.
TiO2 as white
pigment
Dry cell
battery
Uses of d & f Block Elements
Application as Catalysts
Catalyst Process
V2O5 Contact process
Ziegler catalyst
[TiCl4 with Al(CH3)3]
Polythene
manufacturing
Iron Haber process
Nickel Hydrogenation of fats
PdCl2 Wacker process
Nickel complex
Polymerisation of
alkynes and benzene
Important

More Related Content

Similar to NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf

Dblock
DblockDblock
d and f block elements/Transition and inner transition elements
d and f block elements/Transition and inner transition elementsd and f block elements/Transition and inner transition elements
d and f block elements/Transition and inner transition elements
Freya Cardozo
 
transitionandinnertransitionelements-200708043110.pdf
transitionandinnertransitionelements-200708043110.pdftransitionandinnertransitionelements-200708043110.pdf
transitionandinnertransitionelements-200708043110.pdf
gtacreations85
 
transitionandinnertransitionelements.pdf
transitionandinnertransitionelements.pdftransitionandinnertransitionelements.pdf
transitionandinnertransitionelements.pdf
LUXMIKANTGIRI
 
d_block_PPT[1].ppt [Autosaved].ppt
d_block_PPT[1].ppt [Autosaved].pptd_block_PPT[1].ppt [Autosaved].ppt
d_block_PPT[1].ppt [Autosaved].ppt
fake601821
 
d and f block elements NOTES XII
d and f block elements NOTES XIId and f block elements NOTES XII
d and f block elements NOTES XII
Tinto Johns Vazhupadickal
 
topic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptxtopic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptx
Jaimin Surani
 
D and F Block.pdf
D and F Block.pdfD and F Block.pdf
D and F Block.pdf
Renuha0130
 
Comparative Study of d block elements,
Comparative Study of d block elements,Comparative Study of d block elements,
Comparative Study of d block elements,
AvinashAvi110
 
Warna &amp; kemagnetan senyawa kompleks 2017 1
Warna &amp; kemagnetan senyawa kompleks 2017 1Warna &amp; kemagnetan senyawa kompleks 2017 1
Warna &amp; kemagnetan senyawa kompleks 2017 1
AyumaGanbatte AlKaoru
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
Lawrence kok
 
pdf&rendition=1-1.pdf
pdf&rendition=1-1.pdfpdf&rendition=1-1.pdf
pdf&rendition=1-1.pdf
AishaShirin
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
Lawrence kok
 
Class 12th d block 421 unit 4.pdf
Class 12th d block         421 unit 4.pdfClass 12th d block         421 unit 4.pdf
Class 12th d block 421 unit 4.pdf
singhvinodrawat893
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaadsrrrreeeeeeettttttttttttr.pptx
aaaaaaaaaaaaaaaaaaaaaaaaaaaadsrrrreeeeeeettttttttttttr.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaadsrrrreeeeeeettttttttttttr.pptx
aaaaaaaaaaaaaaaaaaaaaaaaaaaadsrrrreeeeeeettttttttttttr.pptx
abusunabakali
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFT
SANTHANAM V
 
D block-elements
D block-elementsD block-elements
D block-elements
Takeen Khurshid
 
1st Lecture on Transition & Inner Transition Elements | Chemistry Part I | 12...
1st Lecture on Transition & Inner Transition Elements | Chemistry Part I | 12...1st Lecture on Transition & Inner Transition Elements | Chemistry Part I | 12...
1st Lecture on Transition & Inner Transition Elements | Chemistry Part I | 12...
Ansari Usama
 
12 chemistry impq_ch08_d_and_f_block_elements_01
12 chemistry impq_ch08_d_and_f_block_elements_0112 chemistry impq_ch08_d_and_f_block_elements_01
12 chemistry impq_ch08_d_and_f_block_elements_01
B Bhuvanesh
 

Similar to NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf (19)

Dblock
DblockDblock
Dblock
 
d and f block elements/Transition and inner transition elements
d and f block elements/Transition and inner transition elementsd and f block elements/Transition and inner transition elements
d and f block elements/Transition and inner transition elements
 
transitionandinnertransitionelements-200708043110.pdf
transitionandinnertransitionelements-200708043110.pdftransitionandinnertransitionelements-200708043110.pdf
transitionandinnertransitionelements-200708043110.pdf
 
transitionandinnertransitionelements.pdf
transitionandinnertransitionelements.pdftransitionandinnertransitionelements.pdf
transitionandinnertransitionelements.pdf
 
d_block_PPT[1].ppt [Autosaved].ppt
d_block_PPT[1].ppt [Autosaved].pptd_block_PPT[1].ppt [Autosaved].ppt
d_block_PPT[1].ppt [Autosaved].ppt
 
d and f block elements NOTES XII
d and f block elements NOTES XIId and f block elements NOTES XII
d and f block elements NOTES XII
 
topic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptxtopic_13_powerpoint-converted.pptx
topic_13_powerpoint-converted.pptx
 
D and F Block.pdf
D and F Block.pdfD and F Block.pdf
D and F Block.pdf
 
Comparative Study of d block elements,
Comparative Study of d block elements,Comparative Study of d block elements,
Comparative Study of d block elements,
 
Warna &amp; kemagnetan senyawa kompleks 2017 1
Warna &amp; kemagnetan senyawa kompleks 2017 1Warna &amp; kemagnetan senyawa kompleks 2017 1
Warna &amp; kemagnetan senyawa kompleks 2017 1
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 
pdf&rendition=1-1.pdf
pdf&rendition=1-1.pdfpdf&rendition=1-1.pdf
pdf&rendition=1-1.pdf
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 
Class 12th d block 421 unit 4.pdf
Class 12th d block         421 unit 4.pdfClass 12th d block         421 unit 4.pdf
Class 12th d block 421 unit 4.pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaadsrrrreeeeeeettttttttttttr.pptx
aaaaaaaaaaaaaaaaaaaaaaaaaaaadsrrrreeeeeeettttttttttttr.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaadsrrrreeeeeeettttttttttttr.pptx
aaaaaaaaaaaaaaaaaaaaaaaaaaaadsrrrreeeeeeettttttttttttr.pptx
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFT
 
D block-elements
D block-elementsD block-elements
D block-elements
 
1st Lecture on Transition & Inner Transition Elements | Chemistry Part I | 12...
1st Lecture on Transition & Inner Transition Elements | Chemistry Part I | 12...1st Lecture on Transition & Inner Transition Elements | Chemistry Part I | 12...
1st Lecture on Transition & Inner Transition Elements | Chemistry Part I | 12...
 
12 chemistry impq_ch08_d_and_f_block_elements_01
12 chemistry impq_ch08_d_and_f_block_elements_0112 chemistry impq_ch08_d_and_f_block_elements_01
12 chemistry impq_ch08_d_and_f_block_elements_01
 

Recently uploaded

国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
zoowe
 
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
uehowe
 
[HUN][hackersuli] Red Teaming alapok 2024
[HUN][hackersuli] Red Teaming alapok 2024[HUN][hackersuli] Red Teaming alapok 2024
[HUN][hackersuli] Red Teaming alapok 2024
hackersuli
 
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
bseovas
 
7 Best Cloud Hosting Services to Try Out in 2024
7 Best Cloud Hosting Services to Try Out in 20247 Best Cloud Hosting Services to Try Out in 2024
7 Best Cloud Hosting Services to Try Out in 2024
Danica Gill
 
Ready to Unlock the Power of Blockchain!
Ready to Unlock the Power of Blockchain!Ready to Unlock the Power of Blockchain!
Ready to Unlock the Power of Blockchain!
Toptal Tech
 
Gen Z and the marketplaces - let's translate their needs
Gen Z and the marketplaces - let's translate their needsGen Z and the marketplaces - let's translate their needs
Gen Z and the marketplaces - let's translate their needs
Laura Szabó
 
制作原版1:1(Monash毕业证)莫纳什大学毕业证成绩单办理假
制作原版1:1(Monash毕业证)莫纳什大学毕业证成绩单办理假制作原版1:1(Monash毕业证)莫纳什大学毕业证成绩单办理假
制作原版1:1(Monash毕业证)莫纳什大学毕业证成绩单办理假
ukwwuq
 
Azure EA Sponsorship - Customer Guide.pdf
Azure EA Sponsorship - Customer Guide.pdfAzure EA Sponsorship - Customer Guide.pdf
Azure EA Sponsorship - Customer Guide.pdf
AanSulistiyo
 
Should Repositories Participate in the Fediverse?
Should Repositories Participate in the Fediverse?Should Repositories Participate in the Fediverse?
Should Repositories Participate in the Fediverse?
Paul Walk
 
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalmanuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
wolfsoftcompanyco
 
学位认证网(DU毕业证)迪肯大学毕业证成绩单一比一原版制作
学位认证网(DU毕业证)迪肯大学毕业证成绩单一比一原版制作学位认证网(DU毕业证)迪肯大学毕业证成绩单一比一原版制作
学位认证网(DU毕业证)迪肯大学毕业证成绩单一比一原版制作
zyfovom
 
留学学历(UoA毕业证)奥克兰大学毕业证成绩单官方原版办理
留学学历(UoA毕业证)奥克兰大学毕业证成绩单官方原版办理留学学历(UoA毕业证)奥克兰大学毕业证成绩单官方原版办理
留学学历(UoA毕业证)奥克兰大学毕业证成绩单官方原版办理
bseovas
 
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
cuobya
 
成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
ysasp1
 
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
uehowe
 
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
uehowe
 
假文凭国外(Adelaide毕业证)澳大利亚国立大学毕业证成绩单办理
假文凭国外(Adelaide毕业证)澳大利亚国立大学毕业证成绩单办理假文凭国外(Adelaide毕业证)澳大利亚国立大学毕业证成绩单办理
假文凭国外(Adelaide毕业证)澳大利亚国立大学毕业证成绩单办理
cuobya
 
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
xjq03c34
 
Discover the benefits of outsourcing SEO to India
Discover the benefits of outsourcing SEO to IndiaDiscover the benefits of outsourcing SEO to India
Discover the benefits of outsourcing SEO to India
davidjhones387
 

Recently uploaded (20)

国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
 
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
 
[HUN][hackersuli] Red Teaming alapok 2024
[HUN][hackersuli] Red Teaming alapok 2024[HUN][hackersuli] Red Teaming alapok 2024
[HUN][hackersuli] Red Teaming alapok 2024
 
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
 
7 Best Cloud Hosting Services to Try Out in 2024
7 Best Cloud Hosting Services to Try Out in 20247 Best Cloud Hosting Services to Try Out in 2024
7 Best Cloud Hosting Services to Try Out in 2024
 
Ready to Unlock the Power of Blockchain!
Ready to Unlock the Power of Blockchain!Ready to Unlock the Power of Blockchain!
Ready to Unlock the Power of Blockchain!
 
Gen Z and the marketplaces - let's translate their needs
Gen Z and the marketplaces - let's translate their needsGen Z and the marketplaces - let's translate their needs
Gen Z and the marketplaces - let's translate their needs
 
制作原版1:1(Monash毕业证)莫纳什大学毕业证成绩单办理假
制作原版1:1(Monash毕业证)莫纳什大学毕业证成绩单办理假制作原版1:1(Monash毕业证)莫纳什大学毕业证成绩单办理假
制作原版1:1(Monash毕业证)莫纳什大学毕业证成绩单办理假
 
Azure EA Sponsorship - Customer Guide.pdf
Azure EA Sponsorship - Customer Guide.pdfAzure EA Sponsorship - Customer Guide.pdf
Azure EA Sponsorship - Customer Guide.pdf
 
Should Repositories Participate in the Fediverse?
Should Repositories Participate in the Fediverse?Should Repositories Participate in the Fediverse?
Should Repositories Participate in the Fediverse?
 
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalmanuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
 
学位认证网(DU毕业证)迪肯大学毕业证成绩单一比一原版制作
学位认证网(DU毕业证)迪肯大学毕业证成绩单一比一原版制作学位认证网(DU毕业证)迪肯大学毕业证成绩单一比一原版制作
学位认证网(DU毕业证)迪肯大学毕业证成绩单一比一原版制作
 
留学学历(UoA毕业证)奥克兰大学毕业证成绩单官方原版办理
留学学历(UoA毕业证)奥克兰大学毕业证成绩单官方原版办理留学学历(UoA毕业证)奥克兰大学毕业证成绩单官方原版办理
留学学历(UoA毕业证)奥克兰大学毕业证成绩单官方原版办理
 
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
 
成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
 
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
 
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
 
假文凭国外(Adelaide毕业证)澳大利亚国立大学毕业证成绩单办理
假文凭国外(Adelaide毕业证)澳大利亚国立大学毕业证成绩单办理假文凭国外(Adelaide毕业证)澳大利亚国立大学毕业证成绩单办理
假文凭国外(Adelaide毕业证)澳大利亚国立大学毕业证成绩单办理
 
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
 
Discover the benefits of outsourcing SEO to India
Discover the benefits of outsourcing SEO to IndiaDiscover the benefits of outsourcing SEO to India
Discover the benefits of outsourcing SEO to India
 

NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf

  • 1. Welcome to The d and f-Block Elements
  • 2. Coinage Metals (Cu, Ag, Au) Some ancient metal artifacts “Dancing Girl” Copper, iron used to make weapons. These f-block elements are used in nuclear power plants. Made up of bronze metal used in Harappan civilization.
  • 4. Pneumonic for d-Series Sachin Tendulkar Very Crazy Man Free Coaching to Nitin’s Cou Zin Yes Zebras Never but Most Technicians Run Rhymes Purely sweet And Cute Larry Have fun Travelling World and Reach Out Ireland and Please Ask Her
  • 6. d-Block Elements Generally, d-block elements are called transition elements Because their chemical properties are transitional between those of s- & p-block elements Metals that have incomplete d subshell either in neutral atom or in their ions. Known as transition metals d-Block & f-block elements are known as transition and inner transition elements, respectively
  • 7. Transition Elements : [Ar] : [Ar] Incomplete d subshell Fe Neutral Fe3+ Ion 3d6 4s2 3d5 4s0 Incomplete d subshell
  • 8. Inner Transition Elements f-Block elements are called inner transition elements Because their valence shell electrons lie in anti-penultimate energy level Example: Cerium (58) [Xe] 4f1 5d1 6s2
  • 9. Non-transition d-Block Elements Zn (30) : 3d10 4s2 [Ar] Cd (48) : 4d10 5s2 [Kr] Hg (80) : 4f14 5d10 6s2 [Xe] Zn2+ : 3d10 4s0 [Ar] Cd2+ : 4d10 5s0 [Kr] Hg2+ : 4f14 5d10 6s0 [Xe] Known as non-transition metals Zn, Cd, Hg of group 12 have full d10 configuration in their ground state as well as in their common oxidation states.
  • 10. Transition d-Block Elements Incomplete in ionic state : [Kr] Ag (41) Neutral 4d10 5s1 : [Kr] Ag+ Ion 4d10 5s0 : [Kr] Ag2+ Ion 4d9 5s0 Silver is a transition element as it has incomplete d-orbital in its +2 oxidation state.
  • 11. Position in the periodic table Electronic configuration General properties Transition elements
  • 13. (n-1)d1-10 ns1-2 Inner d-orbital General configuration Electronic Configuration of d-Block Elements Last electron enters in the d-orbital Example Sc(21) 1s2 2s2 2p6 3s2 3p6 3d1 4s2 Co(27) 1s2 2s2 2p6 3s2 3p6 3d7 4s2
  • 14. Electrons filling in 3d elements For 3d-series elements, electrons enters in 3d orbitals which is occupied generally after 4s orbital.
  • 15.
  • 16. Examples Cr(24) [Ar] 3d4 4s2 Cr(24) [Ar] 3d5 4s1 ✔ ❌ Cr(24) [Ar] 3d5 4s1 Mo(42) [Kr] 4d4 5s2 Cr(24) [Ar] 3d5 4s1 ✔ ❌ Mo(42) [Kr] 4d5 5s1 Cu(29) [Ar] 3d9 4s2 Cr(24) [Ar] 3d5 4s1 ✔ ❌ Cu(29) [Ar] 3d10 4s1 Cr(24) [Ar] 3d4 4s2 Cr(24) [Ar] 3d5 4s1 ✔ ❌ Cr(24) [Ar] 3d5 4s1 Cr(24) [Ar] 3d4 4s2 Cr(24) [Ar] 3d5 4s1 ✔ ❌ Cr(24) [Ar] 3d5 4s1 Ag(47) [Kr] 4d9 5s2 Cr(24) [Ar] 3d5 4s1 ✔ ❌ Ag(47) [Kr] 4d10 5s1 The electronic configuration has several exceptions because of very little difference in energy of (n-1)d and ns electrons. This can be reflected in electronic configuration of Cr (half filled) and Cu (fully filled) in 3d series.
  • 17. Cr(24) [Ar] 3d4 4s2 Cr(24) [Ar] 3d5 4s1 ✔ ❌ Examples Cr(24) [Ar] 3d5 4s1 Pd(46) [Kr] 4d8 5s2 Cr(24) [Ar] 3d5 4s1 ✔ ❌ Pd(46) [Kr] 4d10 5s0 Pt(78) [Xe] 4f14 5d8 6s2 Cr(24) [Ar] 3d5 4s1 ✔ ❌ Pt(78) [Xe] 4f14 5d9 6s1 Au(79) [Xe] 4f14 5d9 6s2 Cr(24) [Ar] 3d5 4s1 ✔ ❌ Au(79) [Xe] 4f14 5d10 6s1
  • 18. Physical properties Atomic properties Chemical properties General properties Transition elements exhibit certain characteristic properties due to partially filled d-orbitals.
  • 19. Physical Properties All the transition elements display typical metallic properties High tensile strength High thermal and electrical conductivity Malleability Ductility Metallic lustre Hard and less volatile High melting and boiling points
  • 20. High tensile strength High thermal conductivity High electrical conductivity
  • 21. Malleability: Metals are highly malleable Ductility: They are ductile and can be drawn into very thin wire Metallic lustre: Metals are lusturous in nature Volatility: Metals are non-volatile in nature
  • 22. High boiling point High melting point Metals generally have high melting and boiling points
  • 23. Melting Point of Transition Elements Melting point of transition metal is high because of the involvement of greater number of electrons from (n-1)d in addition to the ns electrons in the interatomic metallic bonding.
  • 24. Melting Point of Transition Elements Greater the number of unpaired electrons Higher will be the melting point General rule 3d metals rise to a maximum at d5 Then, fall regularly as the atomic number increases Except for anomalous values of Mn and Tc In any row,
  • 25.
  • 26. Boiling Point of Transition Elements Transition elements have high boiling point due to high enthalpy of atomisation
  • 27. Enthalpy of Atomisation It is the enthalpy change on breaking one mole of bonds completely to obtain atoms in the gaseous phase. A2(g) 2A(g) Transition elements exhibit higher enthalpies of atomization due to high effective nuclear charge and large number of valence electrons. Form very strong metallic bonds. Arise due to unpaired electrons in the (n−1)d subshell.
  • 28. Stronger is the resultant bonding Greater the number of valence electrons Boiling Point of Transition Elements Higher will be the boiling point. General rule
  • 29. Boiling Point of Transition Elements 900 800 700 600 500 400 300 200 100 ∆ a H°/kJ mol -1 Atomic number 3d Series 4d Series 5d Series The maxima at about the middle of each series indicate that one unpaired electron per d orbital is particularly favourable for strong interatomic interaction.
  • 30. Boiling Point of Transition Elements Boiling point of transition elements increases down the group. 900 800 700 600 500 400 300 200 100 ∆ a H°/kJ mol -1 Atomic number 3d Series 4d Series 5d Series
  • 31. Boiling Point of Transition Elements Zn, Cd and Hg have low boiling point Zero unpaired electrons Weak metallic bonding Lowest boiling and melting point Cd Zn Hg
  • 32. Atomic radii and ionic radii Ionisation enthalpy Atomic properties
  • 33.
  • 34. > Fe Co Ni Cu Zn Sc Ti V Cr Mn > > > ≈ ≈ ≈ < < Decreases gradually Nearly constant Increases Atomic Radii – 3d Series Due to poor shielding by d electrons, attraction increases more than repulsion Repulsion almost balances out attraction No. of (n-1)d electrons are very high Repulsion dominates attraction
  • 35. Atomic Radii of Transition Elements + e– e– Repulsive force Attractive force New electron e– Increased nuclear charge + Nuclear charge increases Attraction on outermost e- increases Left to right electron in (n-1)d subshell Repulsion between electrons increases
  • 36. Atomic Radii of 3d, 4d and 5d Series Radius of 4d series is similar to radius of 5d series Due to lanthanoid contraction 12 13 14 15 16 17 18 19 Radius/mm Sc Ti V Cr Mn Fe Co Ni Cu Zn Y Zr Nb Mo Tc Ru Rh Pd Ag Cd La Hf Ta W Re Os Ir Pt Au Hg The imperfect shielding of one electron by another in the same set of orbitals. The filling of 4f before 5d orbital results in a regular decrease in atomic radii.
  • 37. Lanthanoid Contraction(Effect on Radii) Titanium (Ti) 4s2 3d2 Zirconium (Zr) 5s2 4d2 Hafnium (Hf) 4f14 6s2 5d2 Ti < Zr ≈ Hf Down the group 147 pm 160 pm 159 pm
  • 38. Lanthanoid Contraction Shielding power of orbitals s > p > d > f Size decreases Nuclear attraction on outermost e− increases Reason 1
  • 39. Lanthanoid Contraction Titanium (Ti, 22) Zirconium (Zr, 40) Hafnium (Hf, 72) +32 increase in positive charge +18 increase in positive charge Reason 2 Drastic increment in charge Increase in attraction Decrease in radii
  • 40. Lanthanoid Contraction Lanthanoid contraction essentially compensates for the expected increase in atomic size with increasing atomic number. Due to lanthanoid contraction, 4d and 5d elements have very similar physical and chemical properties. Due to decrease in radii and increase in atomic mass, density of transition elements is generally high. Density increases down the group
  • 41. Density increases from Sc to Cu along the period
  • 42. Accompanied by the filling of the inner d-orbitals Ionisation enthalpy increases Due to an increase in nuclear charge Trends in Ionisation Enthalpy Reason In general, from left to right ionization enthalpy increases Gradually.
  • 43. 3d series I.E1 (kJmol-1) I.E2 (kJmol-1) I.E3 (kJmol-1) Sc 631 1235 2393 Ti 656 1309 2657 V 650 1414 2833 Cr 653 1592 2990 Mn 717 1509 3260 Fe 762 1561 2962 Co 758 1644 3243 Ni 736 1752 3402 Cu 745 1958 3556 Zn 906 1734 3837 Ionisation Enthalpy Values For 3d Series
  • 44.
  • 45.
  • 46. Ionisation Enthalpy First ionisation enthalpy Zinc have significantly higher ionisation enthalpy than copper > rZn rCu > I.E.Zn I.E.Cu 3d10 4s2 3d10 4s1 More stable High I.E. Fully filled Due to completely filled d and s electrons in Zn, its first ionisation energy is more than Cu.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51. Chemical Properties Oxidation state Standard electrode potential and reactivity Magnetic properties Colour Formation of complex compounds Catalytic properties Formation of interstitial compounds Alloy formation
  • 52. Oxidation State of Transition Elements Due to incomplete filling of d-orbitals Transition elements show a great variety of oxidation states Mn2+ Mn6+ Mn7+ Manganese in different oxidation states
  • 53. Oxidation states form regular pyramid Oxidation States of 3d Series Elements Ti V Cr Mn Fe Co Ni Cu Zn Sc +3 +2 +3 +4 +2 +3 +4 +5 +2 +3 +4 +5 +6 +2 +3 +4 +5 +6 +7 +2 +3 +4 +6 +2 +3 +4 +2 +3 +4 +2 +1 +2
  • 54. Oxidation State of 3d Transition Elements d0 configuration Noble gas configuration Stable Common oxidation states V5+ Sc3+ Ti4+ Cr6+ Mn7+ Ti2+ [Ar]3d2 4s0 Ti3+ [Ar]3d1 4s0 Ti4+ [Ar]3d0 4s0 More stable Inert gas configuration Ti(IV) is more stable than Ti(III) or Ti(II)
  • 55. Mn2+(25) Fe3+(26) 3d5 4s0 Half-filled orbital Stable Oxidation State of 3d Transition Elements Common oxidation states Zn2+ 3d10 4s0 Fully filled More stable
  • 56. Oxidation State of 3d Transition Elements Requires high energy for removing electron [Ar] : Sc+ 3d1 4s1 : [Ar] Sc2+ 3d1 4s0 [Ar] : Sc 3d1 4s2
  • 57. Oxidation State Stability - Down the Group Lower oxidation states are favoured by heavier elements p-block Higher oxidation states are favoured by the heavier elements d-block Easier to remove valence electrons Inert pair effect
  • 58. Oxidation State Stability - Down the Group Stability order Mo (VI) & W (VI) Cr (VI) > Example Dichromate ion (Cr2O7 ) in acidic medium is a strong oxidising agent 2– MoO3 and WO3 are not oxidising agents
  • 59. Oxidation state normally differ by unit of 2. p-block Oxidation state normally differ by unity d-block Successive removal of electrons from d-orbital Inert pair effect
  • 60. Low oxidation state is favoured by metals when a complex compound has ligands Oxidation State in d-block Elements Which are not just strong σ-donors but also π-acceptors like in Ni(CO)4 and Fe(CO)5, etc. Fe and Ni in Fe(CO)5 and Ni(CO)4 have zero oxidation states despite the d block elements favouring higher oxidation states
  • 61. Halides of 3d metals Oxidation Number Group 3 4 5 6 7 8 9 10 11 12 +6 CrF6 +5 VF5 CrF5 +4 TiX4 VX4 I CrX4 MnF4 +3 TiX3 VX3 CrX3 MnF3 FeX3 I CoF3 +2 TiX2 III VX2 CrX2 MnX2 FeX2 CoX2 NiX2 CuX2 II ZnX2 +1 CuXIII X : F → I XI : F → Br XII : F, Cl XIII: Cl → I
  • 62. Stability of Higher Oxidation States Example: CoF3 Stability through Higher bond enthalpy (higher covalent compound) Example: VF5, CrF6 Higher lattice energy Fluorine stabilizes the highest oxidation state
  • 63.
  • 64. Instability of CuII Iodides 2Cu2+ + 4I – Cu2I2 (s) + I2 Cu2+ oxidises I – to I2
  • 65. Oxides of 3d Metals Oxidation number Group 3 4 5 6 7 8 9 10 11 12 +7 Mn2O7 +6 CrO3 +5 V2O5 +4 TiO2 V2O4 CrO2 MnO2 +3 Sc2O3 Ti2O3 V2O3 Cr2O3 Mn2O3 Fe2O3 Mn3O4 Fe3O4 Co3O4 +2 TiO VO (CrO) MnO FeO CoO NiO CuO ZnO +1 Cu2O * * * * : Mixed oxides
  • 66. Oxides of 3d Metals The ability of oxygen to stabilise these high oxidation states exceeds that of fluorine. MnF4 Mn2O7 Highest Mn fluoride Highest Mn oxide Oxides are more stable than halides due to ability of oxygen to form multiple bonds with metals.
  • 67. Reactivity of Transition Metals Reactivity of transition elements Stability of various oxidation states Transition metals vary widely in their chemical reactivity. The study of standard electrode potential is important to understand the
  • 68. Trends in standard electrode potentials M2+ M (E 0 ) M2+/M M3+ M2+ (E 0 ) M3+/M2+ Standard electrode potentials are measurements of the equilibrium potentials. Mn+ + ne– M, E0 Mn+/M Standard reduction potential
  • 69.
  • 70. Cu (s) Cu (g); △sH Cu (g) Cu2+ (g); △iH Cu2+ (g) Cu2+ (aq); △HydH High Low + Sublimation enthalpy(+ve) Hydration enthalpy(-ve) Ionisation enthalpy (I.E.1 + I.E.2), +ve The high energy required to transform Cu (s) to Cu2+ (g) Enthalpy of atomisation & ionisation energies Not balanced by its hydration energy Cu shows positive standard electrode potential
  • 71. Inability to liberate H2 from acid Cu (s) + 2HCl (aq) CuCl2 (aq) + H2 (g) Zn (s) + 2HCl (aq) ZnCl2 (aq) + H2 (g) ❌ Result Whereas, Only oxidising acids (HNO3, hot conc. H2SO4) react with Cu to liberate NO2 and SO2 and oxidise Cu to Cu2+
  • 72. Reaction of metals with HCl Iron Nails
  • 73. Reaction of metals with HCl Nickel Balls
  • 75. Reaction of Cu with hot and conc. H2SO4 Cu + 2H2SO4 CuSO4 + SO2↑ + 2H2O 1 2 4 3
  • 76.
  • 77. M2+/M Trends in the E0 Standard Electrode Potential In +2 state, Mn shows d5, Ni with d8 has completely filled t2g and Zn has completely filled d10). So, they show more negative E0 values than expected
  • 78. Hydration Energy Ni2+ ion has the highest negative enthalpy of hydration among the elements of 3d series. 12 13 14 15 16 17 18 19 Radius/nm Sc Ti V Cr Mn Fe Co Ni Cu Zn Y Zr Nb Mo Tc Ru Rh Pd Ag Cd La Hf Ta W Re Os Ir Pt Au Hg Due to high charge density
  • 79.
  • 80.
  • 81. Chemical Reactivity Transition metals vary widely in their chemical reactivity. Many are electropositive and dissolve in mineral acids. A few metals are noble or remain unreactive towards single acids.
  • 82. Chemical Reactivity Due to increase in the sum of first two ionisation enthalpies The E 0 values indicate decreasing tendency to form divalent cation M2+/M Less negative E0 values Across the series Zn Cu Ni Co Fe Mn Cr V Ti -2 -1.5 -1 -0.5 0 0.5 Observed values Calculated values Standard electrode potential (V)
  • 83.
  • 84.
  • 85. Each electron has an associated magnetic moment, due to Spin angular momentum Orbital angular momentum Magnetic Properties Electron Direction of spin Electron Nucleus Transition elements are paramagnetic in nature.
  • 86. μ n(n + 2) √ = Where, n No. of unpaired electron(s) = Magnetic moment Spin-only magnetic moment (in BM)
  • 87. 5 unpaired electrons μ = 5(5 + 2) √ 5.92 BM = Mn2+ [Ar] 3d54s0 Magnetic Moments of Mn2+ Ion
  • 88. Calculated and Observed Magnetic Moments(BM) Ion Configuration Unpaired electron(s) Magnetic moment Calculated Observed Sc3+ 3d0 0 0 0 Ti3+ 3d1 1 1.73 1.75 Tl2+ 3d2 2 2.84 2.76 V2+ 3d3 3 3.87 3.86 Cr2+ 3d4 4 4.90 4.80 Mn2+ 3d5 5 5.92 5.96 Fe2+ 3d6 4 4.90 5.3-5.5 Co2+ 3d7 3 3.87 4.4-5.2 Ni2+ 3d8 2 2.84 2.9-3.4 Cu2+ 3d9 1 1.73 1.8-2.2 Zn2+ 3d10 0 0 Magnetic moment increases with number of unpaired electrons.
  • 89. Formation of Coloured Ions:3d Metal Ions Ti 3+ Cr3+ Mn2+ Fe3+ Ti3+ : Purple Cr3+ : Green Mn2+ : Light pink Fe3+ : yellow Co2+ : pink Ni2+ : green Cu2+ : blue Cu2+ Co2+ Ni 2+
  • 90. Formation of Coloured Ions Due to this excitation, the compounds shows a color. When an electron from a lower energy d orbital is excited to a higher energy d-orbital
  • 91. Complex Compounds Example: [Fe(CN)6]3–, [PtCl4]2–, etc. Compounds in which the metal atoms/ions bind to a number of anions/neutral molecules, by sharing of electrons and forming complex species with characteristic properties.
  • 93. Brown Ring Test In nitrate solution, add FeSO4, slowly add H2SO4 solution such that acid forms a layer below aqueous solution. A brown ring will be formed at the junction of the two layers.
  • 94. Comparatively smaller sizes High ionic charges Availability of d-orbitals for bond formation Reasons for complex formation Formation of Complex Compounds
  • 95.
  • 96. Catalytic Property of Transition Metals Adopt multiple oxidation states Transition metals show catalytic property due to the ability to Form complexes
  • 97. Iron(III) catalyses the reaction between iodide and persulphate ions. Catalytic action, 2I – + S2O8 I2 + 2SO4 2– 2– 2Fe3+ + 2I – 2Fe2+ + I2 2Fe2+ + S2O8 2SO4 + 2Fe3+ 2– 2– Catalytic Property of Transition Metals
  • 99. Formation of Interstitial Compounds Interstitial compounds are formed when small atoms like H, C, or N are trapped inside the crystal lattices of metals. TiC Usually, non-stoichiometric compounds are neither typically ionic nor covalent. Mn4N Fe3H VH0.56 TiH1.7
  • 100. Characteristics of Interstitial Compounds High melting points. i Very hard. ii Retain metallic conductivity. iii Chemically inert. iv Higher than those of pure metals Some borides approach diamond in hardness.
  • 101. Alloy An alloy is a blend of metals prepared by mixing the components. Alloys may be homogeneous solid solutions in which the atoms of one metal are distributed randomly among the atoms of the other.
  • 103. Alloy Formation Transition metals form alloys due to similar radii along with the other characteristics Are hard a Often have high melting points b Show better conductivity c Properties of alloys: Within about 15% of each other
  • 104. Alloy Formation Steel Ferrous alloys Stainless Steel Cr, V, W, Mo, and Mn are used to produce various varieties.
  • 105. Alloy Formation Steel Main metal Other element Iron Carbon Stainless steel Main metal Other metals Iron Chromium, Nickel
  • 106. Alloy Formation Brass Main metal Other metal Copper Zinc Bronze Main metal Other metal Copper Tin
  • 108. Metal Oxides Oxidation Number Group 3 4 5 6 7 8 9 10 11 12 +7 Mn2O7 +6 CrO3 +5 V2O5 +4 TiO2 V2O4 CrO2 MnO2 +3 Sc2O3 Ti2O3 V2O3 Cr2O3 Mn2O3 Fe2O3 Mn3O4 Fe3O4 Co3O4 +2 TiO VO (CrO) MnO FeO CoO NiO CuO ZnO +1 Cu2O Metal oxides are formed by reaction of metals with oxygen at high temperature.
  • 109. Ionic character Melting point Acidic or basic nature Properties of metal oxides Properties of Transition Metal Oxides
  • 110. Ionic Character of Transition Metal Oxides Oxidation number of a metal in metal oxide increases Ionic character of the oxide decreases. Mn2O7 Covalent green oil
  • 111. Ionic character ∝ Melting point Hence, CrO3 and V2O5 have low melting points Transition Metal Oxides: Melting Points Oxidation number ∝ 1 Ionic character Oxidation number of a metal in metal oxide increases Acidic character of the oxide increases.
  • 112. Important Oxides of Transition Metals Mn2O7 + H2O 2HMnO4 3CrO3 + 2H2O H2CrO4+ H2Cr2O7 Strong acid Strong acid
  • 113. More basic V2O3 Less basic V2O4 Amphoteric V2O5 +3 +4 +5 Important Oxides of Transition Metals Oxides of Vanadium Basic CrO Amphoteric Cr2O3 Acidic CrO3 +2 +3 +6 Oxides of Chromium
  • 114.
  • 116. Preparation of K2Cr2O7 Yellow solution Filtered Fusion of chromite ore with Na2CO3 i 4FeCr2O4 + 2Na2CO3 +7O2 8Na2CrO4 + 2Fe2O3 + 8CO2 2Na2CrO4 + 2H + Na2Cr2O7 + 2Na+ + H2O Orange solution Reaction with H2SO4 ii
  • 117. Na2Cr2O7 + 2KCl K2Cr2O7 + 2NaCl Orange solution Crystallised More soluble than K2Cr2O7 Reaction with KCl ii Preparation of K2Cr2O7
  • 118. Preparation of K2Cr2O7 Chromate Dichromate CrO4 Cr2O7 2– 2– +H + +OH− Weak acid Alkaline solution
  • 119. Oxidising nature Strong oxidising agent Na2Cr2O7 K2Cr2O7 In organic chemistry As a primary standard in volumetric analysis Also greater solubility in the polar solvent like CH3COOH As a primary standard in volumetric analysis Properties of K2Cr2O7 K2Cr2O7
  • 120. In acidic medium Oxidising action E 0 = 1.33 V Cr2O7 + 14H + + 6e– 2Cr 3+ + 7H2O +6 2– Standard electrode potential Properties of K2Cr2O7
  • 121. Breathe analyser Cr6+ ion (Orange) Cr3+ ion (Green) When orange K2Cr2O7 reacts with alcohol, it converts into green solution containing chromium sulfate.
  • 122. Properties of K2Cr2O7 Oxidation by acidified K2Cr2O7 Half reactions Iodides to Iodine 6I – → 3I2 + 6e– Sulphides to Sulphur 3H2S → 6H + + 3S + 6e– Tin (II) to Tin (IV) 3Sn2+ → 3Sn4+ + 6e– Fe (II) to Fe (III) 6Fe2+ → 6Fe3+ + 6e–
  • 123. When orange K2Cr2O7 reacts with alcohol, it converts into green solution containing chromium sulfate.
  • 124. Chromium (VI) peroxide (CrO5) Oxide of Chromium Cr2O7 + 2H + + 4H2O2 2CrO5 + 5H2O 2– Preparation Bright blue compound
  • 125. Structure Chromium (VI) Peroxide (CrO5) Butterfly structure _1 _1 _1 _1 _2 +6 Peroxy bond Peroxy bond
  • 127. Used in leather industry To prepare azo compounds
  • 129. Potassium Permanganate: Preparation 2MnO2 + 4KOH + O2 2K2MnO4 + 2H2O Black solid Dark green Fusion of pyrolusite (MnO2) i 3MnO4 + 4H+ 2MnO4 + MnO2 + 2H2O − 2− Disproportionation of manganate (MnO4 ) ii 2− Dark purple Disproportionation reaction in presence of an oxidising agent(KNO3 or KClO3)
  • 130. Potassium Permanganate: Preparation Commercial method MnO2 MnO4 Fused with KOH, oxidised with air or KNO3 2− Step-1 MnO4 MnO4 Electrolytic oxidation in alkaline solution 2− − Step-2 Laboratory method Oxidation of manganese(II) ion 2Mn2+ + 5S2O8 + 8H2O 2MnO4 + 10SO4 + 16H + 2− − 2−
  • 131. Green Purple Manganate ion Permanganate ion Colour of MnO4 and MnO4 Ions 2_ _ Intense color (dark purple)
  • 132. Magnetic Property of KMnO4 Heating effect Dark purple Green Black 2KMnO4 K2MnO4 + MnO2 + O2 ∆ 513 K Diamagnetic (no unpaired electron) Paramagnetic (one unpaired electron)
  • 134. Oxidising properties of KMnO4 in Potassium Permanganate: Chemical Properties Acidic medium Neutral or faintly alkaline medium Alkaline medium Oxidising nature MnO4 + 8H + + 5e – Mn 2+ + 4H2O – +7 E 0 = 1.52 V In acidic medium
  • 135. Oxidising nature of KMnO4 in acidic medium 6HCl + 2KMnO4 + 5NaHSO3 -> 3H2O + 2KCl + 2MnCl2 + 5NaHSO4
  • 136. Potassium Permanganate: Chemical Properties Green Yellow 10I – + 2MnO4 + 16H + 2Mn2+ + 8H2O + 5I2 – 5Fe2+ + MnO4 + 8H+ Mn2+ + 4H2O + 5Fe3+ – Liberation of I2 from I – solution: Conversion of Fe(II) to Fe(III): Oxidising nature of KMnO4 in acidic medium
  • 137. Potassium Permanganate: Chemical Properties 5C2O4 + 2MnO4 + 16H + 2Mn2+ + 8H2O + 10CO2 – 2– 5NO2 + 2MnO4 + 6H + 2Mn2+ + 5NO3 + 3H2O – – – Oxidation of oxalate ion: Oxidation of Nitrite ion:
  • 138. 2KMnO4(aq) + 16HCl(aq) 2KCl(aq) + 2MnCl2(aq) + 8H2O(l) + 5Cl2(g) ❌ Endpoint Permanganate titration is not carried out in the presence of hydrochloric acid because some of the hydrochloric acid gets oxidised to chlorine gas. Hence, we do not get the correct endpoint for the given titration.
  • 139. Potassium Permanganate: Chemical Properties MnO4 + 4H + + 3e – MnO2 + 2H2O – +7 +4 In neutral medium E 0 = 1.69 V
  • 140. Potassium Permanganate: Chemical Properties 8MnO4 + 3S2O3 + H2O 8MnO2 + 6SO4 2– + 2OH – 2– – Thiosulphate is oxidised to sulphate: 2MnO4 – + I– + H2O 2MnO2 + 2OH – + IO3 – Oxidation of iodide to iodate: Oxidising nature of KMnO4 in neutral medium
  • 141. Potassium Permanganate: Chemical Properties The oxidation of manganous salt to MnO2 2MnO4 + 3Mn 2+ + 2H2O 5MnO2 + 4H + – ZnSO4 or ZnO catalyst
  • 142. Potassium Permanganate: Chemical Properties In alkaline medium E 0 = 0.56 V MnO4 + e – MnO4 +7 +6 – 2–
  • 143. For bleaching of wool and textiles Decolourising of oils Decolourising of oils Uses of KMnO4
  • 144. Ferric Chloride (FeCl3) Green Vitriol (FeSO4) Iron (II) oxide (FeO) Copper Oxide (CuO) Blue Vitriol (CuSO4.5H2O) White Vitriol (ZnSO4) Zinc Chloride (ZnCl2) Silver Nitrate (AgNO3) Some Important d-Block Compounds
  • 145. Silver Nitrate (AgNO3) It is called as lunar caustic because on contact with skin it produces a burning sensation like that with caustic soda along with the formation of finely divided silver (black coloured). Ag + 2HNO3 AgNO3 + NO2 + H2O When metallic Ag is dissolved in conc. HNO3 it produces AgNO3. Preparation
  • 146. Properties of AgNO3 2AgNO3 2Ag + 2NO2 + O2 Black metallic residue 2AgNO3 + 2NaOH H2O + 2NaNO3 + Ag2O Ag2O + C6H12O6 2Ag + C6H12O7 Glucose Gluconic acid Silver Oxide 1 2 Silver mirror test (Thermal Decomposition) Δ
  • 147. Properties of AgNO3 2AgNO3 + Na2S2O3 2NaNO3 + Ag2S2O3 Ag2S2O3 + 3Na2S2O3 2Na3[Ag(S2O3)2] White ppt. Soluble AgNO3 + NaCl/NaBr/NaI NaNO3 + AgCl/AgBr/AgI White/pale yellow/Yellow ppt. 3 4
  • 148. Properties of AgNO3 2AgNO3 + K2CrO4 2KNO3 + Ag2CrO4 Brick red ppt. 2AgNO3 + K2Cr2O7 2KNO3 + Ag2Cr2O7 Reddish brown ppt. 3AgNO3 + Na3PO4 3NaNO3 + Ag3PO4 Yellow ppt. 5 6 7
  • 149. Uses of AgNO3 For identifying presence of Cl‒, Br‒ and I‒ ions 1 Tollen's reagent 2 For making AgBr, used in photography. 3 In the preparation of inks and hair dyes. 4 In preparation of silver mirror 5
  • 150. Zinc Chloride (ZnCl2) ZnCO3 2HCl ZnCl2 H2O CO2 ZnO 2HCl ZnCl2 H2O + + + + + It is a deliquescent white solid when anhydrous. Preparation
  • 151. Zinc Chloride (ZnCl2) 03 ZnO.ZnCl2 is used in dental fillings. 02 As dehydrating agent when anhydrous. 01 For impregnating timber to prevent destruction by insects. Uses
  • 152. Zinc Sulphate (ZnSO4) Zn dil. H2SO4 ZnSO4 H2 ZnO dil. H2SO4 ZnSO4 H2O + + + + Colourless, crystalline solid, soluble in water which is used in dietary supplements. It was historically called as white vitriol. Preparation
  • 153. Zinc Sulphate (ZnSO4) 03 Used in the prevention and treatment of zinc deficiency. 02 Lithopone(ZnS + BaSO4) is used as white pigment. 01 In eye lotions. Uses
  • 154. Blue Vitriol (CaSO4) CuO dil. H2SO4 CuSO4 H2O Cu(OH)2 dil. H2SO4 CuSO4 2H2O + + + + Preparation It is used as a herbicide and a fungicide, as battery electrolytes and as mordant during a vegetable dyeing process. Properties It is crystallised as CuSO4.5H2O and it is called as blue vitriol.
  • 155. Copper Oxide (CuO) Preparation CuCO3.Cu(OH)2 2CuO H2O CO2 Cu(OH)2 CuO H2O + + + Malachite Green Δ Δ Properties It is insoluble in water. It decomposes when heated above 1100°C 4CuO 2Cu2O O2 + > 1100°C Black Red 1 2
  • 156. FeO FeC2O4 FeO CO CO2 + + Δ In absence of air Preparation It is stable at high temperatures and on cooling slowly disproportionates into Fe3O4 and Fe. 4FeO Fe3O4 Fe + Properties
  • 157. Green Vitriol (FeSO4) Fe(scarp) H2SO4 FeSO4 H2 FeS dil. H2SO4 FeSO4 H2S + + + + Preparation Properties It undergoes oxidation forming basic ferric sulphate 1 It act as a reducing agent 2 It is crystallised as green vitriol(FeSO4.7H2O) 3
  • 158. Ferric Chloride (FeCl3) 2Fe 3Cl2 (dry) 2FeCl3 + Preparation Δ Iron wire Anhydrous 2Fe(OH)3 + 3HCl FeCl3 + 3H2O The solution on evaporation and cooling deposits yellow crystals of hydrated ferric chloride, FeCl3.6H2O. Dark red deliquescent solid
  • 159. Ferric Chloride (FeCl3) Properties It dissolves in water. The solution is acidic in nature due to its hydrolysis. The solution is stabilised by the addition of HCl to prevent hydrolysis. FeCl3 + 3H2O Fe(OH)3 + 3HCl FeCl3 + 3NH4OH Fe(OH)3 + 3NH4Cl Reddish brown ppt.
  • 160. Ferric Chloride (FeCl3) Properties FeCl3 + 3NH4CNS Fe(SCN)3 + 3NH4Cl 4FeCl3 + 3K4[Fe(CN)6] Fe4[Fe(CN)6]3 + 12KCl Prussian blue (Ferri ferrocyanide) Potassium ferrocyanide Deep red color complex
  • 162.
  • 163.
  • 164. Point to Remember La and Ac closely resemble the lanthanoids and actinoids, respectively. Included in discussion of the respective series besides the 14 elements.
  • 166. Atomic and ionic size Electronic configurations Oxidation states Physical properties Chemical properties Uses Lanthanoids (Ln)
  • 167. Lanthanoids: Electronic Configuration Variable occupancy 4f 1-14 5d 0-1 6s 2 d1 d0 Ce, Gd, Lu All other elements General configuration
  • 168. Lanthanoids: Electronic Configuration Electronic configurations of lanthanum and lanthanoids Atomic number Name Symbol Electronic configuration Ln 57 Lanthanum La 5d1 6s2 58 Cerium Ce 4f1 5d1 6s2 59 Praseodymium Pr 4f3 6s2 60 Neodymium Nd 4f4 6s2 61 Promethium Pm 4f5 6s2 62 Samarium Sm 4f6 6s2 63 Europium Eu 4f7 6s2 64 Gadolinium Gd 4f7 5d1 6s2
  • 169. Lanthanoids: Electronic Configuration Atomic number Name Symbol Electronic configuration Ln 65 Terbium Tb 4f9 6s2 66 Dysprosium Dy 4f10 6s2 67 Holmium Ho 4f11 6s2 68 Erbium Er 4f12 6s2 69 Thulium Tm 4f13 6s2 70 Ytterbium Yb 4f14 6s2 71 Lutetium Lu 4f14 5d1 6s2 Electronic configurations of lanthanum and lanthanoids
  • 170. Lanthanoids (left to right) Lanthanoids: Atomic and Ionic Size Overall decrease in atomic and ionic radii Due to lanthanoid contraction La → Lu
  • 171. Lanthanoids: Atomic Sizes 170 175 180 185 190 195 200 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Atomic number Atomic radii/pm La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Overall decrease in atomic size Half filled f-orbital
  • 172. Lanthanoids: Ionic Sizes Tb4+ Pr4+ Ce4+ 57 59 61 63 65 67 69 71 90 100 110 La3+ Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+ Lu3+ Tm2+ Yb2+ Atomic number Ionic radii/pm Sm2+ Eu2+ Overall decrease in ionic size
  • 173. Electron density is equally distributed One region where electron density falls to zero Two regions where electron density falls to zero Three regions where electron density falls to zero Decrease in sizes fairly regular for Ln as compared to transition elements Lanthanoid Contraction
  • 174. Common oxidation state Lanthanoids: Oxidation States Common oxidation state is Ln(lll) Occasionally +2 and +4 oxidation states are also obtained Extra stability of empty, half-filled and fully filled f subshell Easy removal of two 6s and one 5d (or 4f) electrons except Eu and Yb
  • 175. Lanthanoids: Oxidation States Ce4+ Ce3+ E o = + 1.74 V [Xe] 4f 0 [Xe] 4f 1 Tb4+ Tb3+ [Xe] 4f 7 [Xe] 4f 8 Eu2+ Eu3+ [Xe] 4f 7 [Xe] 4f 6 Yb2+ Yb3+ [Xe] 4f 14 [Xe] 4f 13 All these ions shift back to +3 state hence they act as reducing or oxidising agents.
  • 176. Samarium(Sm) Metal Gadolinium(Gd) Metal Lanthanoids are silvery white soft metals and tarnish rapidly in air.
  • 177. Samarium (Steel Hard) The hardness increases with increasing atomic number, samarium being steel hard.
  • 178. High melting points Their melting points range between 1000 to 1200 K but samarium melts at 1623 K.
  • 179. Density Density and other properties change smoothly except for Eu and Yb and occasionally for Sm and Tm.
  • 180. High thermal conductivity High electrical conductivity They are good conductors of heat and electricity.
  • 181. Trivalent lanthanoid ions Pr+3 (aq. solution) Sm+3 (aq. solution) Many trivalent lanthanoid ions are coloured both in the solid state and in aqueous solutions due to incomplete filling of f-orbitals except La3+ and Lu3+
  • 182. La3+ Lu3+ No unpaired electron Colour of Lanthanoid Ions [Xe] 4f0 [Xe] 4f14 Colourless
  • 183. f0 type f14 type La3+ & Ce4+ Yb2+ & Lu3+ Other than these, all other ions are paramagnetic. Magnetic Properties
  • 184. Hence, they are good reducing agents. Ionisation enthalpies are fairly low and comparable to alkaline earth metals. Point to Remember Extra stability of f0 , f7 and f 14 orbitals La3+, Gd3+ and Lu3+ have abnormally low third ionisation enthalpy values.
  • 185. Lanthanoids: Ionisation Enthalpy Low values of ionization enthalpy (III) [Xe] 4f 0 5d 1 [Xe] 4f 0 La 2+ La 3+ [Xe] 4f 7 5d 1 [Xe] 4f 7 Gd 2+ Gd 3+ [Xe] 4f 14 5d 1 [Xe] 4f 14 Lu2+ Lu3+ Ln3+ (aq) + 3e– Ln (s) -2.2 to -2.4 v E o ≈ Except Eu = -2.0 V E o values Good reducing agents due to low IE values
  • 186. The earlier members of the series are quite reactive However, with increasing atomic number, they behave more like aluminium. Lanthanoids : Chemical Properties Typically form compounds which are ionic and trivalent(Ln3+) Like calcium
  • 187. Chemical Reaction of Lanthanoids Basic Ln2O3 H2 LnX3 With halogens Ln2S3 Heated with S LnN LnC2, Ln3C and Ln2C3 With C, 2773 K Ln(OH)3 + H2 Ln Basic
  • 188. Alloy steels Catalysts in petroleum cracking Phosphors Phosphors in television screen Uses of Inner Transition Metals
  • 189. Mischmetall Mischmetal bullets and shells Mischmetal in lighter flint It consists of a lanthanoid metal (~ 95%), iron (~ 5%) and traces of S, C, Ca and Al.
  • 190. Radioactive and used in nuclear reactors Hiroshima and Nagasaki bomb attack Chernobyl disaster Radiotherapy
  • 192. Actinoids are radioactive elements Earlier members Latter members Relatively, long half-lives Half-life: A day to 3 minutes Prepared only in nanogram quantities Lr (lawrencium) After uranium, 12 more elements has been artificial synthesized (atomic number more than 92) and are called the transuranium elements Uranium is the heaviest naturally occurring element.
  • 193. Atomic and ionic size Electronic configurations Oxidation states General characteristics Actinoids (An)
  • 194.
  • 195. Actinoids: Electronic Configuration Electronic configurations of actinium and actinoids Atomic number Name Symbol Electronic configuration An An3+ 89 Actinium Ac 6d1 7s2 5f0 90 Thorium Th 6d2 7s2 5f1 91 Protactinium Pa 5f2 6d17s2 5f2 92 Uranium U 5f3 6d17s2 5f3 93 Neptunium Np 5f4 6d17s2 5f4 94 Plutonium Pu 5f6 7s2 5f5 95 Americium Am 5f7 7s2 5f6
  • 196. Actinoids: Electronic Configuration Electronic configurations of actinium and actinoids Atomic number Name Symbol Electronic configuration An An3+ 96 Curium Cm 5f7 6d1 7s2 5f7 97 Berkelium Bk 5f9 7s2 5f8 98 Californium Cf 5f10 7s2 5f9 99 Einstenium Es 5f11 7s2 5f10 100 Fermium Fm 5f127s2 5f11 101 Mendelevium Md 5f13 7s2 5f12 102 Nobelium No 5f14 7s2 5f13 103 Lawrencium Lr 5f146d1 7s2 5f14
  • 197. Actinoids: Electronic Configuration Electronic configurations of actinium and actinoids Atomic number Name Symbol Electronic configuration An An3+ 89 Actinium Ac 6d1 7s2 5f0 90 Thorium Th 6d2 7s2 5f1 91 Protactinium Pa 5f2 6d17s2 5f2 92 Uranium U 5f3 6d17s2 5f3 93 Neptunium Np 5f4 6d17s2 5f4 94 Plutonium Pu 5f6 7s2 5f5 95 Americium Am 5f7 7s2 5f6
  • 198. Actinoids: Electronic Configuration Electronic configurations of actinium and actinoids Atomic number Name Symbol Electronic configuration An An3+ 96 Curium Cm 5f7 6d1 7s2 5f7 97 Berkelium Bk 5f9 7s2 5f8 98 Californium Cf 5f10 7s2 5f9 99 Einstenium Es 5f11 7s2 5f10 100 Fermium Fm 5f127s2 5f11 101 Mendelevium Md 5f13 7s2 5f12 102 Nobelium No 5f14 7s2 5f13 103 Lawrencium Lr 5f146d1 7s2 5f14 Half filled f7 Fully filled f14
  • 199. The difference between the energy levels of 5f and 6d orbitals are small Thus in Ac, Th, Pa, U and Np electrons may occupy either 5d or 6f orbitals. 5f orbital extend in space, comparatively more than 4f orbital, hence 5f electrons participate in bonding to a greater extent
  • 200. Actinoids: Atomic and Ionic sizes Gradual decrease in the size of atoms or An3+ ions across the series Due to actinoid contraction
  • 201. Oxidation states form regular pyramid Oxidation States of Actinium and Actinoids +3 +4 +3 +4 +5 +3 +4 +3 +4 +3 +3 +3 Pu Am Cm Bk Cf Es Fm Md No Np Pa U Th Ac Lr +3 +3 +3 +3 +3 +3 +3 +4 +4 +4 +4 +5 +5 +5 +5 +6 +6 +6 +6 +7 +7 The actinoids resemble the lanthanoids in having more compounds in +3 state than in the +4 state.
  • 202. Actinoids : General Characteristics Physical properties Actinoid metals are all silvery in appearance but display a variety of structures. Due to irregularities in metallic radii which are far greater than in lanthanoids
  • 203. Actinoids : Chemical Properties Actinoids are highly reactive metals H2O (Boil) 1 Most non-metals 2 HCl 3 HNO3 4 ✔ ✔ ✔ HNO3 4 Hydrochloric acid attacks all metals but most metals are less affected by nitric acid. Due to formation of protective oxide layer.
  • 204.
  • 205. Alloying metals like Cr, Mn, Ni are used in production of Iron and steels which are most important construction materials. TiO2 as white pigment Dry cell battery Uses of d & f Block Elements
  • 206.
  • 207. Application as Catalysts Catalyst Process V2O5 Contact process Ziegler catalyst [TiCl4 with Al(CH3)3] Polythene manufacturing Iron Haber process Nickel Hydrogenation of fats PdCl2 Wacker process Nickel complex Polymerisation of alkynes and benzene Important