SlideShare a Scribd company logo
𝑿𝑳𝑽π‘ͺ𝑬𝑳 𝑻𝑴 Morton Effect and Bearing Simulation Software
by Dr. Alan Palazzolo, a-palazzolo@tamu.edu and Mr. Xiaomeng Tong, tongxiaomeng1989@tamu.edu
XLVCEL
Objective: User friendly software package for prediction of Morton Effect and bearing Dynamic Coefficients
with the consideration of 3D fluid film bearings, flexible rotor and 3D heat conduction and convection.
Shaft Thermal Bending Induced Synchronous Rotor Instability Problem
Double
Overhung
Morton Effect
Single
Overhung
Morton Effect
Dynamic
Coefficients
Ver. 1.01
2
3tilting pad.
fixed pad.
pressure dam.
flexure pivot[KMC].4
1 2 3
a flexible/rigid pad. b flexible/rigid pivot.
c cylindrical/spherical pivot.
a b c
a
b
c
1 2
3 4
a b c
No MATLAB
Required
Nonlinear Transient
Morton Analysis
Nonlinear Steady
Morton Analysis
Dynamic Coefficient
Prediction
1 2 3 4
Nonlinear Transient
Morton Analysis
Nonlinear Steady
Morton Analysis
Dynamic Coefficient
Prediction
Bearing Type Available Options
1.Nonlinear Transient/Steady Simulation for the
Morton effect induced instability.
οƒ˜ Thermal gradient in shaft and bearing
οƒ˜ Parameter effect: oil temperature
2.Bearing Static and Dynamic Solver
οƒ˜ 3D bearing model with pad flexibility
οƒ˜ Rocker/spherical pivot with nonlinear stiffness
οƒ˜ Asymmetric film clearance
1. Finite Element Dynamic Rotor Model
Supported in Two Nonlinear-Bearings
0
0.2
0.4
0.6
0.8
1
-0.2
0
Z axis (m)
Rotor Geometry Check, Red:BRG1 , Blue:BRG2, Black:LIN BRG
(m)
1. Finite Element Rotor
Maximum No. of Elements = 80
Number of Inputs 19 Number of Elements 19
Input No. ElementNo. Material Group No. Length(m) OuterDiameter (m) InnerDiameter (m)
1 1 1 0.02667 0.197612 0
2 2 1 0.077724 0.113538 0
3 3 1 0.054356 0.082296 0
4 4 1 0.06858 0.082296 0
5 5 1 0.06858 0.082296 0
6 6 1 0.041148 0.122428 0
7 7 1 0.07112 0.357378 0
8 8 1 0.148844 0.122428 0
9 9 1 0.12446 0.184404 0
10 10 1 0.12446 0.184404 0
11 11 1 0.046736 0.1016 0
12 12 1 0.04318 0.1016 0
13 13 1 0.108712 0.093472 0
14 14 1 0.085344 0.082296 0
15 15 1 0.0127 0.11303 0
16 16 1 0.019304 0.50673 0
17 17 1 0.019304 0.50673 0
18 18 1 0.019304 0.433832 0
19 19 1 0.03302 0.282448 0
a. Pads Geometry
Pad Flexibility (0:Rigid, 1:Flex) 0
Bearing Load Type (0:LOP, 1:LBP) 0
Number of Pads 5
Pad Arc Length (degree) 56
Offset 0.5
Radius of Shaft at BRG (m) 0.0508
Bearing Clearance, CL_B (m) 7.48E-05
Preload 0.5
Pad Thickness (m) 0.0127
Pad Thickness at Pivot (m) [Cylindrical Pivot]
(> Pad Thickness)
0.015
Bearing Length (m) 0.0508
b. Pivot Geometry ( Pad Motion and Stiffness )
Pivot Type(1:Spherical 2:Sphere-in-a-Cylinder,3:Cylindrical) 1
Pivot Stiffness (0: Rigid, 1: Linear+Cubic, 2: Nonlinear) 0
b-1: Linear+Cubic Pivot Stiffness
Linear Stiffness Coefficient (x)[N/m] 8.00E+08
Cubic Stiffness Coefficient (x^3)[N/m]^3 0.00E+00
b-2: Pivot Geometry for Nonlinear Pivot Stiffness (not for Dyn.Coeff)
[1.Spherical] : Dh [m] 0.01
[1.Spherical] : Ratio of (Dp/Dh) (<1) 0.98
[2.Sphere-in-a-Cylinder] : Dh [m] 0.01
[2.Sphere-in-a-Cylinder] : Ratio of (Dp/Dh) (<1) 0.98
[3.Cylindrical] : Dp1 [m] -Radial 1.24E-01
[3.Cylindrical] : Ratio of (Dp1/Dh1) (<1) 0.8895
[3.Cylindrical] : Dp2 [m] -Axial 2.54E+00
[3.Cylindrical] : Ratio of (Dp2/Dh2) (<1) 0.0000001-0.05
0
0.05
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
X axis
MESH AND B MATRIX CHECK PLOT
Z axis
Yaxis
2. 3D Finite Element Bearing Model
0.04
0.06-0.02
0
0.02
-0.03
-0.02
-0.01
0
0.01
0.02
0.03
X axis
frequency =0(Hz)
Y axis
Zaxis
0.04 0.05 0.06 0.07
-0.03
-0.02
-0.01
0
0.01
0.02
0.03
frequency =0(Hz)
X axis
Yaxis
0.04
0.06-0.02
0
0.02
-0.03
-0.02
-0.01
0
0.01
0.02
0.03
X axis
frequency =33639(Hz)
Y axis
Zaxis
0.04 0.05 0.06 0.07
-0.03
-0.02
-0.01
0
0.01
0.02
0.03
frequency =33639(Hz)
X axis
Yaxis
NUMERICAL MODELING OF ROTOR-BEARING SIMULATION RESULT
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0
-0.1
-0.05
0
0.05
0.1
80
82
82
78
79
80
81
70
70
80
80
90
90
70
70
80
80
90
90
Temperature Distribution on Bearing and Shaft from Cross View
Axial Direction (m)
Yaxis(m)
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08
Temperature distribution (Celsius)
X axis
Yaxis
68
70
72
74
76
78
80
60
61
62
63
64
65
58
58.5
59
59.5
60
60.5
61
61
62
63
64
65
66
68
70
72
74
76
78
68
70
72
74767880
82
5859
60
61
62
63
64
65
66
57
58
59606162
59
60
61626364656667
64
66
68
70
72
74767880
68.2
68.4
68.4
68.6
68.6
68.8
68.8
69
69
69
69.2
69.2
69.2
69.4
69.4
69.4
69.6
69.6
69.6
69.8
69.8
69.8
69.8
70
70
70
70
3D Thermal Gradient in the Shaft
Nonlinear Steady Morton Effect Analysis
π‘‰π‘–π‘π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›
50℃30℃
unstable
unstable
Reduce Oil Temp--
Instability Band Shifts Left
π‘…π‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ 𝑠𝑝𝑒𝑒𝑑
Nonlinear Transient Morton Effect Analysis

More Related Content

Similar to Morton Effect and Bearing Software Flyer

THE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTER
THE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTERTHE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTER
THE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTER
IAEME Publication
Β 
Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.
Devanshu Yadav
Β 
D012431621
D012431621D012431621
D012431621
IOSR Journals
Β 
Shear force and bending moment
Shear force and bending momentShear force and bending moment
Shear force and bending moment
talha022
Β 
B05810814
B05810814B05810814
B05810814
IOSR-JEN
Β 
Strength Analysis and Optimization Design about the key parts of the Robot
Strength Analysis and Optimization Design about the key parts of the RobotStrength Analysis and Optimization Design about the key parts of the Robot
Strength Analysis and Optimization Design about the key parts of the Robot
IJRES Journal
Β 
Shaped blade centeress_grinding_v0
Shaped blade centeress_grinding_v0Shaped blade centeress_grinding_v0
Shaped blade centeress_grinding_v0
Marco Leonesio
Β 
New Friction Mechanical Transmission
New Friction Mechanical TransmissionNew Friction Mechanical Transmission
Gearbox design
Gearbox designGearbox design
Gearbox design
RAVINDRASHINDE59
Β 
IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...
IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...
IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...
IRJET Journal
Β 
Design, Analysis, and Optimization of Continuous Variable Transmission
Design, Analysis, and Optimization of Continuous Variable TransmissionDesign, Analysis, and Optimization of Continuous Variable Transmission
Design, Analysis, and Optimization of Continuous Variable Transmission
IRJET Journal
Β 
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET Journal
Β 
Computation of a gearbox for a wind power plant
Computation of a gearbox for a wind power plantComputation of a gearbox for a wind power plant
Computation of a gearbox for a wind power plant
Pietro Galli
Β 
Fatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdfFatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdf
VictoriawanMuhammad
Β 
The comparative study of die cushioning force in u bending process using fea
The comparative study of die cushioning force in u bending process using feaThe comparative study of die cushioning force in u bending process using fea
The comparative study of die cushioning force in u bending process using fea
eSAT Publishing House
Β 
B013131219
B013131219B013131219
B013131219
IOSR Journals
Β 
Design of Helical Gear box
Design of Helical Gear boxDesign of Helical Gear box
Design of Helical Gear box
AMIR92671
Β 
V130403156161
V130403156161V130403156161
V130403156161
IOSR Journals
Β 
G012334650
G012334650G012334650
G012334650
IOSR Journals
Β 
STATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLE
STATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLESTATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLE
STATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLE
IRJET Journal
Β 

Similar to Morton Effect and Bearing Software Flyer (20)

THE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTER
THE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTERTHE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTER
THE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTER
Β 
Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.
Β 
D012431621
D012431621D012431621
D012431621
Β 
Shear force and bending moment
Shear force and bending momentShear force and bending moment
Shear force and bending moment
Β 
B05810814
B05810814B05810814
B05810814
Β 
Strength Analysis and Optimization Design about the key parts of the Robot
Strength Analysis and Optimization Design about the key parts of the RobotStrength Analysis and Optimization Design about the key parts of the Robot
Strength Analysis and Optimization Design about the key parts of the Robot
Β 
Shaped blade centeress_grinding_v0
Shaped blade centeress_grinding_v0Shaped blade centeress_grinding_v0
Shaped blade centeress_grinding_v0
Β 
New Friction Mechanical Transmission
New Friction Mechanical TransmissionNew Friction Mechanical Transmission
New Friction Mechanical Transmission
Β 
Gearbox design
Gearbox designGearbox design
Gearbox design
Β 
IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...
IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...
IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...
Β 
Design, Analysis, and Optimization of Continuous Variable Transmission
Design, Analysis, and Optimization of Continuous Variable TransmissionDesign, Analysis, and Optimization of Continuous Variable Transmission
Design, Analysis, and Optimization of Continuous Variable Transmission
Β 
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
Β 
Computation of a gearbox for a wind power plant
Computation of a gearbox for a wind power plantComputation of a gearbox for a wind power plant
Computation of a gearbox for a wind power plant
Β 
Fatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdfFatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdf
Β 
The comparative study of die cushioning force in u bending process using fea
The comparative study of die cushioning force in u bending process using feaThe comparative study of die cushioning force in u bending process using fea
The comparative study of die cushioning force in u bending process using fea
Β 
B013131219
B013131219B013131219
B013131219
Β 
Design of Helical Gear box
Design of Helical Gear boxDesign of Helical Gear box
Design of Helical Gear box
Β 
V130403156161
V130403156161V130403156161
V130403156161
Β 
G012334650
G012334650G012334650
G012334650
Β 
STATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLE
STATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLESTATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLE
STATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLE
Β 

Morton Effect and Bearing Software Flyer

  • 1. 𝑿𝑳𝑽π‘ͺ𝑬𝑳 𝑻𝑴 Morton Effect and Bearing Simulation Software by Dr. Alan Palazzolo, a-palazzolo@tamu.edu and Mr. Xiaomeng Tong, tongxiaomeng1989@tamu.edu XLVCEL Objective: User friendly software package for prediction of Morton Effect and bearing Dynamic Coefficients with the consideration of 3D fluid film bearings, flexible rotor and 3D heat conduction and convection. Shaft Thermal Bending Induced Synchronous Rotor Instability Problem Double Overhung Morton Effect Single Overhung Morton Effect Dynamic Coefficients Ver. 1.01 2 3tilting pad. fixed pad. pressure dam. flexure pivot[KMC].4 1 2 3 a flexible/rigid pad. b flexible/rigid pivot. c cylindrical/spherical pivot. a b c a b c 1 2 3 4 a b c No MATLAB Required Nonlinear Transient Morton Analysis Nonlinear Steady Morton Analysis Dynamic Coefficient Prediction 1 2 3 4 Nonlinear Transient Morton Analysis Nonlinear Steady Morton Analysis Dynamic Coefficient Prediction Bearing Type Available Options 1.Nonlinear Transient/Steady Simulation for the Morton effect induced instability. οƒ˜ Thermal gradient in shaft and bearing οƒ˜ Parameter effect: oil temperature 2.Bearing Static and Dynamic Solver οƒ˜ 3D bearing model with pad flexibility οƒ˜ Rocker/spherical pivot with nonlinear stiffness οƒ˜ Asymmetric film clearance 1. Finite Element Dynamic Rotor Model Supported in Two Nonlinear-Bearings 0 0.2 0.4 0.6 0.8 1 -0.2 0 Z axis (m) Rotor Geometry Check, Red:BRG1 , Blue:BRG2, Black:LIN BRG (m) 1. Finite Element Rotor Maximum No. of Elements = 80 Number of Inputs 19 Number of Elements 19 Input No. ElementNo. Material Group No. Length(m) OuterDiameter (m) InnerDiameter (m) 1 1 1 0.02667 0.197612 0 2 2 1 0.077724 0.113538 0 3 3 1 0.054356 0.082296 0 4 4 1 0.06858 0.082296 0 5 5 1 0.06858 0.082296 0 6 6 1 0.041148 0.122428 0 7 7 1 0.07112 0.357378 0 8 8 1 0.148844 0.122428 0 9 9 1 0.12446 0.184404 0 10 10 1 0.12446 0.184404 0 11 11 1 0.046736 0.1016 0 12 12 1 0.04318 0.1016 0 13 13 1 0.108712 0.093472 0 14 14 1 0.085344 0.082296 0 15 15 1 0.0127 0.11303 0 16 16 1 0.019304 0.50673 0 17 17 1 0.019304 0.50673 0 18 18 1 0.019304 0.433832 0 19 19 1 0.03302 0.282448 0 a. Pads Geometry Pad Flexibility (0:Rigid, 1:Flex) 0 Bearing Load Type (0:LOP, 1:LBP) 0 Number of Pads 5 Pad Arc Length (degree) 56 Offset 0.5 Radius of Shaft at BRG (m) 0.0508 Bearing Clearance, CL_B (m) 7.48E-05 Preload 0.5 Pad Thickness (m) 0.0127 Pad Thickness at Pivot (m) [Cylindrical Pivot] (> Pad Thickness) 0.015 Bearing Length (m) 0.0508 b. Pivot Geometry ( Pad Motion and Stiffness ) Pivot Type(1:Spherical 2:Sphere-in-a-Cylinder,3:Cylindrical) 1 Pivot Stiffness (0: Rigid, 1: Linear+Cubic, 2: Nonlinear) 0 b-1: Linear+Cubic Pivot Stiffness Linear Stiffness Coefficient (x)[N/m] 8.00E+08 Cubic Stiffness Coefficient (x^3)[N/m]^3 0.00E+00 b-2: Pivot Geometry for Nonlinear Pivot Stiffness (not for Dyn.Coeff) [1.Spherical] : Dh [m] 0.01 [1.Spherical] : Ratio of (Dp/Dh) (<1) 0.98 [2.Sphere-in-a-Cylinder] : Dh [m] 0.01 [2.Sphere-in-a-Cylinder] : Ratio of (Dp/Dh) (<1) 0.98 [3.Cylindrical] : Dp1 [m] -Radial 1.24E-01 [3.Cylindrical] : Ratio of (Dp1/Dh1) (<1) 0.8895 [3.Cylindrical] : Dp2 [m] -Axial 2.54E+00 [3.Cylindrical] : Ratio of (Dp2/Dh2) (<1) 0.0000001-0.05 0 0.05 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 X axis MESH AND B MATRIX CHECK PLOT Z axis Yaxis 2. 3D Finite Element Bearing Model 0.04 0.06-0.02 0 0.02 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 X axis frequency =0(Hz) Y axis Zaxis 0.04 0.05 0.06 0.07 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 frequency =0(Hz) X axis Yaxis 0.04 0.06-0.02 0 0.02 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 X axis frequency =33639(Hz) Y axis Zaxis 0.04 0.05 0.06 0.07 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 frequency =33639(Hz) X axis Yaxis NUMERICAL MODELING OF ROTOR-BEARING SIMULATION RESULT -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0 -0.1 -0.05 0 0.05 0.1 80 82 82 78 79 80 81 70 70 80 80 90 90 70 70 80 80 90 90 Temperature Distribution on Bearing and Shaft from Cross View Axial Direction (m) Yaxis(m) -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 Temperature distribution (Celsius) X axis Yaxis 68 70 72 74 76 78 80 60 61 62 63 64 65 58 58.5 59 59.5 60 60.5 61 61 62 63 64 65 66 68 70 72 74 76 78 68 70 72 74767880 82 5859 60 61 62 63 64 65 66 57 58 59606162 59 60 61626364656667 64 66 68 70 72 74767880 68.2 68.4 68.4 68.6 68.6 68.8 68.8 69 69 69 69.2 69.2 69.2 69.4 69.4 69.4 69.6 69.6 69.6 69.8 69.8 69.8 69.8 70 70 70 70 3D Thermal Gradient in the Shaft Nonlinear Steady Morton Effect Analysis π‘‰π‘–π‘π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› 50℃30℃ unstable unstable Reduce Oil Temp-- Instability Band Shifts Left π‘…π‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ 𝑠𝑝𝑒𝑒𝑑 Nonlinear Transient Morton Effect Analysis