SlideShare a Scribd company logo
1 of 55
Bernd Hüttner DLR Stuttgart
Folie 1
A journey through a strange classical
optical world
Bernd Hüttner CPhys FInstP
Institute of Technical Physics
DLR Stuttgart
Left-handed media
Metamaterials
Negative refractive index
Bernd Hüttner DLR Stuttgart
Folie 2
Overview
1. Short historical background
2. What are metamaterials?
3. Electrodynamics of metamaterials
4. Optical properties of metamaterials
5. Invisibility, cloaking, perfect lens
6. Surface plasmon waves and other waves
7. Faster than light
8. Summary
Bernd Hüttner DLR Stuttgart
Folie 3
Overview
1. Short historical background
2. What are metamaterials?
3. Electrodynamics of metamaterials
4. Optical properties of metamaterials
5. Invisibility, cloaking, perfect lens
6. Surface plamon waves and other waves
7. Faster than light
8. Summary
Bernd Hüttner DLR Stuttgart
Folie 4
A short historical background
V G Veselago, "The electrodynamics of substances with simultaneously negative
values of eps and mu", Usp. Fiz. Nauk 92, 517-526 (1967)
A Schuster in his book An Introduction to the Theory of Optics
(Edward Arnold, London, 1904).
J B Pendry „Negative Refraction Makes a Perfect Lens”
PHYSICAL REVIEW LETTERS 85 (2000) 3966-3969
H Lamb (1904), H C Pocklington (1905), G D Malyuzhinets, (1951),
D V Sivukhin, (1957); R Zengerle (1980)
Bernd Hüttner DLR Stuttgart
Folie 5
Objections raised against the topic
1. Valanju et al. – PRL 88 (2002) 187401-Wave Refraction in Negative-
Index Media: Always Positive and Very Inhomogeneous
2. G W 't Hooft – PRL 87 (2001) 249701 - Comment on “Negative
Refraction Makes a Perfect Lens”
3. C M Williams - arXiv:physics 0105034 (2001) - Some Problems
with Negative Refraction
Bernd Hüttner DLR Stuttgart
Folie 6
Overview
1. Short historical background
2. What are metamaterials?
3. Electrodynamics of metamaterials
4. Optical properties of metamaterials
5. Invisibility, cloaking, perfect lens
6. Surface plamon waves and other waves
7. Faster than light
8. Summary
Bernd Hüttner DLR Stuttgart
Folie 7
Bernd Hüttner DLR Stuttgart
Folie 8
Photonic crystals
1995 2003
Bernd Hüttner DLR Stuttgart
Folie 9
Overview
1. Short historical background
2. What are metamaterials?
3. Electrodynamics of metamaterials
4. Optical properties of metamaterials
5. Invisibility, cloaking, perfect lens
6. Surface plamon waves and other waves
7. Faster than light
8. Summary
Bernd Hüttner DLR Stuttgart
Folie 10
Left-handed metamaterials (LHMs) are composite materials with effective
electrical permittivity, ε, and magnetic permeability, µ, both negative over a
common frequency band.
Definition:
What is changed in electrodynamics due to these properties?
Taking plane monochromatic fields Maxwell‘s equations read
 
 
c·rotE i H i·c k E
c·rotH i E i·c k H .
 
     
 
 


     
 
Note, the changed signs
Bernd Hüttner DLR Stuttgart
Folie 11
By the standard procedure we get for the wave equation
 
   
 
   
2
2
2 2
2
2
2
2
2
2
c
E c k k E
c k· E·k k·k E
k k ' i·k '' n n i .
E c k E
c
 
    
 

 
   

       


 no change between
LHS and RHS
Poynting vector
       
     
2 2
2 2
c c c
S E H E k E k E·E E k·E
4 4 4
c c k k c k
k E·E E·E E·E .
4 4 4
k k
 
        
 
  

    
 

  
Bernd Hüttner DLR Stuttgart
Folie 12
RHS
LHS
p g
S k
v v


g p
S k
v v


Bernd Hüttner DLR Stuttgart
Folie 13
Two (strange) consequences for LHM
Bernd Hüttner DLR Stuttgart
Folie 14
Bernd Hüttner DLR Stuttgart
Folie 15
Why is n < 0?
1. Simple explanation n · · · i· ·i ·
               
2. A physical consideration
     
n , n , n , n
             
2 2 2
E c k E
  
2nd order Maxwell equation:
1st order Maxwell equation: 0 k
0 k
k E H n e E
c
k H E n e H
c

     

     
RHS:  > 0,  > 0, n > 0 LHS:  < 0,  < 0, n < 0
     
, n
n n
, n ,
   
    
    
Bernd Hüttner DLR Stuttgart
Folie 16
whole parameter space
Bernd Hüttner DLR Stuttgart
Folie 17
The averaged density of the electromagnetic energy is defined by
 
 
 
 
 
 
2 2
d d
1
U E H .
8 d d
 
     
 
 
  
 
 
Note the derivatives has to be positive since the energy must be positive
and therefore LHS possess in any case dispersion and via KKR absorption
3. An other physical consideration
Bernd Hüttner DLR Stuttgart
Folie 18
Kramers-Kronig relation
Titchmarsh‘theorem: KKR causality
 
 
 
 
 
2 2
0
2 2
0
Im n
2
Re n( ) 1 P d Im n 0
Re n 1
2
Im n( ) P d


 
 
 
     
 
 
   
 
 
  
   
   


Bernd Hüttner DLR Stuttgart
Folie 19
Because the energy is transported with the group velocity we find
 
 
   
 
1
* *
g
d d
S c k 1
v E·E E·E H·H
U 16 d d
4 k

 
 
   
  
  
 
 
  
   
 



 
This may be rewritten as
   
 
 
g
c 2 k
v .
k
d d
d d


 
    
   
 
   

 
 
  
 


Since the denominator is positive the group velocity is parallel to the
Poynting vector and antiparallel to the wave vector.
Bernd Hüttner DLR Stuttgart
Folie 20
The group velocity, however, is also given by
 
   
1
1
g
d n
dk k c k
v c
d d k k
n
n



 
 
 
   
  
 
   
   
      

We see n < 0 for vanishing dispersion of n
This should be not confused with the superluminal, subluminal or negative
velocity of light in RHS.
These effects result exclusively from the dispersion of n.
Bernd Hüttner DLR Stuttgart
Folie 21
Dispersion of ,  and n
Lorentz-model  
2
pe
2 2
Re e
1
i

   
    
 
2
pm
2 2
Rm m
1
i

   
    
Bernd Hüttner DLR Stuttgart
Folie 22
Overview
1. Short historical background
2. What are metamaterials?
3. Electrodynamics of metamaterials
4. Optical properties of metamaterials
5. Invisibility, cloaking, perfect lens
6. Surface plamon waves and other waves
7. Faster than light
8. Summary
Bernd Hüttner DLR Stuttgart
Folie 23
Reflection and refraction
but what is with
 
 
2 2
2 2
n 1 k
R
n 1 k
 

 
µ = 1
Optically speaking
a slab of space with
thickness 2W is
removed.
Optical way is zero !
Bernd Hüttner DLR Stuttgart
Folie 24
0 0 1 1 0 2 2 2
1 1
2
0 2 2
2 1
1
0 2
k sin sin sin
c c
sin
if '' and '' 1
sin
sin n
. 1
sin n
 
        




   
  

  

Snellius law for LHS
Due to homogeneity in space
we have k0x = k1x = k2x
Bernd Hüttner DLR Stuttgart
Folie 25
water: n = 1.3 „negative“ water: n = -1.3
First example
Bernd Hüttner DLR Stuttgart
Folie 26
= 2.6
left-measured
right-calculated
= -1.4
left-measured
right-calculated
Second example: real part of electric field of a wedge
Bernd Hüttner DLR Stuttgart
Folie 27
General expression for the reflection and transmission
The geometry of the problem is plotted in the figure where r1’ = -r1.
Bernd Hüttner DLR Stuttgart
Folie 28
2
2 2
2 1 1 0 1 2 2 1 1 0
1
s
2
0 2 1 1 0 1 2 2 1 1 0
2
2
2 1 1 0
2
s
2
0 2 1 1 0 1 2 2 1 1 0
cos sin
E
R
E cos sin
2 cos
E
T .
E cos sin
           
 
           
   
 
           
e1 = 1=1, e2 = m2 = -1 and u0 = 0 we get R = 0 & T = 1
1. s-polarized
Bernd Hüttner DLR Stuttgart
Folie 29
2. p-polarized
2
2 2
2 1 1 0 1 2 2 1 1 0
1
p
2
0 2 1 1 0 1 2 2 1 1 0
2
2
2 1 1 0
2
p
2
0 2 1 1 0 1 2 2 1 1 0
cos sin
E
R
E cos sin
2 cos
E
T .
E cos sin
           
 
           
   
 
           
R = 0 – why and what does this mean?
Impedance of free space
0
0


Impedance for e = m = -1 0 0
0 0
1
1
  

  
invisible!
Bernd Hüttner DLR Stuttgart
Folie 30
Reflectivity of s-polarized beam of one film
rs1 2 2
 

 
2 n1 1 1

 
 cos 
 
 1 n2 2 2

 
 cos  2 2
 

 
 


2 n1 1 1

 
 cos 
 
 1 n2 2 2

 
 cos  2 2
 

 
 



rs2 2 2
 

 
3 n2 2 2

 
 cos  2 2
 

 
 
 2 n3 3 3

 
 cos  2 2
 

 
 


3 n2 2 2

 
 cos  2 2
 

 
 
 2 n3 3 3

 
 cos  2 2
 

 
 



Rsf 2 2
 
 d

 
rs1 2 2
 

 
2
2 rs1 2 2
 

 
 rs2 2 2
 

 
 cos 2  2 2
 
 d

 

 

 rs2 2 2
 

 
2

1 2 rs1 2 2
 

 
 rs2 2 2
 

 
 cos 2  2 2
 
 d

 

 

 rs1 2 2
 

 
2
rs2 2 2
 

 
2



 2 2
 

  asin
n1 1 1

  sin 
 

n2 2 2

 








  2 2
 

  asin
n1 1 1

  sin  2 2
 

 
 

n3 3 3

 









Bernd Hüttner DLR Stuttgart
Folie 31
0 0.2 0.4 0.6 0.8 1 1.2 1.4
5.2128258 10
4
0.051
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Absorption of Al, p- and s-polarized
Absorption or reflection of a normal system
2
2 2
2 1 1 0 1 2 2 1 1 0
1
s
2
0 2 1 1 0 1 2 2 1 1 0
2
2
2 1 1 0
2
s
2
0 2 1 1 0 1 2 2 1 1 0
cos sin
E
R
E cos sin
2 cos
E
T .
E cos sin
           
 
           
   
 
           
2
2 2
2 1 1 0 1 2 2 1 1 0
1
p
2
0 2 1 1 0 1 2 2 1 1 0
2
2
2 1 1 0
2
p
2
0 2 1 1 0 1 2 2 1 1 0
cos sin
E
R
E cos sin
2 cos
E
T .
E cos sin
           
 
           
   
 
           
Bernd Hüttner DLR Stuttgart
Folie 32
0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.57
0.62
0.67
0.72
0.77
0.82
0.87
0.92
0.97
Reflectivity of Al, p- and s-polarized
Reflection of a normal system
Bernd Hüttner DLR Stuttgart
Folie 33
Reflection of a LHS
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0
0.2
0.4
0.6
0.8
Rsf 1.
 1

 1
 1
 
 5
 5

( )
Rpf 1.
 1

 1.0
 1
 
 5
 5

( )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0
0.2
0.4
0.6
0.8
Rsf 1.05
 1

 1
 1
 
 5
 5

( )
Rpf 1.05
 1

 1.0
 1
 
 5
 5

( )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0
0.2
0.4
0.6
0.8
Rsf 1.25
 1.05

 1
 1
 
 5
 5

( )
Rpf 1.25
 1.05

 1
 1
 
 5
 5

( )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0
0.2
0.4
0.6
0.8
1
Rsf 0.5
 1.5

 1
 1
 
 5
 5

( )
Rpf 0.5
 0.5

 1
 1
 
 5
 5

( )

Bernd Hüttner DLR Stuttgart
Folie 34
Overview
1. Short historical background
2. What are metamaterials?
3. Electrodynamics of metamaterials
4. Optical properties of metamaterials
5. Invisibility, cloaking, perfect lens
6. Surface plamon waves and other waves
7. Faster than light
8. Summary
Bernd Hüttner DLR Stuttgart
Folie 35
Invisibility
eff 0 eff
eff
1
Z Z 2
1
   
 
Al plate, d=17µm
Bernd Hüttner DLR Stuttgart
Folie 36
An other miracle: Cloaking of a field
For the cylindrical lens, cloaking occurs for distances r0 less
than r# if c=m
in
3
out
# r
r
r 
The animation shows a coated cylinder with in=1, s=-1+i·10-7, rout=4,
rin=2 placed in a uniform electric field. A polarizable molecule moves
from the right. The dashed line marks the circle r=r#. The polarizable
molecule has a strong induced dipole moment and perturbs the field
around the coated cylinder strongly. It then enters the cloaking region,
and it and the coated cylinder do not perturb the external field.
Bernd Hüttner DLR Stuttgart
Folie 37
There is more behind the curtain: 1. outside the film
Due to amplification of the evanescent waves
perfect lens – beating the diffraction limit
How can this happen?
Let the wave propagate in the z-direction
the larger kx and ky the better the resolution but kz becomes imaginary if
2
2 2
x y
2
0
k k
c

 
How does negative slab avoid this limit?
Bernd Hüttner DLR Stuttgart
Folie 38
Amplification of evanescent waves
Bernd Hüttner DLR Stuttgart
Folie 39
Bernd Hüttner DLR Stuttgart
Folie 40
Overview
1. Short historical background
2. What are metamaterials?
3. Electrodynamics of metamaterials
4. Optical properties of metamaterials
5. Invisibility, cloaking, perfect lens
6. Surface plamon waves and other waves
7. Faster than light
8. Summary
Bernd Hüttner DLR Stuttgart
Folie 41
How can we understand this?
Analogy – enhanced transmission through perforated metallic films
Ag
d=280nm hole diameter
d / l = 0.35
L=750nm hole distant
area of holes 11%
h =320nm thickness
dopt=11nm optical depth
Tfilm~10-13 solid film
Bernd Hüttner DLR Stuttgart
Folie 42
Detailed analysis shows it is a resonance phenomenon with the
surface plasmon mode.
Surface-plasmon condition: 0
k
k 2
2
1
1




2
p
s



2
p
2 2
1

  

Bernd Hüttner DLR Stuttgart
Folie 43
Interplay of plasma surface modes and cavity modes
The animation shows how the primarily CM mode at 0.302eV (excited by a
normal incident TM polarized plane wave) in the lamellar grating structure with
h=1.25μm, evolves into a primarily SP mode at 0.354eV when the contact
thickness is reduced to h=0.6μm along with the resulting affect on the enhanced
transmission.
Bernd Hüttner DLR Stuttgart
Folie 44
Beyond the diffraction limit: Plane with two slits of width l/20
=1 =2.2
=-1
µ=-1
=-1+i·10-3
µ=-1+i·10-3
Bernd Hüttner DLR Stuttgart
Folie 45
Bernd Hüttner DLR Stuttgart
Folie 46
Overview
1. Short historical background
2. What are metamaterials?
3. Electrodynamics of metamaterials
4. Optical properties of metamaterials
5. Invisibility, cloaking, perfect lens
6. Surface plamon waves and other waves
7. Faster than light
8. Summary
Bernd Hüttner DLR Stuttgart
Folie 47
There is more behind the curtain: 2. inside the film
The peak starts at the exit before it arrives the entry
Example. Pulse propagation for n = -0.5
Oje, is this mad?! No, it isn’t!
Bernd Hüttner DLR Stuttgart
Folie 48
An explanation:
Let us define the rephasing length l of the medium
where vg is the group velocity
Remember, Fourier components in same phase interfere constructively
If the rephasing length is zero then the waves are in phase at =0
Bernd Hüttner DLR Stuttgart
Folie 49
RHS
LHS
RHS
Peak is at z=0 at t=0
t < 0
the rephasing length lII inside the medium becomes
zero at a position z0 = ct / ng.
At z0 the relative phase difference between different Fourier components
vanishes and a peak of the pulse is reproduced due to constructive
interference and localized near the exit point of the medium such that
0 > t > ngL/c.
The exit pulse is formed long before the peak of the pulse enters the medium
RHS
n=1
RHS
n=1
LHS
n < 0
0 L z
II III
I
Bernd Hüttner DLR Stuttgart
Folie 50
At a later time t’ such that 0 > t’ > t, the position of the
rephasing point inside the medium z0’ = ct’/ng decreases i.e.,
z0’ < z0 and hence the peak moves with negative velocity
-vg inside the medium.
t=0: peaks meet at z=0 and interfere destructively.
Region 3: ''
0 g
z L ct n L
   since 0 >t>ngL/c is z0
’’ > L
0>t’>t: z0
’’’ > z0
’’ the peak moves forward
Bernd Hüttner DLR Stuttgart
Folie 51
Bernd Hüttner DLR Stuttgart
Folie 52
Gold plates (300nm) and
stripes (100nm) on glass and
MgF2 as spacer layer
Bernd Hüttner DLR Stuttgart
Folie 53
Overview
1. Short historical background
2. What are metamaterials?
3. Electrodynamics of metamaterials
4. Optical properties of metamaterials
5. Invisibility, cloaking, perfect lens
6. Surface plamon waves and other waves
7. Faster than light
8. Summary
Bernd Hüttner DLR Stuttgart
Folie 54
Summary
Metamaterials have new properties:
1. S and vg are antiparallel to k and vp
2. Angle of refraction is opposite to the angle of incidence
3. A slab acts like a lens. The optical way is zero
4. Make perfect lenses, R = 0, T = 1
5. Make bodies invisible
6. Can be tuned in many ways
Bernd Hüttner DLR Stuttgart
Folie 55
nW = 1.35
nG = 1.5
nW = 1.35
nG = -1.5
nW = -1.35
nG = 1.5
nW = -1.35
nG = -1.5

More Related Content

Similar to metamaterial powerpoint negative refractive index

Lecture 2 phenomenology
Lecture 2 phenomenologyLecture 2 phenomenology
Lecture 2 phenomenologyAllenHermann
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxPawanKumar391848
 
Studying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaStudying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaIslam Kotb Ismail
 
1.crystal structure using x – ray diffraction
1.crystal structure using  x – ray diffraction1.crystal structure using  x – ray diffraction
1.crystal structure using x – ray diffractionNarayan Behera
 
Solucionario serway cap 32
Solucionario serway cap 32Solucionario serway cap 32
Solucionario serway cap 32Carlo Magno
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notesRohan Jain
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsABDERRAHMANE REGGAD
 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...Alexander Decker
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineeringPriyanka Anni
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Claudio Attaccalite
 

Similar to metamaterial powerpoint negative refractive index (20)

Chapter_1.pptx .
Chapter_1.pptx                                .Chapter_1.pptx                                .
Chapter_1.pptx .
 
netwon rings
netwon ringsnetwon rings
netwon rings
 
Lecture 2 phenomenology
Lecture 2 phenomenologyLecture 2 phenomenology
Lecture 2 phenomenology
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Nonlinear optics
Nonlinear opticsNonlinear optics
Nonlinear optics
 
Studying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaStudying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear media
 
1.crystal structure using x – ray diffraction
1.crystal structure using  x – ray diffraction1.crystal structure using  x – ray diffraction
1.crystal structure using x – ray diffraction
 
Spr in a thin metal film
Spr in a thin metal filmSpr in a thin metal film
Spr in a thin metal film
 
Solucionario serway cap 32
Solucionario serway cap 32Solucionario serway cap 32
Solucionario serway cap 32
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott Insulators
 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
 
RUBY LASER
RUBY LASER RUBY LASER
RUBY LASER
 
263 4.pdf
263 4.pdf263 4.pdf
263 4.pdf
 
263 4.pdf
263 4.pdf263 4.pdf
263 4.pdf
 
Optics part ii
Optics   part iiOptics   part ii
Optics part ii
 
ENFPC 2013
ENFPC 2013ENFPC 2013
ENFPC 2013
 
Laser lecture 02
Laser lecture 02Laser lecture 02
Laser lecture 02
 

Recently uploaded

Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 

Recently uploaded (20)

Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 

metamaterial powerpoint negative refractive index

  • 1. Bernd Hüttner DLR Stuttgart Folie 1 A journey through a strange classical optical world Bernd Hüttner CPhys FInstP Institute of Technical Physics DLR Stuttgart Left-handed media Metamaterials Negative refractive index
  • 2. Bernd Hüttner DLR Stuttgart Folie 2 Overview 1. Short historical background 2. What are metamaterials? 3. Electrodynamics of metamaterials 4. Optical properties of metamaterials 5. Invisibility, cloaking, perfect lens 6. Surface plasmon waves and other waves 7. Faster than light 8. Summary
  • 3. Bernd Hüttner DLR Stuttgart Folie 3 Overview 1. Short historical background 2. What are metamaterials? 3. Electrodynamics of metamaterials 4. Optical properties of metamaterials 5. Invisibility, cloaking, perfect lens 6. Surface plamon waves and other waves 7. Faster than light 8. Summary
  • 4. Bernd Hüttner DLR Stuttgart Folie 4 A short historical background V G Veselago, "The electrodynamics of substances with simultaneously negative values of eps and mu", Usp. Fiz. Nauk 92, 517-526 (1967) A Schuster in his book An Introduction to the Theory of Optics (Edward Arnold, London, 1904). J B Pendry „Negative Refraction Makes a Perfect Lens” PHYSICAL REVIEW LETTERS 85 (2000) 3966-3969 H Lamb (1904), H C Pocklington (1905), G D Malyuzhinets, (1951), D V Sivukhin, (1957); R Zengerle (1980)
  • 5. Bernd Hüttner DLR Stuttgart Folie 5 Objections raised against the topic 1. Valanju et al. – PRL 88 (2002) 187401-Wave Refraction in Negative- Index Media: Always Positive and Very Inhomogeneous 2. G W 't Hooft – PRL 87 (2001) 249701 - Comment on “Negative Refraction Makes a Perfect Lens” 3. C M Williams - arXiv:physics 0105034 (2001) - Some Problems with Negative Refraction
  • 6. Bernd Hüttner DLR Stuttgart Folie 6 Overview 1. Short historical background 2. What are metamaterials? 3. Electrodynamics of metamaterials 4. Optical properties of metamaterials 5. Invisibility, cloaking, perfect lens 6. Surface plamon waves and other waves 7. Faster than light 8. Summary
  • 7. Bernd Hüttner DLR Stuttgart Folie 7
  • 8. Bernd Hüttner DLR Stuttgart Folie 8 Photonic crystals 1995 2003
  • 9. Bernd Hüttner DLR Stuttgart Folie 9 Overview 1. Short historical background 2. What are metamaterials? 3. Electrodynamics of metamaterials 4. Optical properties of metamaterials 5. Invisibility, cloaking, perfect lens 6. Surface plamon waves and other waves 7. Faster than light 8. Summary
  • 10. Bernd Hüttner DLR Stuttgart Folie 10 Left-handed metamaterials (LHMs) are composite materials with effective electrical permittivity, ε, and magnetic permeability, µ, both negative over a common frequency band. Definition: What is changed in electrodynamics due to these properties? Taking plane monochromatic fields Maxwell‘s equations read     c·rotE i H i·c k E c·rotH i E i·c k H .                       Note, the changed signs
  • 11. Bernd Hüttner DLR Stuttgart Folie 11 By the standard procedure we get for the wave equation             2 2 2 2 2 2 2 2 2 2 c E c k k E c k· E·k k·k E k k ' i·k '' n n i . E c k E c                             no change between LHS and RHS Poynting vector               2 2 2 2 c c c S E H E k E k E·E E k·E 4 4 4 c c k k c k k E·E E·E E·E . 4 4 4 k k                            
  • 12. Bernd Hüttner DLR Stuttgart Folie 12 RHS LHS p g S k v v   g p S k v v  
  • 13. Bernd Hüttner DLR Stuttgart Folie 13 Two (strange) consequences for LHM
  • 14. Bernd Hüttner DLR Stuttgart Folie 14
  • 15. Bernd Hüttner DLR Stuttgart Folie 15 Why is n < 0? 1. Simple explanation n · · · i· ·i ·                 2. A physical consideration       n , n , n , n               2 2 2 E c k E    2nd order Maxwell equation: 1st order Maxwell equation: 0 k 0 k k E H n e E c k H E n e H c               RHS:  > 0,  > 0, n > 0 LHS:  < 0,  < 0, n < 0       , n n n , n ,              
  • 16. Bernd Hüttner DLR Stuttgart Folie 16 whole parameter space
  • 17. Bernd Hüttner DLR Stuttgart Folie 17 The averaged density of the electromagnetic energy is defined by             2 2 d d 1 U E H . 8 d d                    Note the derivatives has to be positive since the energy must be positive and therefore LHS possess in any case dispersion and via KKR absorption 3. An other physical consideration
  • 18. Bernd Hüttner DLR Stuttgart Folie 18 Kramers-Kronig relation Titchmarsh‘theorem: KKR causality           2 2 0 2 2 0 Im n 2 Re n( ) 1 P d Im n 0 Re n 1 2 Im n( ) P d                                       
  • 19. Bernd Hüttner DLR Stuttgart Folie 19 Because the energy is transported with the group velocity we find           1 * * g d d S c k 1 v E·E E·E H·H U 16 d d 4 k                                  This may be rewritten as         g c 2 k v . k d d d d                                Since the denominator is positive the group velocity is parallel to the Poynting vector and antiparallel to the wave vector.
  • 20. Bernd Hüttner DLR Stuttgart Folie 20 The group velocity, however, is also given by       1 1 g d n dk k c k v c d d k k n n                                   We see n < 0 for vanishing dispersion of n This should be not confused with the superluminal, subluminal or negative velocity of light in RHS. These effects result exclusively from the dispersion of n.
  • 21. Bernd Hüttner DLR Stuttgart Folie 21 Dispersion of ,  and n Lorentz-model   2 pe 2 2 Re e 1 i             2 pm 2 2 Rm m 1 i          
  • 22. Bernd Hüttner DLR Stuttgart Folie 22 Overview 1. Short historical background 2. What are metamaterials? 3. Electrodynamics of metamaterials 4. Optical properties of metamaterials 5. Invisibility, cloaking, perfect lens 6. Surface plamon waves and other waves 7. Faster than light 8. Summary
  • 23. Bernd Hüttner DLR Stuttgart Folie 23 Reflection and refraction but what is with     2 2 2 2 n 1 k R n 1 k      µ = 1 Optically speaking a slab of space with thickness 2W is removed. Optical way is zero !
  • 24. Bernd Hüttner DLR Stuttgart Folie 24 0 0 1 1 0 2 2 2 1 1 2 0 2 2 2 1 1 0 2 k sin sin sin c c sin if '' and '' 1 sin sin n . 1 sin n                            Snellius law for LHS Due to homogeneity in space we have k0x = k1x = k2x
  • 25. Bernd Hüttner DLR Stuttgart Folie 25 water: n = 1.3 „negative“ water: n = -1.3 First example
  • 26. Bernd Hüttner DLR Stuttgart Folie 26 = 2.6 left-measured right-calculated = -1.4 left-measured right-calculated Second example: real part of electric field of a wedge
  • 27. Bernd Hüttner DLR Stuttgart Folie 27 General expression for the reflection and transmission The geometry of the problem is plotted in the figure where r1’ = -r1.
  • 28. Bernd Hüttner DLR Stuttgart Folie 28 2 2 2 2 1 1 0 1 2 2 1 1 0 1 s 2 0 2 1 1 0 1 2 2 1 1 0 2 2 2 1 1 0 2 s 2 0 2 1 1 0 1 2 2 1 1 0 cos sin E R E cos sin 2 cos E T . E cos sin                                             e1 = 1=1, e2 = m2 = -1 and u0 = 0 we get R = 0 & T = 1 1. s-polarized
  • 29. Bernd Hüttner DLR Stuttgart Folie 29 2. p-polarized 2 2 2 2 1 1 0 1 2 2 1 1 0 1 p 2 0 2 1 1 0 1 2 2 1 1 0 2 2 2 1 1 0 2 p 2 0 2 1 1 0 1 2 2 1 1 0 cos sin E R E cos sin 2 cos E T . E cos sin                                             R = 0 – why and what does this mean? Impedance of free space 0 0   Impedance for e = m = -1 0 0 0 0 1 1        invisible!
  • 30. Bernd Hüttner DLR Stuttgart Folie 30 Reflectivity of s-polarized beam of one film rs1 2 2      2 n1 1 1     cos     1 n2 2 2     cos  2 2          2 n1 1 1     cos     1 n2 2 2     cos  2 2           rs2 2 2      3 n2 2 2     cos  2 2         2 n3 3 3     cos  2 2          3 n2 2 2     cos  2 2         2 n3 3 3     cos  2 2           Rsf 2 2    d    rs1 2 2      2 2 rs1 2 2       rs2 2 2       cos 2  2 2    d         rs2 2 2      2  1 2 rs1 2 2       rs2 2 2       cos 2  2 2    d         rs1 2 2      2 rs2 2 2      2     2 2      asin n1 1 1    sin     n2 2 2              2 2      asin n1 1 1    sin  2 2         n3 3 3            
  • 31. Bernd Hüttner DLR Stuttgart Folie 31 0 0.2 0.4 0.6 0.8 1 1.2 1.4 5.2128258 10 4 0.051 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Absorption of Al, p- and s-polarized Absorption or reflection of a normal system 2 2 2 2 1 1 0 1 2 2 1 1 0 1 s 2 0 2 1 1 0 1 2 2 1 1 0 2 2 2 1 1 0 2 s 2 0 2 1 1 0 1 2 2 1 1 0 cos sin E R E cos sin 2 cos E T . E cos sin                                             2 2 2 2 1 1 0 1 2 2 1 1 0 1 p 2 0 2 1 1 0 1 2 2 1 1 0 2 2 2 1 1 0 2 p 2 0 2 1 1 0 1 2 2 1 1 0 cos sin E R E cos sin 2 cos E T . E cos sin                                            
  • 32. Bernd Hüttner DLR Stuttgart Folie 32 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.57 0.62 0.67 0.72 0.77 0.82 0.87 0.92 0.97 Reflectivity of Al, p- and s-polarized Reflection of a normal system
  • 33. Bernd Hüttner DLR Stuttgart Folie 33 Reflection of a LHS 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 Rsf 1.  1   1  1    5  5  ( ) Rpf 1.  1   1.0  1    5  5  ( )  0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 Rsf 1.05  1   1  1    5  5  ( ) Rpf 1.05  1   1.0  1    5  5  ( )  0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 Rsf 1.25  1.05   1  1    5  5  ( ) Rpf 1.25  1.05   1  1    5  5  ( )  0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 Rsf 0.5  1.5   1  1    5  5  ( ) Rpf 0.5  0.5   1  1    5  5  ( ) 
  • 34. Bernd Hüttner DLR Stuttgart Folie 34 Overview 1. Short historical background 2. What are metamaterials? 3. Electrodynamics of metamaterials 4. Optical properties of metamaterials 5. Invisibility, cloaking, perfect lens 6. Surface plamon waves and other waves 7. Faster than light 8. Summary
  • 35. Bernd Hüttner DLR Stuttgart Folie 35 Invisibility eff 0 eff eff 1 Z Z 2 1       Al plate, d=17µm
  • 36. Bernd Hüttner DLR Stuttgart Folie 36 An other miracle: Cloaking of a field For the cylindrical lens, cloaking occurs for distances r0 less than r# if c=m in 3 out # r r r  The animation shows a coated cylinder with in=1, s=-1+i·10-7, rout=4, rin=2 placed in a uniform electric field. A polarizable molecule moves from the right. The dashed line marks the circle r=r#. The polarizable molecule has a strong induced dipole moment and perturbs the field around the coated cylinder strongly. It then enters the cloaking region, and it and the coated cylinder do not perturb the external field.
  • 37. Bernd Hüttner DLR Stuttgart Folie 37 There is more behind the curtain: 1. outside the film Due to amplification of the evanescent waves perfect lens – beating the diffraction limit How can this happen? Let the wave propagate in the z-direction the larger kx and ky the better the resolution but kz becomes imaginary if 2 2 2 x y 2 0 k k c    How does negative slab avoid this limit?
  • 38. Bernd Hüttner DLR Stuttgart Folie 38 Amplification of evanescent waves
  • 39. Bernd Hüttner DLR Stuttgart Folie 39
  • 40. Bernd Hüttner DLR Stuttgart Folie 40 Overview 1. Short historical background 2. What are metamaterials? 3. Electrodynamics of metamaterials 4. Optical properties of metamaterials 5. Invisibility, cloaking, perfect lens 6. Surface plamon waves and other waves 7. Faster than light 8. Summary
  • 41. Bernd Hüttner DLR Stuttgart Folie 41 How can we understand this? Analogy – enhanced transmission through perforated metallic films Ag d=280nm hole diameter d / l = 0.35 L=750nm hole distant area of holes 11% h =320nm thickness dopt=11nm optical depth Tfilm~10-13 solid film
  • 42. Bernd Hüttner DLR Stuttgart Folie 42 Detailed analysis shows it is a resonance phenomenon with the surface plasmon mode. Surface-plasmon condition: 0 k k 2 2 1 1     2 p s    2 p 2 2 1     
  • 43. Bernd Hüttner DLR Stuttgart Folie 43 Interplay of plasma surface modes and cavity modes The animation shows how the primarily CM mode at 0.302eV (excited by a normal incident TM polarized plane wave) in the lamellar grating structure with h=1.25μm, evolves into a primarily SP mode at 0.354eV when the contact thickness is reduced to h=0.6μm along with the resulting affect on the enhanced transmission.
  • 44. Bernd Hüttner DLR Stuttgart Folie 44 Beyond the diffraction limit: Plane with two slits of width l/20 =1 =2.2 =-1 µ=-1 =-1+i·10-3 µ=-1+i·10-3
  • 45. Bernd Hüttner DLR Stuttgart Folie 45
  • 46. Bernd Hüttner DLR Stuttgart Folie 46 Overview 1. Short historical background 2. What are metamaterials? 3. Electrodynamics of metamaterials 4. Optical properties of metamaterials 5. Invisibility, cloaking, perfect lens 6. Surface plamon waves and other waves 7. Faster than light 8. Summary
  • 47. Bernd Hüttner DLR Stuttgart Folie 47 There is more behind the curtain: 2. inside the film The peak starts at the exit before it arrives the entry Example. Pulse propagation for n = -0.5 Oje, is this mad?! No, it isn’t!
  • 48. Bernd Hüttner DLR Stuttgart Folie 48 An explanation: Let us define the rephasing length l of the medium where vg is the group velocity Remember, Fourier components in same phase interfere constructively If the rephasing length is zero then the waves are in phase at =0
  • 49. Bernd Hüttner DLR Stuttgart Folie 49 RHS LHS RHS Peak is at z=0 at t=0 t < 0 the rephasing length lII inside the medium becomes zero at a position z0 = ct / ng. At z0 the relative phase difference between different Fourier components vanishes and a peak of the pulse is reproduced due to constructive interference and localized near the exit point of the medium such that 0 > t > ngL/c. The exit pulse is formed long before the peak of the pulse enters the medium RHS n=1 RHS n=1 LHS n < 0 0 L z II III I
  • 50. Bernd Hüttner DLR Stuttgart Folie 50 At a later time t’ such that 0 > t’ > t, the position of the rephasing point inside the medium z0’ = ct’/ng decreases i.e., z0’ < z0 and hence the peak moves with negative velocity -vg inside the medium. t=0: peaks meet at z=0 and interfere destructively. Region 3: '' 0 g z L ct n L    since 0 >t>ngL/c is z0 ’’ > L 0>t’>t: z0 ’’’ > z0 ’’ the peak moves forward
  • 51. Bernd Hüttner DLR Stuttgart Folie 51
  • 52. Bernd Hüttner DLR Stuttgart Folie 52 Gold plates (300nm) and stripes (100nm) on glass and MgF2 as spacer layer
  • 53. Bernd Hüttner DLR Stuttgart Folie 53 Overview 1. Short historical background 2. What are metamaterials? 3. Electrodynamics of metamaterials 4. Optical properties of metamaterials 5. Invisibility, cloaking, perfect lens 6. Surface plamon waves and other waves 7. Faster than light 8. Summary
  • 54. Bernd Hüttner DLR Stuttgart Folie 54 Summary Metamaterials have new properties: 1. S and vg are antiparallel to k and vp 2. Angle of refraction is opposite to the angle of incidence 3. A slab acts like a lens. The optical way is zero 4. Make perfect lenses, R = 0, T = 1 5. Make bodies invisible 6. Can be tuned in many ways
  • 55. Bernd Hüttner DLR Stuttgart Folie 55 nW = 1.35 nG = 1.5 nW = 1.35 nG = -1.5 nW = -1.35 nG = 1.5 nW = -1.35 nG = -1.5