MEC281
MATERIALS SCIENCES
This course covers some fundamentals of materials science, which are
necessary for the understanding of materials properties for their
appropriate applications. The major families of materials such as
metals, ceramics, polymers and composite are discussed for their
structures, properties and applications.
Course Description
• CO1 :Explain basic concepts of structure, mechanical and physical
properties of engineering materials. [PO1, LO1].
• CO2 ;Apply the basics concepts to identify the relationships
between properties and structure of materials. [PO3, LO3, SS1].
• CO3 :Choose the suitable material for appropriate engineering
applications. [PO3, LO3, SS1].
Course Outcome
• Course Work : 40%
Test 1 : 15%
Test 2 : 15%
Quiz (x4) : 10% (i-Learn)
• Final Examination : 60%
• Total : 100%
ASSESSMENT
Syllabus content
CHAPTER CONTENT/SUB-CHAPTER
1
STRUCTURE
(10 HOURS)
1. Atomic Structure.
2. Interatomic Bonding Amorphous and Crystalline Solid.
3. Crystal Structures.
4. Efficiency of Atomic Packing, Density Computation, Miller Indices.
5. Relationship between Atomic Structure, Crystal Structures and
Properties of Material.
2
METALLIC MATERIALS
(14 HOURS)
1. Solidification Of Pure Metal And Alloys
2. Phase Diagram: Microstructure Development, Microconstituent of
Phases.
3. Fe-Fe3C System: Microstructure Development, Microconstituent of
Phases.
4. Ferrous and Non-Ferrous Metals
3
THERMAL
TREATMENT OF
METALLIC MATERIALS
(8 HOURS)
1. Heat Treatment of Ferrous Metals
2. Hardenability
3. Isothermal Transformation Diagram (TTT Diagram)
4
ENGINEERING
MATERIALS
(10 HOURS)
1. Classification of Engineering Materials
2. Plastics And Elastomer: Molecular Structures, Properties and
Applications
3. Ceramic: Structure, Properties, and Applications
4. Composite Materials: Types, Properties and Applications.
REFERENCES
 William D. Callister, Jr., Materials Science and
Engineering and Engineering, An Introduction, John
Wiley & Sins, Inc., 2011.
 William F. Smith, Foundations of Materials Science and
Engineering, Second Edition. McGraw-Hill, 2000.
 William F. Smith, Structure and Properties of
Engineering Alloys, Second Edition, McGraw-Hill, 1993.
 K.R. Tretheway and J. Chamberlain, Corrosion,
Longman Scientific Technical, 1998.
Teaching Plan (June – October 2014)
Week Date Syllybus Activity(s)
1* 9/6/14 – 15/6/14
CHAPTER 12* 16/6/14 – 22/6/14 Tutorial 1
3 23/6/14 – 29/6/14 Tutorial 2
4 30/6/14 – 6/7/14
CHAPTER 2
Tutorial 3
5 7/7/14 – 13/7/14 Tutorial 4 & QUIZ 1’
6 14/7/14 – 20/7/14 Tutorial 5
7 21/7/14 – 25/7/14
26/7/14 – 3/8/14 Mid Term Break
8 4/8/14 – 10/8/14 TEST 1 (8/8/14)
9 11/8/14 – 17/8/14
CHAPTER 3
Tutorial 6 & QUIZ 2’
10 18/8/14 – 24/8/14 Tutorial 7
11 25/8/14 – 31/8/14 Tutorial 8 & QUIZ 3’
12 1/9/14 – 7/9/14
CHAPTER 4
Tutorial 9
13** 8/9/14 – 14/9/14 TEST 2 (12/9/14)
14** 15/9/14 – 21/9/14 Tutorial 10 & QUIZ 4’
2 days 22/9/14 – 23/9/14 Revision
3 weeks 24/9/14 – 17/10/14 Examination
Remarks: (online –iLearn )
*Entrance Survey
**Exit Survey
Quiz’
SuFO (18 Ogos – 3 September 2014)
Lecture Notes, Tutorial, etc. - FOLDER (June – October 2014)
Tutorial
Tutorial Topic
1 Atomic structure
2 Interatomic bonding, Crystal Structures
3 APF, Density Computation, Miller Indices.
4 Phase diagram
5 Iron-Iron Carbide Phase Diagram
6 Ferrous and Non-Ferrous Metal
7 TTT- Diagram
8 Heat Treatment of Ferrous Metal
9 Plastic and Elastomer
10 Ceramic and Composite materials
CHAPTER 1 : STRUCTURE
(10 hours)
SUBCONTENT :
1.1 ATOMIC STRUCTURE.
1.2 INTERATOMIC BONDING AMORPHOUS AND CRYSTALLINE SOLID.
1.3  CRYSTAL STRUCTURES.
1.4 EFFICIENCY OF ATOMIC PACKING, DENSITY COMPUTATION, 
MILLER INDICES. 
1.5 RELATIONSHIP BETWEEN ATOMIC STRUCTURE, CRYSTAL STRUCTURES
AND PROPERTIES OF MATERIAL.
You should be able:
Describe an atomic structure
Configure electron configuration
Differentiate between each atomic bonding
Briefly describe ionic, covalent, metallic, hydrogen 
and Van der Waals bonds
Relate the atomic bonding with material 
properties
LEARNING OBJECTIVE
4
1.1 ATOMIC STRUCTURE
All matter is made up of tiny particles called atoms.
What are ATOMS?
Since the atom is too small to be seen even with the most powerful
microscopes, scientists rely upon on models to help us to understand the
atom.
Even with the world’s best
microscopes we cannot clearly
see the structure or behavior
of the atom.
5
Even though we do not know what an
atom looks like, scientific models
must be based on evidence. Many of
the atom models that you have seen
may look like the one below which
shows the parts and structure of the
atom.
Is this really an  ATOM?
This model represents the 
most modern version of the 
atom.
Bohr Theory
Wave Mechanical Atomic Model
6
Protons and neutrons join together 
to form the nucleus – the central 
part of the atom
+
+ ‐‐
Electrons 
move 
around the 
nucleus
Neutron
Proton
Electron
Nucleon or 
Nucleus
Fig. : A simplified diagram of atom
Shell @ Orbital @ Energy level
•Atoms are made of a nucleus that contains protons, neutrons and electrons that 
orbit around the nucleus at different levels, known as shells.
What does an ATOM look like?
7
•These particles have the following properties:
Particle Charge Location Mass (amu) Symbol
Proton Positive (+ve) Nucleus 1.0073
Neutron Neutral Nucleus 1.0087
Electron Negative (-ve) Orbital 0.000549
‐
To describe the mass of atom, a unit of mass called the atomic mass unit (amu) is used.
•The number of protons, neutrons and electrons in an atom completely determine 
its properties and identity. This is what makes one atom different from another. 
+
8
Most atoms are electrically neutral, meaning that they have an equal number of
protons and electrons. The positive and negative charges cancel each other out.
Therefore, the atom is said to be electrically neutral.
Why are all ATOMS are ELECTRICALLY
NEUTRAL?
+
‐
Neutron
Proton
Electron
++
+‐
‐
+ ‐
Fig. : Beryllium atom 
Proton    = 4
Electron = 4
NEUTRAL
CHARGE
9
cation ‐ ion with a positive charge
‐ If a neutral atom loses one or more electrons, it becomes a cation.
anion ‐ ion with a negative charge 
‐ If a neutral atom gains one or more electrons, it becomes an anion.
Na
11 protons
11 electrons Na+ 11 protons
10 electrons
Cl
17 protons
17 electrons
Cl‐
17 protons
18 electrons
Cations are smaller than their “parent atom” because 
there is less e‐e repulsion
Anions are larger than their “parent atom” because there is 
more e‐‐ e repulsion
If an atom gains or loses electrons, the atom is no longer neutral and
it become electrically charged . The atom is then called an ION.
10
periodic: a repeating pattern
table: an organized collection of information
Periodic Table (P.T.)
An arrangement of elements in
order of atomic number;
elements with similar
properties are in the same
group.
Basics of the PERIODIC TABLE
11
The periodic table below is a simplified representation which
usually gives the :
1) period: horizontal row on the P.T.
•Designate electron energy levels
2) group or family: vertical column on the P.T.
Two main classifications in P.T.
12
ATOMIC NUMBER and ATOMIC MASS
1) ATOMIC NUMBER 2) ATOMIC MASS
Atom can be described using :
The element helium has the atomic number 2, is represented by
the symbol He, its atomic mass is 4 and its name is helium.
ATOMIC MASS , A =
no. of protons (Z) + number of neutrons (N)
SYMBOL
ATOMIC NUMBER, Z = no. of protons
PERIODIC TABLE 
14
ATOMIC NUMBER tells how many PROTONS (Z) are in its atoms which determine the 
atom’s identity. 
The list of elements (ranked according to an increasing no. of protons) can be looked up 
on the Periodic Table. So, if an atom has 2 protons (atomic no. = 2), it must be helium(He). 
ATOMIC MASS tells the sum of the masses of  PROTONS (Z) and NEUTRONS (N) within the 
nucleus  E.g :
Lithium:
Atomic number = 3
3 protons, Z
4 neutrons, N
Atomic mass, A = 3 + 4 = 7
BUT...  although each element has a defined number of protons, the number of neutrons 
is not fixed   isotopes
15
•Atoms which have the same 
number of protons but different 
numbers of neutrons.
•Atoms which have the same
atomic number but different atomic 
mass .
•Eg : Hydrogen has 3 isotopes. 
Natural
Isotope
Proton Neutron Atomic
Mass
Hydrogen 1
(hydrogen)
1 0 1
Hydrogen 2
(deuterium)
1 1 2
Hydrogen 3
(tritium)
1 2 3
H1
1 H (D)2
1 H (T)3
1
Same atomic no. @ no. of protons
Different mass number
ISOTOPES
Exercise of isotopes :
Element Name
Number of
Proton
Nucleon 
Number
Number of 
Neutron
Hydrogen
Hydrogen
Deuterium
Tritium
Oxygen
Oxygen‐16
Oxygen‐17
Oxygen‐18
Carbon
Carbon‐12
Carbon‐13
Carbon‐14
Chlorine
Chlorine‐35
Chlorine‐37
Sodium
Sodium‐23
Sodium‐24
17
Naturally occurring carbon consists of three isotopes, 
12C, 13C, and 14C.  State the number of protons, 
neutrons, and electrons in each of these carbon atoms. 
12C 13C 14C
6 6                        6
#p   _______         _______                _______     
#n   _______         _______             _______     
#e   _______         _______            _______     
EXERCISE
18
The electron cloud that surrounded the nucleus is divided into 7 shells (a.k.a energy level)
 K (1st shell, closest to nucleus) followed by L, M, N, O, P, Q.
Each of the shell, hold a limited no. of electrons. 
 E.g : K (2 electrons), L (8 electrons), M (18 electrons), N (32 electrons).
3rd shell
4th shell
2nd shell
1st shell
K (2 electrons)
L (8 electrons)
M (18 electrons)
N (32 electrons)
ELECTRON SHELLS
• Within each shell, the electrons occupy sub shell (energy sublevels)
– s, p, d, f, g, h, i. Each sub shell holds a different types of orbital.
• Each orbital holds a max. of 2 electrons.
• Each orbital has a characteristic energy state and characteristic shape.
• s - orbital
–Spherical shape
–Located closest to nucleus (first energy level)
–Max 2 electrons
• p - orbital
- There is 3 distinct p - orbitals (px, py, pz)
- Dumbbell shape
- Second energy level
- 6 electrons
ORBITAL
20
d- orbital
- There is 5 distinct d – orbitals
- Max 10 electrons
- Third energy level
Table : The number of available electron states in some of the electrons
shells and subshells.
The max. no. of electrons that can occupy a specific shell can be found
using the following formula:
Electron Capacity = 2n2
• The following representation is used :
• Example: it means that there are two electrons in the ‘s’ orbital of the
first energy level. The element is helium.
ELECTRON CONFIGURATIONS
Electron configuration – the ways in which electrons are arranged
around the nucleus of atoms. The following representation is used :
1s2
Energy level @
Principal
quantum no.
Orbital
No. of electrons
in the orbital
Based on the Aufbau principle, which assumes that electrons
enter orbital of lowest energy first.
The electrons in their orbital are represented as follows :
1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d107p6
The sequence of addition of the
electrons as the atomic number
increases is as follows with the
first being the shell number the
s, p, d or f being the type of
subshell, the last number being
the number of electrons in the
subshell.
24
e-e- e-
2nd shell
(energy
level)
Lithium (3 electrons)
How to Write the  Electron Configuration of the Element?
e-e- e- e-
e-
e-
e-
e-
e-
3rd shell
(energy
level)
Magnesium (12 electrons)
e-
e-
e-
25
Exercise: Electron Configurations
Atom Symbol Atomic Number Electron configuration
Hydrogen H
Helium He
Lithium Li
Beryllium Be
Chlorine Cl
Argon Ar
Potasium K
Calcium Ca
TRANSITION ELEMENT 
Cr [Z = 24] 1s2 2s2 2p6 3s2 3p6 4s1 3d5 (correct) halfly filled
Mo [Z = 42] … 5s1 4d5 (correct) halfly filled
Cu [Z = 29] 1s2 2s2 2p6 3s2 3p6 4s1 3d10 (correct) completely filled
Ag [Z = 47] … 5s1 4d10 (correct) completely filled
Au [Z = 79] …6s1 5d10 (correct) completely filled
Exercise
Write the electron configuration for below element.
a) K
b) K1+
c) Fe
d) Fe3+
1s2 2s2    2p6    3s2    3p6    4s2    3d10   4p6 5s2    4d10    5p6    6s2   
4f14     5d10 6p6     7s2    5f14    6d10 7p6
Answer: TEST 1 [July 2011]
1a] With the aid of sketches, describe the Bohr Model of the 
sodium [Na] and its ion in terms of valence electron , number of 
electron and shell.
[4 marks]
1.2 INTERATOMIC BONDING AMORPHOUS
AND CRYSTALLINE SOLID
2) Secondary Atomic Bonding
Van der Waals
1) Primary Interatomic Bonding
Metallic, ionic and covalent
• The forces of attraction that hold atoms together are called chemical bonds which can 
be divided into 2 categories :
• Chemical reactions between elements involve either the releasing/receiving or sharing of 
electrons .
How is ionic bonding formed??
30
1) IONIC BONDING
PRIMARY INTERATOMIC BONDING
•Often found in compounds composed of electropositive 
elements (metals) and electronegative elements (non metals)
•Electron are transferred to form a bond
•Large difference in electronegativity required 
• Example: NaCl
• Properties :
 Solid at room temperature (made of ions)
 High melting and boiling points
 Hard and brittle
 Poor conductors of electricity in solid state
 Good conductor in solution or when molten
IONIC BONDING
• Predominant bonding in Ceramics
Give up electrons Acquire electrons
He
-
Ne
-
Ar
-
Kr
-
Xe
-
Rn
-
F
4.0
Cl
3.0
Br
2.8
I
2.5
At
2.2
Li
1.0
Na
0.9
K
0.8
Rb
0.8
Cs
0.7
Fr
0.7
H
2.1
Be
1.5
Mg
1.2
Ca
1.0
Sr
1.0
Ba
0.9
Ra
0.9
Ti
1.5
Cr
1.6
Fe
1.8
Ni
1.8
Zn
1.8
As
2.0
CsCl
MgO
CaF2
NaCl
O
3.5
EXAMPLE : IONIC BONDING
Exercise : Final Exam [April 2008]
1c] With the aid of sketches, describe how Sodium and Chlorine 
atoms are joined.
[3 marks]
EXERCISE
Draw the following ionic bonding?
IONIC BONDING :
Group 1 metal + Group 7 non metal, eg : NaCl
Group 2 metal + Group 7 non metal, eg : MgF₂, BeF₂, MgBr₂, CaCl₂ or CaI₂
Group 2 metal + Group 6 non metal, eg : CaO, MgO, MgS, or CaS
• Electrons are  shared to form a bond. 
• Most frequently occurs between atoms with similar electronegativities. 
• Often found in:
2) COVALENT BONDING
How is covalent bonding formed??
• Molecules with nonmetals
• Molecules with metals and nonmetals
(Aluminum phosphide (AlP)
• Elemental solids (diamond, silicon, germanium)
• Compound solids (about column IVA)
(gallium arsenide - GaAs, indium antimonide - InSb
and silicone carbide - SiC)
• Nonmetallic elemental molecules (H₂, Cl₂, F₂, etc)
Properties
• Gases, liquids, or solids (made of molecules)
• Poor electrical conductors in all phases
• Variable ( hard , strong, melting temperature, boiling point)
2) COVALENT BONDING
• Molecules with nonmetals
• Molecules with metals and nonmetals
• Elemental solids
• Compound solids (about column IVA)
He
-
Ne
-
Ar
-
Kr
-
Xe
-
Rn
-
F
4.0
Cl
3.0
Br
2.8
I
2.5
At
2.2
Li
1.0
Na
0.9
K
0.8
Rb
0.8
Cs
0.7
Fr
0.7
H
2.1
Be
1.5
Mg
1.2
Ca
1.0
Sr
1.0
Ba
0.9
Ra
0.9
Ti
1.5
Cr
1.6
Fe
1.8
Ni
1.8
Zn
1.8
As
2.0
SiC
C(diamond)
H2O
C
2.5
H2
Cl2
F2
Si
1.8
Ga
1.6
GaAs
Ge
1.8
O
2.0
columnIVA
Sn
1.8
Pb
1.8
EXAMPLE : COVALENT BONDING
Draw the following covalent bonding?
SINGLE BOND :
Hydrogen
Fluorine
Water
DOUBLE BOND :
Oxygen
TRIPLE BOND :
Nitrogen
EXERCISE
• Occur when some electrons in the valence shell separate
from their atoms and exist in a cloud surrounding all the
positively charged atoms.
• The valence electron form a ‘sea of electron’.
• Found for group IA and IIA elements.
• Found for all elemental metals and its alloy.
3) METALLIC BONDING
How is metallic bonding formed??
3) METALLIC BONDING
42
Properties:
 Good electrical conductivity
 Good heat conductivity
 Ductile
 Opaque
3) METALLIC BONDING
Explain why are metals ductile and can conduct 
electricity?
• Arise from atomic or molecular dipoles
VAN DER WAALS
SECONDARY INTERATOMIC BONDING
• Three bonding mechanism 
– Fluctuating Induced Dipole Bonds
• Eg: Inert gases, symmetric molecules (H2, Cl2)
– Polar molecule‐Induced Dipole Bonds
• Asymmetrical molecules such as HCl, HF
– Permanent Dipole Bonds
• Hydrogen bonding
• Between molecules  
• H‐F, H‐O, H‐N
• Molecule is considered the smallest particle of a pure 
chemical substance that still retains its composition 
and chemical properties.
• Most common molecules are bound together by 
strong covalent bonds.
• E.g. : F2, O2, H2.
• The smallest molecule : Hydrogen molecule .
MOLECULE
48
Summary of BONDING
* Directional bonding       – Strength of bond is not equal in all directions
* Nondirectional bonding – Strength of bond is equal in all directions
Type Bond energy Melting point Hardness Conductivity Comments
Ionic
bonding
Large
(150-370kcal/mol)
Very high Hard and
brittle
Poor
-required
moving ion
Nondirectional
(ceramic)
Covalent
bonding
Variable
(75-300 kcal/mol)
Large -Diamond
Small – Bismuth
Variable
Highest –
diamond
(>3550)
Mercury (-39)
Very hard
(diamond)
Poor Directional
(Semiconductors,
ceramic, polymer
chains)
Metallic
bonding
Variable
(25-200 kcal/mol)
Large- Tungsten
Small- Mercury
Low to high Soft to hard Excellent Nondirectional
(metal)
Secondary
bonding
Smallest Low to
moderate
Fairly soft Poor Directional
inter-chain
(polymer)
inter-molecular
Ceramics
(Ionic & covalent bonding):
Metals
(Metallic bonding):
Polymers
(Covalent & Secondary):
secondary bonding
Large bond energy
large Tm
large E
small 
Variable bond energy
moderate Tm
moderate E
moderate 
Directional Properties
Secondary bonding dominates
small T
small E
large 
SUMMARY : PRIMARY BONDING
Exercise : Final Exam [March 2002]
1a] Briefly describe differences between metallic bond and covalent bond.
Support your answer with an example and simple sketch.
(7 Marks)
1.3 CRYSTAL STRUCTURE
1.3 CRYSTAL STRUCTURE
Crystal
structure
Crystalline
Material
Single Crystal polycrystal
Noncrsytalline
material
(Amorphous)
* comprised of many single
crystal or grain
• atoms pack in periodic, 3D arrays
• typical of:
Crystalline materials...
-metals
-many ceramics
-some polymers
• atoms have no periodic packing
• occurs for:
Noncrystalline materials...
-complex structures
-rapid cooling
Si Oxygen
crystalline SiO2
noncrystalline SiO2
"Amorphous" = Noncrystalline
•No recognizable long-
range order
•Completely ordered
•In segments
•Entire solid is made up
of atoms in an orderly
array
Amorphous
Polycrystalline
Crystal
•Atoms are disordered
•No lattice
•All atoms arranged on
a common lattice
•Different lattice
orientation for each
grain
Structure of SOLID
• Some engineering applications require single crystals:
--turbine blades
The single crystal turbine blades
are able to operate at a higher
working temperature than
crystalline turbine blade and thus
are able to increase the thermal
efficiency of the gas turbine cycle.
• Most engineering materials are polycrystals.
grain
1a] With the aid of sketches, explain the following terms :
i. Crystalline materials
ii. Amorphous materials
iii. Single crystalline
iv. Polycrystalline
[8 marks]
QUESTION : FINAL EXAM [OCT 2012]
59
Lattice (lines network in 3D) + Motif (atoms are arranged in a repeated pattern)
= CRYSTAL STRUCTURE
Most metals exhibit a crystal structure which show a unique arrangement of atoms
in a crystal.
A lattice and motif help to illustrate the crystal structure.
CRYSTAL STRUCTURE
lattice motif crystal structure
=+
Lattice - The three
dimensional array
formed by the unit cells
of a crystal is called
lattice.
Unit Cell - When a solid
has a crystalline
structure, the atoms are
arranged in repeating
structures called unit
cells. The unit cell is the
smallest unit
that demonstrate the full
symmetry of a crystal.
A crystal is a three-
dimensional repeating
array.
+
=
61
Fig. : The crystal structure (a) Part of the space lattice for natrium chloride (b)Unit cell for natrium
chloride crystal
Unit cell - a tiny box that
describe the crystal structure.
•Crystal structure may be present with any of the
four types of atomic bonding.
•The atoms in a crystal structure are arranged
along crystallographic planes which are designated
by the Miller indices numbering system.
•The crystallographic planes and Miller indices are
identified by X-ray diffraction.
Fig. : The wavelength of the X-ray is
similar to the atomic spacing in crystals.
62
BRAVAIS LATTICE - describe the geometric arrangement of the lattice points and
the translational symmetry of the crystal.
CRYSTAL SYSTEM AND CRYSTALLOGRAPHY
cubic, hexagonal,
tetragonal,
rhombodhedral,
orthorhombic, monoclinic,
triclinic.
•7 crystal systems :
•By adding additional
lattice point to 7 basic
crystal systems –
form 14 Bravais
lattice.
Crystal Structure of Metals
• Simple Cubic (SC) ‐ Manganese
• Body‐centered cubic (BCC) ‐ alpha iron, chromium, molybdenum, tantalum, 
tungsten, and vanadium.
• Face‐centered cubic (FCC) ‐ gamma iron, aluminum, copper, nickel, lead, silver, 
gold and platinum.
Common crystal structures for metals:
FCCSC BCC
64
SIMPLE CUBIC (SC)
• The atoms lie on a grid: layers of rows and 
columns.
• Sit at the corners of stacked cubic
No. of atom at corner
= 8 x 1/8 = 1 atom
Total No. of atom in
one unit cell
= 1 atom
Example : Manganese
Body‐centered Cubic Crystal 
Structure
The body-centered cubic (bcc) crystal structure:
(a) hard-ball model; (b) unit cell; and (c) single crystal with many unit cells
66
BODY CENTERED CUBIC STRUCTURE (BCC)
• Cubic unit cell with 8 atoms located at the corner & single atom at cube
center
Example : Chromium, Tungsten,Molybdenum,Tantalum, Vanadium
No. of atom at corner = 8 x 1/8 = 1 atom
No. of atom at center = 1 atom
Total No. of atom in one unit cell = 2 atoms
Face‐centered Cubic Crystal 
Structure
The face-centered cubic (fcc) crystal structure:
(a) hard-ball model; (b) unit cell; and (c) single crystal with many unit cells
68
FACE CENTERED CUBIC STRUCTURE (FCC)
Atoms are located at each of the corners and the centers of all the
cube faces. Each corner atom is shared among 8 unit cells,face
centered atom belong to 2.
Example : Cu,Al,Ag,Au, Ni, PtNo. of atom at corner
= 8 x 1/8 = 1 atom
No. of atom at face
= 6 x 12 = 3 atoms
Total No. of atom in
one unit cell
= 4 atoms
69
1.4 EFFICIENCY OF ATOMIC
PACKING,DENSITY COMPUTATION
AND MILLER INDEX
70
APF = no. of atom, n x volume of atoms in the unit cell, (Vs)
volume of the unit cell, (Vc)
ATOMIC PACKING FACTOR
•Atomic packing factor (APF) is defined as the efficiency of atomic arrangement
in a unit cell.
•It is used to determine the most dense arrangement of atoms. It is because how
the atoms are arranged determines the properties of the particular crystal.
•In APF, atoms are assumed closely packed and are treated as hard spheres.
•It is represented mathematically by :
71
close-packed directions
a
R=0.5a
contains 8 x 1/8 =
1 atom/unit cell
EXAMPLE
Calculate the APF for Simple Cubic (SC)?
72
EXERCISE
a) BCC b) FCC
Calculate the APF for BCC and FCC ?
73
a (lattice constant) and
R (atom radius)
Atoms/unit
cell
Packing
Density
(APF)
Examples
Simple
cubic a = 2R
1 52% CsCl
BCC
a = 4R/√3
2 68% Many metals:
α-Fe, Cr, Mo, W
FCC
a = 4R/√2
4 74% Many metals : Ag,
Au, Cu, Pt
Table : APF for simple cubic, BCC, FCC and HCP
74
1a] Give the definition of a unit cell. Briefly describe lattice constant in the unit cell.
[ 4 marks]
1b] Give the definition of APF for a unit cell and calculate the APF for FCC.
[4 marks]
QUESTION : FINAL EXAM [Oct 2010]
75
DENSITY COMPUTATIONS
• A knowledge of the crystal structure of a metallic 
solid permits computation of its density through the 
relationship :
Where
ρ = n A
Vc NA
n = number of atoms associated with each unit cell
A = atomic weight
Vc = volume of the unit cell
NA = Avogadro’s number (6.023 x 1023 atoms/mol)
76
Calculate the density for nickel (simple cubic structure).
Note that the unit cell edge length (a) for nickel is 0.3524 nm.
EXAMPLE
77
Copper has an atomic radius of 0.128 nm, FCC crystal structure and an atomic
weight of 63.5 g/mol. Compute its density and compare the answer with its
measured density.
EXERCISE
Element Symbol Atomic
weight
(amu)
Density of
solid, 20oC
(g/cm3)
Crystal
Structure,
20oC
Atomic
radius
(nm)
Copper Cu 63.55 8.94 FCC 0.128
78
1b] Platinum has a FCC structure, a lattice parameter of 0.393 nm and an atomic weight
of 195.09 g/mol. Determine :
i. Atomic radius [in cm]
ii. Density of platinum
[ 6marks]
QUESTION : TEST 1 [August 2012]
79
Miller indices is used to label the planes and directions of atoms in a crystal.
Why Miller indices is important?
To determine the shapes of single crystals, the interpretation of X-ray
diffraction patterns and the movement of a dislocation , which may determine
the mechanical properties of the material.
MILLER INDICES
Miller indices
• (h k l) : a specific crystal plane or face
• {h k l} : a family of equivalent planes
• [h k l] : a specific crystal direction
• <h k l> : a family of equivalent directions
Figure : Planes of the form {110} in cubic systems
80
POINT COORDINATES
- The position of any point located within a unit cell may be
specified in terms of its coordinates (x,y,z)
z
y
x
Example : BCC structure
Point
Number x axis y-axis z-axis
Point
Coordinated
1
2
3
4
5
6
7
8
9
81
MILLER INDICES OF A DIRECTION
How to determine crystal direction indices?
i) Determine the length of the vector
projection on each of the three axes,
based on .
ii) These three numbers are expressed as the
smallest integers and negative quantities
are indicated with an overbar.
iii) Label the direction [hkl]. Figure : Examples of direction
Axis X Y Z
Head (H) x2 y2 z2
Tail (T) x1 y1 z1
Head (H) –Tail (T) x2-x1 y2-y1 z2-z1
Reduction (if necessary)
Enclosed [h k l]
* No reciprocal involved.
82
EXAMPLE : CRYSTAL DIRECTION INDICES
0,0,0
1,1,01
1
1,0,0
0,1,0
83
EXERCISE : CRYSTAL DIRECTION INDICES
0½
1
1
0
1
1
1
1
84
EXERCISE : CRYSTAL DIRECTION INDICES
0
½
0
¾
½
½
½
Determine the direction indices of the cubic
direction between the position coordinates
TAIL (3/4, 0, 1/4) and HEAD (1/4, 1/2, 1/2)?
Draw the following Miller Indices
direction.
a) [ 1 0 0 ]
b) [ 1 1 1 ]
c) [ 1 1 0 ]
d) [ 1 1 0 ]
87
i) Determine the points at which a given crystal plane
intersects the three axes, say at (a,0,0),(0,b,0), and (0,0,c). If
the plane is parallel an axis, it is given an intersection ∞.
ii) Take the reciprocals of the three integers found in step (i).
iii) Label the plane (hkl). These three numbers are expressed
as the smallest integers and negative quantities are indicated
with an overbar,e.g : a.
MILLER INDICES OF A PLANE
How to determine crystal plane indices?
Figure : Planes with different Miller
indices in cubic crystals
Axis X Y Z
Interceptions
Reciprocals
Reduction (if necessary)
Enclosed (h k l )
+x
+y
+z
_
z
_
y
_
x
(1 , 0 , 0)
(0 , 1 , 0)
(0 , 0 , 1)
_
(0 , 0 , 1)
_
(0 , 1 , 0)
_
(1 , 0 , 0)
89
EXERCISE. : CRYSTAL PLANE INDICES
EXERCISE. : CRYSTAL PLANE INDICES
0
EXERCISE. : CRYSTAL PLANE INDICES
½
Determine the Miller Indices plane for the
following figure below?
Draw the following Miller Indices
plane.
a) ( 1 0 0 )
b) ( 0 0 1 )
c) ( 1 0 1 )
d) ( 1 1 0 )
94
NOTE (for plane and direction):
• PLANE
Make sure you enclosed your final answer in brackets (…) with no
separating commas → (hkl)
• DIRECTION
Make sure you enclosed your final answer in brackets (…) with no
separating commas → [hkl]
• FOR BOTH PLANE AND DIRECTION
Negative number should be written as follows :
-1 (WRONG)
1 (CORRECT)
Final answer for labeling the plane and direction should not have fraction
number do a reduction.
95
1.5 RELATIONSHIP BETWEEN
ATOMIC STRUCTURE, CRYSTAL
STRUCTURES AND PROPERTIES OF
MATERIALS
96
PHYSICAL PROPERTIES OF METALS
•Solid at room temperature (mercury is an exception)
•Opaque
•Conducts heat and electricity
•Reflects light when polished
•Expands when heated, contracts when cooled
•It usually has a crystalline structure
Physical properties are the characteristic responses of materials to
forms of energy such as heat, light, electricity and magnetism.
The physical properties of metals can be easily explained as follows :
Mechanical Properties
 Terminology for Mechanical Properties
 The Tensile Test: Stress‐Strain Diagram
 Properties Obtained from a Tensile Test
 Hardness of Materials
98
MECHANICAL PROPERTIES OF METALS
Mechanical properties are the characteristic dimensional changes in response to
applied external or internal mechanical forces such as shear strength, toughness,
stiffness etc.
The mechanical properties of metals can be easily explained as follows :
99
Tensile Test
specimen
machine
100
Tensile Test
Terminology
 Load ‐ The force applied to a material during testing.
 Strain gage or Extensometer ‐ A device used for 
measuring change in length (strain).
 Engineering stress ‐ The applied load, or force, 
divided by the original cross‐sectional area of the 
material.
 Engineering strain ‐ The amount that a material 
deforms per unit length in a tensile test.
Stress-Strain Diagram
Strain ( ) (L/Lo)
4
1
2
3
5
Elastic
Region
Plastic
Region
Strain
Hardening Fracture
ultimate
tensile
strength
Elastic region
slope =Young’s (elastic) modulus
yield strength
Plastic region
ultimate tensile strength
strain hardening
fracture
necking
yield
strength
UTS
y
εEσ 
ε
σ
E 

12
y
εε
σ
E


Stress-Strain Diagram (cont)
• Elastic Region (Point 1 –2)
- The material will return to its original shape
after the material is unloaded( like a rubber band).
- The stress is linearly proportional to the strain in
this region.
εEσ 
: Stress(psi)
E : Elastic modulus (Young’s Modulus) (psi)
: Strain (in/in)
σ
ε
- Point 2 : Yield Strength : a point where permanent
deformation occurs. ( If it is passed, the material will
no longer return to its original length.)
ε
σ
E or
• Strain Hardening
- If the material is loaded again from Point 4, the
curve will follow back to Point 3 with the same
Elastic Modulus (slope).
- The material now has a higher yield strength of
Point 4.
- Raising the yield strength by permanently straining
the material is called Strain Hardening.
Stress-Strain Diagram (cont)
• Tensile Strength (Point 3)
- The largest value of stress on the diagram is called
Tensile Strength(TS) or Ultimate Tensile Strength
(UTS)
- It is the maximum stress which the material can
support without breaking.
• Fracture (Point 5)
- If the material is stretched beyond Point 3, the stress
decreases as necking and non-uniform deformation
occur.
- Fracture will finally occur at Point 5.
Stress-Strain Diagram (cont)
Figure : Stress strain diagram
Typical regions that can
be observed in a stress-
strain curve are:
• Elastic region
• Yielding
• Strain Hardening
• Necking and Failure
• This diagram is used to determine how material will react under a certain load.
107
108
Important Mechanical Properties
from a Tensile Test 
• Young's Modulus: This is the slope of the linear portion 
of the stress‐strain curve, it is usually specific to each 
material; a constant, known value. 
• Yield Strength: This is the value of stress at the yield 
point, calculated by plotting young's modulus at a 
specified percent of offset (usually offset = 0.2%). 
• Ultimate Tensile Strength: This is the highest value of 
stress on the stress‐strain curve. 
• Percent Elongation: This is the change in gauge length 
divided by the original gauge length. 
The stress-strain curve for an aluminum alloy.
1100.2
8
0.6
1
Magnesium,
Aluminum
Platinum
Silver, Gold
Tantalum
Zinc, Ti
Steel, Ni
Molybdenum
Graphite
Si crystal
Glass-soda
Concrete
Si nitride
Al oxide
PC
Wood( grain)
AFRE( fibers)*
CFRE*
GFRE*
Glass fibers only
Carbon fibers only
Aramid fibers only
Epoxy only
0.4
0.8
2
4
6
10
20
40
60
80
100
200
600
800
1000
1200
400
Tin
Cu alloys
Tungsten
<100>
<111>
Si carbide
Diamond
PTFE
HDPE
LDPE
PP
Polyester
PS
PET
CFRE( fibers)*
GFRE( fibers)*
GFRE(|| fibers)*
AFRE(|| fibers)*
CFRE(|| fibers)*
Metals
Alloys
Graphite
Ceramics
Semicond
Polymers
Composites
/fibers
E(GPa)
Eceramics
> Emetals
>> Epolymers
109 Pa Composite data based on
reinforced epoxy with 60 vol%
of aligned carbon (CFRE),
aramid (AFRE), or glass (GFRE)
fibers.
Young’s Moduli: Comparison
111
T
E
N
S
I
L
E
P
R
O
P
E
R
T
I
E
S
112
Graphite/
Ceramics/
Semicond
Metals/
Alloys
Composites/
fibers
Polymers
Yieldstrength,y(MPa)
PVC
Hardtomeasure,
sinceintension,fractureusuallyoccursbeforeyield.
Nylon 6,6
LDPE
70
20
40
60
50
100
10
30
200
300
400
500
600
700
1000
2000
Tin (pure)
Al (6061)a
Al (6061)ag
Cu (71500)hr
Ta (pure)
Ti (pure)a
Steel (1020)hr
Steel (1020)cd
Steel (4140)a
Steel (4140)qt
Ti (5Al-2.5Sn)a
W (pure)
Mo (pure)
Cu (71500)cw
Hardtomeasure,
inceramicmatrixandepoxymatrixcomposites,since
intension,fractureusuallyoccursbeforeyield.
HDPE
PP
humid
dry
PC
PET
¨
Room T values
a = annealed
hr = hot rolled
ag = aged
cd = cold drawn
cw = cold worked
qt = quenched & tempered
Yield Strength: Comparison
113
tensile stress, 
engineering strain, 
y
p = 0.002
Yield Strength, y
tensile stress, 
engineering strain, 
Elastic
initially
Elastic+Plastic
at larger stress
permanent (plastic)
after load is removed
p
plastic strain
114
F

bonds
stretch
return to
initial
1. Initial 2. Small load 3. Unload
F

Linear-
elastic
Non-Linear-
elastic
Elastic Deformation
• Atomic bonds are stretched but not
broken.
• Once the forces are no longer
applied, the object returns to its
original shape.
• Elastic means reversible.
115
Typical stress-strain
behavior for a metal
showing elastic and
plastic deformations,
the proportional limit P
and the yield strength
σy, as determined
using the 0.002 strain
offset method (where there
is noticeable plastic deformation).
P is the gradual elastic
to plastic transition.
116
1. Initial 2. Small load 3. Unload
.
F

linear
elastic
linear
elastic
plastic
planes
still
sheared
F
elastic + plastic
bonds
stretch
& planes
shear
plastic
Plastic Deformation (Metals)
• Atomic bonds are broken and new
bonds are created.
• Plastic means permanent.
117
Permanent Deformation
• Permanent deformation for metals is
accomplished by means of a process called
slip, which involves the motion of
dislocations.
• Most structures are designed to ensure that
only elastic deformation results when stress
is applied.
• A structure that has plastically deformed, or
experienced a permanent change in shape,
may not be capable of functioning as
intended.
118
• After yielding, the stress necessary to 
continue plastic deformation in metals 
increases to a maximum point (M) and 
then decreases to the eventual fracture 
point (F).
• All deformation up to the maximum 
stress is uniform throughout the tensile 
sample. 
• However, at max stress, a small 
constriction or neck begins to form.
• Subsequent deformation will be confined 
to this neck area.
• Fracture strength corresponds to the 
stress at fracture. 
Region between M and F:
• Metals: occurs when noticeable necking starts.
•  Ceramics: occurs when crack propagation starts.
•  Polymers: occurs when polymer backbones are aligned and about to break.
Tensile Strength, TS
119
In an undeformed
thermoplastic polymer 
tensile sample, 
(a) the polymer chains are 
randomly oriented. 
(b) When a stress is 
applied, a neck 
develops as chains 
become aligned locally.  
The neck continues to 
grow until the chains 
in the entire gage 
length have aligned. 
(c) The strength of the 
polymer is increased
120
Room T values
Si crystal
<100>
Graphite/
Ceramics/
Semicond
Metals/
Alloys
Composites/
fibers
Polymers
Tensilestrength,TS(MPa)
PVC
Nylon 6,6
10
100
200
300
1000
Al (6061) a
Al (6061) ag
Cu (71500) hr
Ta (pure)
Ti (pure)a
Steel (1020)
Steel (4140) a
Steel (4140) qt
Ti (5Al-2.5Sn) a
W (pure)
Cu (71500) cw
LDPE
PP
PC PET
20
30
40
2000
3000
5000
Graphite
Al oxide
Concrete
Diamond
Glass-soda
Si nitride
HDPE
wood ( fiber)
wood(|| fiber)
1
GFRE(|| fiber)
GFRE( fiber)
CFRE(|| fiber)
CFRE( fiber)
AFRE(|| fiber)
AFRE( fiber)
E-glass fib
C fibers
Aramid fib
Based on data in Table B4, Callister 6e.
a     = annealed
hr   = hot rolled
ag = aged
cd = cold drawn
cw = cold worked
qt   = quenched & tempered
AFRE, GFRE, & CFRE =
aramid, glass, & carbon
fiber‐reinforced epoxy
composites, with 60 vol%
fibers.
Tensile Strength: Comparison
121
• Tensile stress, : • Shear stress, :
Area, A
Ft
Ft
 
Ft
Ao
original area
before loading
Area, A
Ft
Ft
Fs
F
F
Fs
 
Fs
Ao
Stress has units: N/m2 or lb/in2
Engineering Stress
122
VMSE
http://www.wiley.com/college/callister/0470125373/vmse/strstr.htm
http://www.wiley.com/college/callister/0470125373/vmse/index.htm
123
Engineering tensile strain, 
Engineering
tensile
stress, 
smaller %EL
(brittle if %EL<5%)
larger %EL
(ductile if
%EL>5%)
• Another ductility measure: 100% x
A
AA
AR
o
fo 

•  Ductility may be expressed as either percent elongation (% plastic strain at fracture) 
or percent reduction in area.
• %AR > %EL is possible if internal voids form in neck. 
Lo Lf
Ao
Af
100% x
l
ll
EL
o
of 

Ductility, %EL
Ductility is a measure of the plastic 
deformation that has been sustained at 
fracture:
A material that 
suffers very 
little plastic 
deformation is 
brittle.
124
Toughness
Lower toughness: ceramics
Higher toughness: metals
Toughness is
the ability to
absorb
energy up to
fracture (energy
per unit volume of
material).
A “tough”
material has
strength and
ductility.
Approximated
by the area
under the
stress-strain
curve.
• Energy to break a unit volume of material
• Approximate by the area under the stress-strain
curve.
21
smaller toughness-
unreinforced
polymers
Engineering tensile strain, 
Engineering
tensile
stress, 
smaller toughness (ceramics)
larger toughness
(metals, PMCs)
Toughness
126
Linear Elastic Properties
Modulus of Elasticity, E:
(Young's modulus)
• Hooke's Law:  = E 
• Poisson's ratio:
metals:  ~ 0.33
ceramics:  ~0.25
polymers:  ~0.40

Linear-
elastic
1
E

Units:
E: [GPa] or [psi]
: dimensionless
F
F
simple
tension
test
xy
127
Engineering Strain
Strain is dimensionless.
128
Axial (z) elongation (positive strain) and lateral (x and y) contractions (negative strains) in 
response to an imposed tensile stress. 
True Stress and True Strain
 True stress The load divided by the actual cross-sectional
area of the specimen at that load.
 True strain The strain calculated using actual and not
original dimensions, given by εt ln(l/l0).
•The relation between the true stress‐true 
strain diagram and engineering stress‐
engineering strain diagram.  
•The curves are identical to the yield point.
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
The stress-strain behavior of brittle materials compared with
that of more ductile materials
131
‐‐brittle response (aligned chain, cross linked & networked case)
‐‐plastic response (semi‐crystalline case) 
Stress-Strain Behavior: Elastomers
3 different responses:
A – brittle failure
B – plastic failure
C ‐ highly elastic (elastomer)
initial: amorphous chains are
kinked, heavily cross-linked.
final: chains
are straight,
still
cross-linked
0
20
40
60
0 2 4 6
(MPa)
 8
x
x
x
elastomer
plastic failure
brittle failure
Deformation
is reversible!
132
Stress-Strain Results for Steel
Sample
133
Metals can fail by brittle or ductile fracture.
FRACTURE MECHANISM OF METALS
Ductile fracture is better than brittle fracture because :
Ductile fracture occurs over a period of time, where as brittle fracture is fast
and can occur (with flaws) at lower stress levels than a ductile fracture.
Figure : Stress strain curve for brittle and ductile material
Ductile Vs Brittle Fracture
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
• Localized deformation of a ductile material during a tensile test produces a
necked region.
• The image shows necked region in a fractured sample
Ductile Fracture
136
1c] Ductility is one of the important mechanical properties.
i] Define the ductility of a metal.
ii] With the aid of schematic diagrams, describe elastic and plastic deformations.
[6 marks]
QUESTION : FINAL EXAM [April 2011]
Ductile fracture Brittle fracture
What are the differences between
ductile fracture & brittle fracture?
Hardness of Materials
 Hardness test - Measures the resistance of a material to
penetration by a sharp object.
 Macrohardness - Overall bulk hardness of materials
measured using loads >2 N.
 Microhardness Hardness of materials typically measured
using loads less than 2 N using such test as Knoop
(HK).
 Nano-hardness - Hardness of materials measured at 1–
10 nm length scale using extremely small (~100 µN)
forces.
139
Hardness
• Hardness is a measure of a material’s resistance
to localized plastic deformation (a small dent or
scratch).
• Quantitative hardness techniques have been
developed where a small indenter is forced into
the surface of a material.
• The depth or size of the indentation is measured,
and corresponds to a hardness number.
• The softer the material, the larger and deeper the
indentation (and lower hardness number).
140
•  Resistance to permanently indenting the surface.
•  Large hardness means:
‐‐resistance to plastic deformation or cracking in
compression.
‐‐better wear properties.
e.g.,
10mm sphere
apply known force
(1 to 1000g)
measure size
of indent after
removing load
dD
Smaller indents
mean larger
hardness.
increasing hardness
most
plastics
brasses
Al alloys
easy to machine
steels file hard
cutting
tools
nitrided
steels diamond
Hardness
141
Hardness Testers
Hardness Testers
Indentation Geometry for Brinnel 
Testing
Figure Indentation geometry in
Brinell hardness testing: (a)
annealed metal; (b) work-
hardened metal; (c) deformation
of mild steel under a spherical
indenter. Note that the depth of
the permanently deformed zone
is about one order of magnitude
larger that the depth of
indentation. For a hardness test
to be valid, this zone should be
developed fully in the material.
Hardness 
Scale 
Conversions
Figure Chart for converting
various hardness scales. Note
the limited range of most scales.
Because of the many factors
involved, these conversions are
approximate.
146
Conversion of 
Hardness Scales
Also see: ASTM E140 - 07
Volume 03.01
Standard Hardness Conversion
Tables for Metals Relationship
Among Brinell Hardness, Vickers
Hardness, Rockwell Hardness,
Superficial Hardness, Knoop
Hardness, and Scleroscope
Hardness
147
Correlation 
between 
Hardness and 
Tensile 
Strength
• Both hardness and tensile
strength are indicators of
a metal’s resistance to
plastic deformation.
• For cast iron, steel and
brass, the two are roughly
proportional.
• Tensile strength (psi) =
500*BHR
148
1c] Hardness is one of the important mechanical properties
in engineering. Describe FOUR [4] types of hardness
measurement method in terms of name and types of
indenter.
[ 4 marks]
QUESTION : FINAL EXAM [Oct 2012]
149
•  Stress and strain:  These are size‐independent
measures of load and displacement, respectively.
•  Elastic behavior:  This reversible behavior often
shows a linear relation between stress and strain.
To minimize deformation, select a material with a
large elastic modulus (E or G).
•  Plastic behavior:  This permanent deformation
behavior occurs when the tensile (or compressive)
uniaxial stress reaches y.
•  Toughness:  The energy needed to break a unit
volume of material.
•  Ductility:  The plastic strain at failure.
Summary
CHAPTER 2
METALLIC MATERIALS
(14 hours) 
1
CONTENTS
2.1 Solidification of Pure Metal and Alloys
2.2 Phase diagram: Microstructure development, 
Microconstituent of phases.
2.3 Fe‐Fe3C system: Microstructure development, 
Microconstituent of phases.
2.4 Ferrous and Non‐Ferrous Metals
2
2.1 Solidification of Pure Metal 
and Alloys
3
2.1 Solidification of Pure Metal and Alloys
• Terminology
• Solution
– Metal Solid Solution
– Type of Solid Solution
• Substitutional Solid Solution
• Interstitial Solid Solution
– The Solubility Limit
• Solidification
4
• Cooling Curve
– Cooling Curve of Pure Metal
– Cooling Curve of Alloys
– Development  of Phase 
Diagram
– Cooling Curve for Binary 
Isomorphous
LEARNING OBJECTIVE
Students should be able to :
• Understand the phase transformation during 
solidification process.
• Differentiate between cooling curve for pure 
metal and alloys.
5
6
Solvent
In an alloy, the element or compound present in greater amount.
Solute
In an alloy, the element or compound present in lesser amount.
Solution
When two components combine to form a single phase.
Solubility
Degree to which the two components mix.
Solubility limit
The max. concentration of solute that may be added without forming
a new phase.
TERMINOLOGY
Components:
The elements or compounds which are mixed initially
(e.g., Al and Cu)
Phases:
The physically and chemically distinct material regions
that result (e.g.,  and ).
Example :
Liquid
L (liquid) + α (alpha-solid)
Aluminum-Copper Alloy
(darker
phase)
 (lighter
phase)
TERMINOLOGY
* Note that solid, gas and liquid is a phase. 7
SOLUTION
• When 2 components combined they can 
either remain separate or combine to form 
a single phase which is referred to as a 
solution.
• i.e.
– Alcohol and water – completely soluble
– Hot choc – powder mix soluble in water but 
limited extent
– Oil and vinegar – insoluble liquids can be 
temporarily mixed
8
9
• Most metals are combined to form alloy in order to impart 
specific characteristic.
• An alloy is a combination of two or more elements (added 
impurity atoms), at least one of which is a metal.
• The addition of impurity atoms to a metal will result in the 
formation of a solid solution.
• A solid solution is a solid‐state solution of one or more 
solutes in a solvent. 
• E.g : Steel/Cast Iron (Iron base alloys), 
Bronze/Brass (Copper base alloys), 
Al alloys, Ni base alloys, Mg base alloys, Ti alloys.
METALLIC SOLID SOLUTION
10
Characteristic of solid solution:
• Form when solute atoms are added to the host material.
• Crystal structure is maintained.
• No new structure formed.
• Compositionally homogeneous.
Solute
Used to denote an 
element/compound present in a 
minor concentration
Solvent
Element / compound that is 
present in the greatest amount 
(host atoms)
METALLIC SOLID SOLUTION
11
TYPES OF SOLID SOLUTION
i. Substitutional solid solution
ii. Interstitial solid solution
Known as point defects
(where an atom is missing or
is in an irregular place in the
lattice structure).
Substitutional Solid Solution
Hume -Rothery Rules
Substitutional solid solution with complete solubility exists when :
RULE     PROPERTIES CONDITIONS
1 Atomic radius Less than about ± 15% difference in   atomic radii
2 Crystal structure Same crystal structure (e.g : BCC, FCC or HCP).
3 Electronegativity Similar electronegativity/ smaller diff.
4 Valence electron Similar valance electron 
12
Note:
Not all alloys
systems that fit these rules
will form appreciable solid
solutions
Host atoms are replaced/substitute with solute/ impurity atoms.
13
EXAMPLE 1 : Cu-Ni system
• Both metals are completely soluble in each other
because all the requirement of Hume Rothery Rules
have been satisfactorily fulfilled.
• The solid phase is a substitutional solid solution.
System RULE 1
Atomic radius, R (nm)
RULE 2
Crystal structure
RULE 3
E/negativity
RULE 4
Valences
Cu
Ni
0.128
0.125
FCC
FCC
1.90
1.80
+2
+2
Substitutional Solid Solution
14
EXAMPLE 2: Cu-Ag system
• Both metals are partially soluble in each other because
one of the requirement of Hume Rothery Rules have not
been satisfactorily fulfilled.
• The solid phase is a substitutional solid solution.
System RULE 1
Atomic radius, R (nm)
RULE 2
Crystal structure
RULE 3
E/negativity
RULE 4
Valences
Cu
Ag
0.128
0.144
FCC
FCC
1.90
1.80
+2
+1
Substitutional Solid Solution
15
The atoms of the parent or
solvent metal are bigger
than the atoms of the
alloying or solute metal. In
this case, the smaller atoms
fit into spaces between the
larger atoms.
Interstitial Solid Solution exists when :
• Impurity atoms fill the voids in the solvent atom lattice.
• It interstices among the host atoms.
• Atomic diameter of an interstitial impurity must be smaller
than host atoms.
• Normal max. allowable concentration of interstitial
impurity atom is low (<10%).
Interstitial Solid Solution
• Solubility Limit: Max concentration for which only a solution
occurs.
• Question : What is the solubility limit at 20oC?
Answer :
If Co < 65wt% sugar:
If Co > 65wt% sugar:
• Solubility limit increases with T:
Ex: Phase Diagram:
Water-Sugar System
Pure
Sugar
Temperature(°C)
0 20 40 60 80 100
Co=Composition (wt% sugar)
L
(liquid solution
i.e., syrup)
Solubility
Limit L
(liquid)
+
S
(solid
sugar)
65
20
40
60
80
100
Pure
Water
THE SOLUBILITY LIMIT
16
SOLIDIFICATION OF PURE METAL
& ALLOYS
COOLING CURVE
PHASE DIAGRAM
17
SOLIDIFICATION
• Solidification is the most important phase transformation
because most of metals/alloys undergo this transformation
before becoming useful objects.
• Solidification involve liquid-solid phase transformation,
e.g : casting process.
• The solidification process differs depending on whether
the metal is a pure element or an alloy.
18
19
Liquid
Nucleus
Liquid
Grain
Grain boundaries
(means region between crystals)
Crystals growing
(irregular grain)
(a) (b) (c)
Nucleation 
of Crystals
Crystal 
Growth
Crystals Grow 
Together and Form 
Grain Boundaries
Solution
(Liquid State)
SOLIDIFICATION
Solidification of Pure Metal and Alloys
1. The formation of stable nuclei in the melt (nucleation)
2. The growth of nuclei into crystal
3. The formation of a grain structure
SOLIDIFICATION OF PURE METAL
& ALLOYS
COOLING CURVE
PHASE DIAGRAM
20
• Used to determine phase transition temperature.
• Temperature and time data of cooling molten metal is 
recorded and plotted.
• Produce a graph known as PHASE DIAGRAM which 
shows the relationship among temperature, 
composition and phases present in alloy
COOLING CURVE
21
22
A pure metal solidifies at a constant temperature
equal to its freezing point, which is the same as its
melting point.
Figure : Cooling curve for a pure metal during casting
Cooling Curve of Pure Metal
23
Most alloys freeze over a temperature range rather than at
a single temperature.
Figure : a) Phase diagram for a copper-nickel alloy system and
b) Associated cooling curve for a 50%Ni-50%Cu composition during casting
Cooling Curve of Alloys
• Series of cooling curves at different metal composition are
first constructed.
• Points of change of slope of cooling curves (thermal arrests)
are noted and phase diagram is constructed.
• More the number of cooling curves, more accurate is the
phase diagram.
Development  of Phase Diagram
24
25
• For pure metal, the cooling 
curves show horizontal 
thermal arrest at their 
freezes points, as seen for 
pure A and pure B (at AB 
and CD).
• Different composition will 
give different cooling 
curves.
• The slope changes at L1‐L9 
are correspond to the 
liquidus point.
• The slope changes at S1‐S9 
are correspond to the 
solidus points.
Freezing
zone
Cooling Curve For
Binary Isomorphous
L1
S1
A B
D
C
L9
S9
1
26
L1
S1
By removing the time axis and
replacing it with composition
get straight lines
Connection of points on a phase
diagram representing the temp. at
which each alloy in the system begins
to solidify --- obtain liquidus line
Join all the points where the liquid has
solidified is complete --- obtain solidus
line
Red regions – material is liquid
Green regions – solid and liquid
phases are in equilibrium.
Blue regions – material is solid
2
3
SOLIDIFICATION OF PURE METAL
& ALLOYS
COOLING CURVE
PHASE DIAGRAM
27
2.2 Phase diagram
Microstructure development, 
Microconstituent of phases.
28
2.2 Phase diagram: Microstructure development, 
Microconstituent of phases.
• Phase Diagram
• The Lever Rule
• Binary Phase Diagram
– Binary Isomorphous Phase Diagram
(COMPLETE SOLID SOLUTION)
– Binary Eutectic Phase Diagram
(NO SOLID SOLUTION)
– Binary Eutectic Phase Diagram
(LIMITED SOLID SOLUTION)
29
• Invariant Equilibrium
• Terminology
Learning objective:
Students should be able to:
• Schematically sketch and label the various phase 
regions for simple binary phase diagrams.
• Determine the phase(s) present, composition(s)
and relative amount of phase(s).
• Discuss the development of the microstructures, 
upon cooling, for several situations. 
• Locate the invariant point and write reaction for 
all the transformations for either heating or 
cooling.
30
31
What is PHASE DIAGRAM?
A graphical representations of what phases are present in a 
materials system at various temperature (T), pressure (P) and 
composition (C).
Why do I need to know about PHASE DIAGRAM?
1. Because there is a strong correlation between microstructure 
and mechanical properties.
2. Besides, development of alloy microstructure is related to the 
characteristics of its phase diagram.
Applications of PHASE DIAGRAM?
1. Casting
2. Soldering
PHASE DIAGRAM
32
Types of PHASE DIAGRAM?
1. Unary – Consists of One components in an alloy
2. Binary – Consists of two components in an alloy
3. Ternary‐ Consists of three components in an alloy
Example: Unary Phase Diagram
PHASE DIAGRAM
33
What do I need to know about BINARY PHASE DIAGRAM?
Definition : Consists two components in an alloy. 
Types :
1. Complete solid solution (e.g. Cu and Ni are completely soluble)
2. No solid solution (e.g. Pb insoluble in copper)
3. Limited solid solution (e.g. Sn has limited solubility in Pb)
PHASE DIAGRAM
34
There are three(3) types of binary phase diagram :
1) Complete solid
solution
2) No solid solution 2) Limited solid
solution
Alcohol and water Oil and water Pepper powder and water
−Complete solubility in
liquid and solid
- Result in single phase
- Result in multi phase −Often soluble up to limit
- Result in multi phase
Cu and Ni Pb and Copper Zinc and Copper,
Sn and Pb
BINARY PHASE DIAGRAM
35
BINARY
ISOMORPHOUS
PHASE DIAGRAM
(COMPLETE SOLID SOLUTION)
36
Isomorphous
• Complete liquid & solid solubility
• Only one solid phase forms
• Same crystal structure
Example : Cu-Ni system
• 2 phases: L (liquid), α (FCC solid solution)
• 3 different phase fields/regions
1) Liquid phase(L)
 homogeneous liquid solution (Cu + Ni)
2) Two phases
 α (FCC solid solution) + liquid (L)
3) α phase (FCC solid solution)
 substitutional solid solution (consists both Cu-Ni)
Figure : Cu-Ni system
Note that :
• Liquidus is line above which all of alloy is liquid
• Solidus is line below which all of alloy is solid
BINARY ISOMORPHOUS
PHASE DIAGRAM
37
• Rule 1: If we know T and Co, then we know:
--the # and types of phases present.
wt% Ni20 40 60 80 1000
100 0
110 0
120 0
130 0
140 0
150 0
160 0
T(°C)
L (liquid)

(FCC solid
solution)
L + 
liquidus
solidus
A(1100,60)
B(1250,35)
Cu-Ni system
Some common features of
phase diagrams
 “α”,“β” and “γ” and etc. are used
to indicate solid solution
phases.
 “L” represents a liquid.
BINARY ISOMORPHOUS PHASE DIAGRAM:
# and types of phases
• Rule 2: If we know T and Co, then we know:
--the composition of each phase (weight percent, wt%).
wt% Ni
20
1200
1300
T(°C)
L (liquid)

(solid)L + 
liquidus
solidus
30 40 50
TA
A
D
TD
TB
B
tie line
L + 
433532
CoCL C
Cu-Ni system
Determination of phase compositions
1. Locate the temperature.
2. If one phase present, the composition
= overall composition (Co) of alloy.
3. If two phase present, use tie line.
BINARY ISOMORPHOUS PHASE DIAGRAM:
composition of phases
38
• Sum of weight fractions:
• Conservation of mass (Ni):
• Combine above equations:
WL  W  1
Co  WLCL  WC
 R
R  S
W 
Co  CL
C  CL
 S
R  S
WL
 C  Co
C  CL
• A geometric interpretation:
Co
R S
WWL
CL C
moment equilibrium:
1 W
solving gives Lever Rule
WLR  WS
THE LEVER RULE
Let WL = fraction of liquid and Wα = fraction of solid (unknown)
39
Ask yourself ?
Larger distanceSmaller
distance
Higher mass
smaller mass
40
THE LEVER RULE
• Rule 3: If we know T and Co, then we know:
--the amount of each phase [e.g: Single phase (1.0 or 100%)].
Cu-Ni system
SR
Note
•Within single phase alloy, the alloy is completely
(100%) that phase.
•If two phase alloy exists, use Lever Rule
41
BINARY ISOMORPHOUS PHASE DIAGRAM:
weight fractions of phases
wt% Ni
20
1200
1300
T(°C)
L (liquid)

(solid)
L + 
liquidus
solidus
30 40 50
TA
A
D
TD
TB
B
tie line
L + 
433532
CoCL C
R S
42
EXAMPLE : Calculate the amounts of α and L at 1250°C in the
Cu-35% Ni alloy?
THE LEVER RULE
43
EXERCISE : Determine the relative amount on each phase in the Cu 40% Ni alloy
shown in Figure below at 1300°C, 1270°C, 1250°C and 1200°C ?
THE LEVER RULE
44
Consider Co = 35wt% Ni
Figure : Cooling of Cu-Ni alloy
Microstructure
A
B
C
D
E
BINARY ISOMORPHOUS PHASE DIAGRAM:
Microstructure
wt% Ni
20
1200
1300
30 40 50
1100
L (liquid)

(solid)
L + 
L + 
T(°C)
A
D
B
35
Co
L: 35wt%Ni
: 46wt%Ni
C
E
L: 35wt%Ni
46
43
32
24
35
36
: 43wt%Ni
L: 32wt%Ni
L: 24wt%Ni
: 36wt%Ni
45
BINARY EUTECTIC
PHASE DIAGRAM
(NO SOLID SOLUTION)
46
•Region above line ced = liquid solution
•Line ce and ed = liquidus
•Line cfegd = solidus
•Region below line feg = mixture of solid A & B
•Point e = eutectic point 
(the lowest temp. at which a liquid solution can exist)
BINARY EUTECTIC PHASE DIAGRAM
(NO SOLID SOLUTION)
Eutectic: the composition of
a mixture that has the lowest
melting point where the
phases simultaneously
crystallize from molten solution
at this temperature.
From the Greek 'eutektos',
meaning ‘easily melted’.
No solid solution where the
components are completely
soluble in the liquid state
but complete insoluble in
the solid state.
Example : Pb-Cu system
47
Determination of phase and phase composition:
Same as in binary isomorphous system.
Determination of weight fraction
Weight fraction of liquid,
WL= R/(R+Q)
Weight fraction of solid A,
WA = Q/(R+Q)
BINARY EUTECTIC PHASE DIAGRAM
(NO SOLID SOLUTION)
HYPOEUTECTIC HYPEREUTECTIC
Three phases in equilibrium at
eutectic point compositions and
temperature
Eutectic reaction
L A+ B
48
EUTECTIC
HYPOEUTECTIC
HYPEREUTECTIC
The eutectic microstructure forms in the alternating layers which
is known as lamellar:
→ atomic diffusion of lead and tin only occur over relatively short distances
in solid state.
Eutectic α Eutectic β
Figure : Lamellar eutectic structure
BINARY EUTECTIC PHASE DIAGRAM
(NO SOLID SOLUTION)
49
50
Liquid
Hypoeutectic alloy Hypereutectic alloy
When the composition of an
alloy, places it to the left of the
eutectic point
When the composition of an
alloy, places it to the right of
the eutectic point
First solid to form : Primary α
(a.k.a. proeutectic α)
First solid to form : Primary β
(a.k.a. proeutectic β)
β
BINARY EUTECTIC PHASE DIAGRAM
(NO SOLID SOLUTION)
51
1. Cooling curve at eutectic alloy
Same as single component (pure metal) because solidification 
takes place at a single temperature.
A Solid
Liquid
Figure : Cooling curve at eutectic alloy
BINARY EUTECTIC PHASE DIAGRAM
(NO SOLID SOLUTION)
52
2.  Cooling curve at hypo/hypereutectic alloy
Once the liquid reach TE, it will have the eutectic composition and 
will freeze at that temperature to form solid eutectic mixture of 
two phases.   
TL = temperature of liquid
TE = temperature at eutectic point
Figure : Cooling curve at hypo/hyper
eutectic alloy
Liquid + Solid
Liquid
Solid
BINARY EUTECTIC PHASE DIAGRAM
(No SOLID SOLUTION)
TE
HYPOEUTECTIC HYPOEUTECTIC
53
BINARY EUTECTIC
PHASE DIAGRAM
(LIMITED SOLID SOLUTION)
54
Limited solid solution where the components are completely 
soluble in the liquid state but limited solubility in the solid state. 
E.g : Sn‐Pb system, Cu‐Ag system
α, β = solid solution
ae, be = liquidus
ac, cd, bd = solidus
cf, dg = solvus
• 3 single phase region = α, β, L
• Solvus cf denotes the solubility
limit of B in A
• Solvus dg shows the solubility
limit of A in B
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION)
CE
Eutectic temp.
(TE) : below TE
form 2 different
solid phases.
Eutectic point
a.k.a. triple point.
Eutectic composition (CE)Figure : Copper-silver phase diagram
Solvus
Liquidus
Solidus
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION)
TM Ag
TM Cu
55
56
Determination of phase and phase composition:
Same as in binary isomorphous system
Determination of weight fraction
Weight fraction of liquid,
WL= Q/(R+Q)
Weight fraction of β,
Wβ = R/(R+Q)
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION)
• 3 single phase regions
(L, )
• Limited solubility:
: mostly Cu
: mostly Ni
• TE: No liquid below TE
• CE: Min. melting T
composition
Ex.: Cu-Ag system
L (liquid)
 L +  L+

Co, wt% Ag
20 40 60 80 1000
200
1200
T(°C)
400
600
800
1000
CE
TE 8.0 71.9 91.2
779°C
Cu-Ag system
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION)
Eutectic reaction
L α + β
(Liq.) (s.s) (s.s)
57
EXERCISE:
1) Label each phase region
(i), (ii) and (iii).
2) Determine Tm for pure
Sn and Bi.
3) Determine the eutectic
temperature and
eutectic composition.
Sn-Bi phase diagram
β
α + L
(i)
(ii)
(iii)
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION)
58
EXAMPLE:  Pb‐Sn EUTECTIC SYSTEM
For a 40wt%Sn-60wt%Pb alloy at
150oC, find...
--the phases present:
--the compositions of
the phases:
--the relative amounts
of each phase:
Pb-Sn system
L + 
L+

200
T(°C)
18.3
Co, wt% Sn
20 40 60 80 1000
Co
300
100

L (liquid)
 183°C
61.9 97.8
150
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION)
59
EXERCISE:
a) What is the TE and CE?
b) Consider an alloy contains 20wt% 
Cu, what are the compositions of 
the  phase in equilibrium at just 
above and  below TE?
c) Consider Ag‐Cu alloy contains  
40 wt% Ag, at temperature just 
below TE, find the relative amounts 
of each phase. 60
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION)
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION) : MICROSTRUCTURES
1. Consider Co < 2wt% Sn
Liquid
Pb-Sn system
Liquid +  grains of solid                    
polycrystal of  grains
phase solid)
61
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION) : MICROSTRUCTURES
: Cowt%Sn
L + 
200
T(°C)
Co, wt% Sn
10
18.3
200
Co
300
100
L

30
L: Cowt%Sn
 + 
400
(sol. limit at TE)
TE
2
(sol. limit at Troom)
L



2. Consider 2wt%Sn < Co < 18.3wt%Sn
 polycrystal + fine  crystals
phase solid)
Pb-Sn system
Liquid
Liquid +  grains of solid                    
polycrystal of  grains
phase solid)
62
L + 
200
T(°C)
Co, wt% Sn
20 400
300
100
L

60
L: Cowt%Sn
 + 
TE
: 18.3wt%Sn

0
80 100
L + 
CE18.3 97.8
61.9
183°C
: 97.8wt%Sn
3. Consider Co = CE = 61.9 wt% Sn
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION) : MICROSTRUCTURES
Eutectic reaction
L α + β
(Liq.) (s.s) (s.s)
Pb-Sn system
EUTECTIC
Cooling Curve
63
L + 
200
T(°C)
Co, wt% Sn
20 400
300
100
L

60
L: Cowt%Sn
 + 
TE

0
80 100
L + 
Co18.3 61.9
L

L
primary 
97.8
S
S
R
R
eutectic 
eutectic 
4.  Consider 18.3wt%Sn < Co < 61.9wt%Sn
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION) : MICROSTRUCTURES
HYPOEUTECTIC
64
5.  Consider 61.9wt%Sn < Co < 97.8wt%Sn
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION) : MICROSTRUCTURES
HYPEREUTECTIC
Pb‐Sn system
65
HYPOEUTECTIC & HYPEREUTECTIC
BINARY EUTECTIC PHASE DIAGRAM
(LIMITED SOLID SOLUTION)
Eutectic
mixture

Proeutectic β
or Primary β
Proeutectic 
or Primary 
Eutectic
mixture

: Co=85wt%Sn
Eutectic reaction
L α + β
(Liq.) (s.s) (s.s)
66
67
Different systems have different types of alloy transformation.
Invariant equilibrium involve :
– 3 phases co‐exist in. 
– Exist only at one temperature / fixed temp.
– Composition for 3 phases co‐exist is fixed at the point.
– Zero degree of freedom.
Below are the example of alloy transformation at invariant 
equilibrium :
1.Eutectic 
2.Eutectoid
3.Peritectic
4.Peritectoid
INVARIANT EQUILIBRIUM
5. Metatectic
6. Monotectic
7. Synthectic
INVARIANT EQUILIBRIUM
Invariant Point Reaction Example System
Eutectic l α + β Ag‐Cu, 
Pb‐Sn
Eutectoid γ α + β Fe‐C, 
Al‐C
Peritectic l + α β Cu‐Zn
Peritectoid β + α γ Al‐Ni, 
Cu‐Zn
Metatectic α l + β U‐Mn
Monotectic l1 α + l2 Cu‐Pb
Syntectic l1 +  l2 α K‐Zn, 
Na‐Zn
L
α β
L + α L + β
α + β
γ
α βγ + α γ + β
α + β
α
β
L
β + α
L + α
L + β
α β
γγ + α
α + β
γ + β
α
β L
β + α L + α
L + β
L1
α L2
L1 + α L1 + L2
L2 + α
L1
α
L2L1 + α
L1 + L2
L2 + α
68
69
EXAMPLE: Find the eutectoid and peritectic reactions in the
Cu-Zn system?
INVARIANT EQUILIBRIUM
70
INVARIANT EQUILIBRIUM
Exercise: Refer to zinc‐copper phase diagram. Specify temperature‐composition points at 
which all eutectics, eutectoids and peritectics phases’ transformation occurs. Also for each, 
write the reaction upon cooling. 
71
• Liquidus : Line above which all of alloy is liquid.
• Solidus : Line below which all of alloy is solid.
• Solvus : Boundaries between solid phase regions.
• Invariant point : It is a point at which three phases are in
equilibrium.
• Eutectic structure : The resulting microstructure consists of
alternating layers, called lamellae, of α and β that form during
eutectic reaction.
• Proeutectic : Form before (higher temperature) eutectic.
• Terminal solid solutions : Phases containing the pure components
which situated at the end of the phase diagram.
• Hypoeutectic : Having a composition less than eutectic.
• Hypereutectic : Having a composition greater than eutectic.
TERMINOLOGY
2.3  Fe‐Fe3C system
Microstructure development,             
Microconstituent of phases.
72
2.3  Fe‐Fe3C system: Microstructure development, 
Microconstituent of phases.
• Fe‐Fe3C Phase Diagram
− Allotropy  Transformation
− Solid Phases
− Phase Transformation Reactions
− Microstructural Changes
Eutectoid
Hypoeutectoid Steel
Hypereutectoid Steel
73
LEARNING OBJECTIVE
74
Students should be able to :
• Sketch and label in the iron‐iron carbide phase 
diagram up to eutectic isotherm. 
• Specify whether the alloy is hypoeutectoid or 
hypereutectoid.
• Identify the proeutectoid phase.
• Explain the development of the microstructure
at a temperature just below the eutectoid.
• Compute the relative amount of pearlite and 
proeutectoid phase.
The effect of 
adding C into Fe 
will introduce 
various types of 
steel and cast iron 
which are 
represented by 
the iron‐iron 
carbide phase 
diagram.
75
Fe-Fe3C PHASE DIAGRAM
Fe-Fe3C PHASE DIAGRAM
76
ALLOTROPIC TRANSFORMATION
• A material that can exist in more than one lattice structure 
(depending on temperature‐heating@cooling)                allotropic.
• An allotropic material is able to exist in two or more forms having 
various properties without change in chemical composition.
• E.g : Upon heating, pure iron experiences two changes in crystal 
structure:
– At room temperature, it exists as ferrite,or α iron (BCC).
– When we heat it to 912°C, it experiences an allotropic 
transformation to austenite,or γ iron (FCC).
– At 1394°C, austenite reverts back to a BCC phase called δ ferrite.
77
912°C
1538°C
768°C
ALLOTROPIC TRANSFORMATION
Allotropy of iron(Fe) 
Delta iron Austenite  Alfa iron
(BCC)                      (FCC)                 (BCC)
High Temp
Low Temp
Moderate 
Temp
78
Phases present in Fe-Fe3C system :
1) δ Ferrite
2) γ (Austenite)
3) α Ferrite
4) Fe3C (Cementite)
5) α + Fe3C (Pearlite)
79
SOLID PHASES
80
1) δ Ferrite
• This is a solid solution of carbon in iron and has a BCC crystal 
structure (same structure as α‐ferrite).
• It is a phase which exists at extreme temperature (>1400°C) 
and stable only at high temperature, above 1394 °C.
• It melts at 1538 °C.
• The maximum solubility of C in Fe is 0.09% at 1495°C. This has 
no real practical significance in engineering. 
SOLID PHASES
Figure : δ Ferrite crystal structure
81
2) Austenite (γ Iron)   
• It is also known as (γ) gamma‐iron, which is an interstitial solid 
solution of carbon dissolved in iron with a face centered cubic 
crystal (FCC) structure. 
• Transforms to BCC δ‐ferrite at 1394°C.
• The maximum solubility of carbon in austenite, 2.14%.
• Austenite is normally unstable below eutectoid temperature 
unless cooled rapidly.
• It is a non magnetic material.
Figure :Austenite (γ iron) crystal structure
SOLID PHASES
82
3. α Ferrite
• It is also known as alpha(α) iron, which is an interstitial solid 
solution of a small amount of carbon dissolved in iron with a Body 
Centered Cubic (BCC) crystal structure.  
• It is the softest structure on the iron‐iron carbide diagram.  
• Stable form of iron at room temperature.
• The maximum solubility of C is 0.022 wt%. 
• Ferrite dissolves considerably less carbon than austenite. 
• Transforms to FCC γ‐austenite at 912°C.
• α ‐ferrite is magnetic (below 768°C).
Figure : Ferrite (α iron) crystal structure
SOLID PHASES
83
3) Cementite (Fe3C)
• Cementite is also known as iron carbide which has a chemical formula,
Fe3C.
• Fe3C is an intermetallic compound. It is because a fixed amount of C
and a fixed amount of Fe are needed to form cementite (Fe3C).
• It is a hard and brittle material, low tensile strength and high
compressive strength.
• It contains 6.70 wt% C and 93.3 wt% Fe.
• This intermetallic compound is metastable,
it remains as a compound indefinitely at room
temperature, but decomposes (very slowly,
within several years) into α-Fe and C
(graphite) at 650 - 700°C.
SOLID PHASES
84
5) α + Fe3C (Pearlite)
• It is resulted from transformation of austenite of eutectoid 
composition on very   slow cooling. 
• Pearlite is a laminated structure (lamellar structure) formed of 
alternate layers of ferrite (white matrix‐ferritic background) and
cementite (thin plate). 
• In most steels, the microstructure consists of both α+Fe3C 
(pearlite) phases.
• It has intermediate mechanical properties between α and Fe3C. 
Cementite
(hard)
Ferrite
(soft)
Figure : Pearlite microstructure
(Light background is the ferrite matrix,
dark lines are the cementite network)
SOLID PHASES
85
PhaseTransformation Reactions
C
3 Invariant points:
The iron-carbon diagram exhibits three phase transformation reactions :
86
PhaseTransformation Reactions
%
Carbon
HYPOHYPO HYPER HYPER
EUTECTOID EUTECTIC
Peritectic
PhaseTransformation Reactions
87
MICROSTRUCTURAL CHANGES
• Microstructure that exists in those reactions depends on :
− Composition(carbon content) 
− Heat treatment 
• Three significant regions can be made relative to the steel portion of the 
diagram which known as:
1) Eutectoid
− Carbon content 0.76% and temperature 727°C.
− It entirely consists of pearlite (α + Fe3C).
2) Hypoeutectoid
− Carbon content from 0.022 to 0.76%.
− It consist of pearlite and primary (proeutectoid) ferrite.
3) Hypereutectoid
− Carbon content from 0.76 to 2.14%.
− It consist of pearlite and primary (proeutectoid) cementite.
88
89
EUTECTOID STEEL
γ α +    Fe3C
austenite                 pearlite
αFe3C
Pearlite
Figure : Photomicrograph of a
eutectoid steel showing the pearlite
microstructure consisting of
alternating layers of α ferrite
(thick layers, light phase) and
Fe3C (thin layers most of which
appear dark).
Note :
• Many cementite layers are so thin 
that adjacent phase boundaries are 
indistinguishable (appear dark).
• Alternating layers  of α and Fe3C 
form pearlite.
90
The layers of alternating phases in 
pearlite are formed for the same 
reason as layered structure of eutectic 
structures:
Redistribution C atoms
between ferrite (0.022 wt%) 
and cementite (6.7wt%) by 
atomic diffusion.
The pearlite exist as grains, 
often termed as colonies.
EUTECTOID STEEL
91
HYPOEUTECTOID STEEL
Figure : Microstructures for Fe-Fe3C system of
hypoeutectoid composition Co
α’        +       α +    Fe3C 
(proeutectoid ferrite)    +      (pearlite)
Note :
Eutectoid α = Ferrite that is present in the
pearlite.
Proeutectoid (meaning pre- or before
eutectoid) = Formed above eutectoid
temperature.
α’               +             γ
(proeutectoid ferrite)   +      (Austenite)
γ
(Austenite)
92
HYPOEUTECTOID STEEL
93
EXERCISE
Consider an Fe – C alloy containing 0.25 wt% C, at a
temperature just below the eutectoid temperature.
Determine
a) the mass fractions of proeutectoid ferrite and pearlite
HYPOEUTECTOID STEEL
b) the mass fractions of total ferrite, eutectoid ferrite
and cementite.
94
HYPEREUTECTOID STEEL
Note :
Eutectoid Fe3C= Cementite that is present in
the pearlite
Figure : Microstructures for Fe-Fe3C system of
hypereutectoid composition
Fe3C’           +        γ
(proeutectoid cementite)  +  (Austenite)
γ
(Austenite)
Fe3C’      +     α +    Fe3C 
(proeutectoid cementite)  +         (pearlite)
95
HYPEREUTECTOID STEEL
96
EXERCISE
Consider an Fe – C alloy containing 1.25 wt% C, at a
temperature just below the eutectoid temperature. Determine
a) the mass fractions of proeutectoid cementite and pearlite
HYPEREUTECTOID STEEL
b) the mass fractions of total ferrite, cementite and
eutectoid cemmentite.
97
Figure : Photomicrograph of a 1.4wt% C steel
having a microstructure consisting of a white
proeutectoid cementite network surrounding
the pearlite colonies.
Hypereutectoid steel
+Fe3C (pearlite)
+
proeutectoid cementite(Fe3C)
Hypoutectoid steel
+Fe3C (pearlite)
+
proeutectoid ferrite(α)
Figure : Photomicrograph of a 0.38wt% C
steel having a microstructure consisting of
pearlite and proeutectoid ferrite.
HYPO vs HYPER EUTECTOID STEEL
2.4Ferrous and 
Non‐Ferrous Metals
98
2.4 Ferrous and Non‐Ferrous Metals
• Introduction
• Classification of Metal Alloys
• Classification of Ferrous Alloys
– Steel
• Plain Carbon Steel
• Low Carbon Steel
• Medium Carbon Steel
• High Carbon Steel
• Stainless Steel
• Tool Steel
– Cast Iron
• Gray Cast Irons
• Nodular (Ductile) Cast Irons
• White Cast Irons
• Malleable Cast Irons
99
• Non‐Ferrous Alloys
– Aluminium and its alloys
– Copper and its alloys
– Magnesium and its alloys
– Titanium and its alloys
– The Noble  Metal
– The Refractory Metals
LEARNING OBJECTIVE
Students should be able to :
• Differentiate the differences between ferrous 
and nonferrous metals.
• Describe the characteristics of white, gray, 
ductile and malleable cast irons.
• Understand the properties and applications of 
metals and its alloys.
100
INTRODUCTION
1. Ferrous
• Metal alloys that 
contain iron as a prime 
constituent.
• E.g : steels, cast iron.
• Tend to have a higher 
chance of corrosion. 
2) Nonferrous 
• Metal alloy contain less 
@ no iron. 
• E.g : Cu, Al, Mg, Ti and 
its alloys
• Have a much higher 
resistance to corrosion.
Metal alloys can be divided into two categories :
Note :
The word ferrous is derived from the Latin term "Ferrum" which means
"containing iron".
101
INTRODUCTION
Advantages of Ferrous 
alloys  over Non‐Ferrous 
alloys:
Advantages of Non‐Ferrous 
alloys  over ferrous alloys:
– Generally greater strength.
– Generally greater stiffness.
– Better for welding
– Good resistance to corrosion.
– Casting and cold working 
processes and are often 
easier.
– High ductility.
– Higher thermal and electrical 
conductivities.
– Colors.
102
CLASSIFICATION OF METAL ALLOYS
103
Al Cu Mg Ti
Noble 
Metal
Refractory 
metal
CLASSIFICATION OF FERROUS ALLOY
 Definition : Those of which iron is the prime constituent.
 Advantages :
1. Iron ores exist in abundant quantities within  the earth’s 
crust.
2. Produced from economical process : Extraction, refining, 
alloying and fabrication techniques are available. 
3. Versatile material : Wide range of mechanical and physical 
properties. 
 Disadvantages :
1. Tends to corrode.
2. High density.
3. Low electrical conductivity. 
104
CLASSIFICATION OF FERROUS ALLOY
• The ferrous alloys are classified based on the 
percentage of carbon present in the ferrous. 
(steel <2.14 %C, cast iron 2.14 ‐ 4.3%C)
• Carbon is the most important commercial 
steel alloy (↑C, ↑hardness, ↑ strength, 
↑bri leness, ↓ weldability)
105
106
CLASSIFICATION OF FERROUS ALLOY
Low Alloy High Alloy
low carbon
<0.25wt%C
med carbon
0.25-0.6wt%C
high carbon
0.6-1.4wt%C
Uses auto
struc.
sheet
bridges
towers
press.
vessels
crank
shafts
bolts
hammers
blades
pistons
gears
wear
applic.
wear
applic.
drills
saws
dies
high T
applic.
turbines
furnaces
V. corros.
resistant
Example 1010 4310 1040 4340 1095 4190 304
Additions none
Cr,V
Ni, Mo
none
Cr, Ni
Mo
none
Cr, V,
Mo, W
Cr, Ni, Mo
plain HSLA plain
heat
treatable
plain tool
austentitic
stainless
Name
Hardenability 0 + + ++ ++ +++ 0
TS - 0 + ++ + ++ 0
EL + + 0 - - -- ++
increasing strength, cost, decreasing ductility
Steels
107
Steels
• Are iron carbon alloys that may contain carbon 
less than 2.14%.
• Classification by carbon content
– Low, medium and high carbon type
• Subclasses by concentration of other alloying 
elements :
– Plain carbon steel
– Alloy steel
• The microstructures of steel are normally ferrite 
and relatively soft and weak but good ductility 
and toughness.
108
First digit indicates the family to which the steel belongs (a.k.a. the major alloying elements) : 
Second digit indicate % of major alloying elements (1 means 1%). 
Last two digits(3rd and 4th number) indicate amount of carbon in steel (10 means 0.10% C). 
Example
• SAE 5130 means alloy chromium steel, containing 1% of chromium and 0.30% of Carbon.
• AISI 1020 which means 10 indicates plain carbon steel with 0.2% amount of Carbon.
*SAE : Society of Automotive Engineers             *AISI : American Iron and Steel Institute 109
Steels
Plain Carbon Steels
• Iron with less than 1% carbon alloy contains a 
small amount of manganese, phosphorous, sulfur 
and silicon.
• Disadvantages of plain carbon steel:
– Hardenability is low
– Loss of strength and embrittleness
– Subjected to corrosion in most environments
• 3 groups:
– Low carbon steels
– Medium carbon steels
– High carbon steels
110
Low Carbon Steels (< 0.25%C )
Plain carbon steels
• unresponsive to heat treatments 
intended to form martensite.
• Microstructures consist of ferrite 
and pearlite
• Properties:
– Relatively soft and weak, but 
possess high ductility and toughness
– Good formability, Good weldability
– Low cost
– Rated at 55‐60% machinability
• Application: Auto‐body 
components, structural shapes, 
sheets for pipelines, building, 
bridges, tin cans, nail, low 
temperature pressure vessel.
High‐strength low alloy (HSLA) 
steels
• Low Carbon Steel combine with 10 
wt% of alloying elements, such as 
Mn, Cr, Cu, V, Ni, Mo
• Properties:
– higher strength than plain low 
carbon steels.
– ductile, formable and machinable
– More resistance to corrosion
• Strengthening by heat treatment.
• Application : bridges, towers, 
support columns in high rise 
building, pressure vessels.
111
Medium Carbon Steel
• Composition: 0.25 ‐ 0.6% C
• Advantages:
– Machinability is 60‐70%. 
Both hot and cold rolled 
steels machine better 
when annealed. 
– Good toughness and 
ductility
– Fair formability
– Responds to heat 
treatment but often used 
in natural condition.
• Plain medium carbon steel 
−Low hardenability
− Heat treatment:   
quenching and tempering
• Heat treatable steel  
−Containing Cr, Ni and Mo
−Heat treated alloy stronger   
than Low Carbon Steel, lower 
ductility and toughness than 
Low Carbon Steel 
Applications : Couplings, forgings, gears, crankshafts other high‐strength 
structural components. 
: Steels in the 0.40 to 0.60% C range are also used for rails, 
railway wheels and rail axles. 112
High Carbon Steels
• Composition:  0.6% ‐ 1.4% C
• Properties: 
– hardest
– strongest
– least ductile of the carbon 
steels
• Application: 
– Used for withstanding wear.
– A holder for  a sharp cutting 
edge. 
E.g : drills, woodworking tools, 
axes, turning and planning tools, 
milling cutters, knives.
– Used for spring materials, 
high‐strength wires, cutting 
tools, and etc.
• Advantages:
– Hardness is high
– Wear resistance is high
– Fair formability
• Disadvantages:
– Low toughness, formability
– Not recommended for 
welding
– Usually joined by brazing with 
low temperature silver alloy 
making it possible to repair or 
fabricate tool steel parts without 
affecting their heat treated 
condition.
113
Stainless Steels
• Primary alloying element  is chromium (>11%) 
• Others element : Nickel, Manganese, Molybdenum.
• Called stainless because in the presence of oxygen, they develop a 
thin, hard, adherent film of chromium oxide (Cr2O3) that protect the 
metal from corrosion.
• Highly resistance to corrosion.
• 3 basic types of stainless are
– Martensite
– Ferritic
– Austenitic
• Applications
− Decorative trim, nozzles.
− Springs, pump rings, aircraft fittings.
− Cookware, chemical and food processing equipment.
− Turbine blades, steam boilers, parts in heating furnaces.
− Temporary implant devices such as fractures plates, screw and hip nails.
− The best choice for the walls of a steam boiler because it is corrosion resistant 
to the steam and condensate.
114
Tool Steels
• High carbon steel alloys (containing Cr, V,  W and Mo)
that have been designed to prevent wear resistance 
and toughness combined with high strength.
• Have excess carbides (carbon alloys) which make 
them hard and wear resistant.
• Most tool steels are used in a heat treated state 
generally hardened and tempered.
• Applications: 
– gauges, shear knives, punches, chisels, cams, mould for 
die casting.
– Best choice for a drill bit because it is very hard and wear 
resistant and thus will retain a sharp cutting edge.
115
Cast Irons
• Carbon contents :  Greater than 2.14wt% C.
• Si content  : 0.5‐3wt%Si 
(used to control kinetics of carbide formation)
• Commercial range : 3.0‐4.5 wt% C + other alloying elements.
• The differences between cast irons and steels :
– Carbon content.
– Silicon content.
– Carbon microstructure (stable form and unstable form).
• Properties : 
– Low melting points (1150‐1300°C).
– Some cast iron are brittle.
• Microstructure:  
– Most commonly graphite (C) & ferrite.
116
Cast Irons
• Properties of cast iron is controlled by three main factors:
– The chemical composition of the iron
– The rate of cooling of the casting in the mould
– The type of graphite formed
• Advantages:
– Low tooling and production cost
– Ready availability
– Good machinability without burring
– Readily cast into complex shapes
– High inherent damping
– Excellent wear resistance and high hardness
• Types of cast irons :
• Gray Cast Irons
• Nodular (Ductile) Cast Irons
• White Cast Irons
• Malleable Cast Irons
117
Gray Cast Irons
• Composition : Carbon content : 2.5 ‐ 4.0 wt% C and
Silicon content  : 1.0 ‐ 3.0wt% Si.
• Microstructure : Graphite flakes surrounded by  α‐ferrite or 
pearlite matrix. 
• The formation of graphite occurs because of the cooling rate is 
too slow where austenite in unstable position and brake down 
to give graphite microstructure. 
• Properties:
– Less hard and brittle (easy to machine)
– Very weak in tension due to the pointed and sharp end of graphite flake
– Good during compression (high compressive strength)
– Low shrinkage in mould due to formation of graphite flakes
– High damping capacity
– Low melting temperature (1140‐1200oC).
• Applications: Base choice for milling machine base because it 
effectively absorbs vibration (good vibration damping).
118
THE MICROSTRUCTURE OF
GRAY CAST IRONS
Graphite flakes
* Graphite flakes shows fracture surface (gray appearance).
Figure : Dark graphite flakes in a‐Fe matrix.
119
Ductile (Nodular) Cast Irons
• Composition: Mg or Ce is added to the gray iron composition 
before casting occurs (to prevent the formation of 
graphite flakes during the slow cooling of the iron)
• Microstructure  :  Nodular or spherical‐like graphite structure in 
pearlite or ferritic matrix.
• Properties : 
– Significant increase in material ductility.
– Tensile strength > gray cast iron.
– Others mechanical properties ≈ steel.
• Applications  : Valves, pump bodies, gear and other automotive 
and machine components.
• A HT can be applied to pearlite nodular iron to give 
microstructure of graphite nodules in ferrite (ferrite structure is 
more ductile and weldable but less tensile strength)
120
THE MICROSTRUCTURE OF
DUCTILE (or NODULAR) CAST IRONS
Figure : Dark graphite nodules in α‐Fe matrix.
Graphite nodules (a.k.a. spherical‐like)
* Note that the carbon is in the shape of small sphere, not flakes.
121
White Cast Iron
• Composition: 2.5 < C < 4.0%C and Si<1%
• Microstructure : Pearlite and cementite
(due to rapid cooling).
• An intermediate metal for the production of malleable cast 
iron.
• Properties:
– Relatively very hard, brittle and not weldable compare 
to gray cast iron
– When it is annealed, it become malleable cast iron
– Not easily to machine
– Fracture surface: white appearance
122
THE MICROSTRUCTURE OF
WHITE CAST IRONS
Figure : Light Fe3C regions surrounded by pearlite.
Pearlite
Fe3C
(Light regions)
123
Malleable Cast Irons
• Is produced by the HT of white cast irons
− Heating temperature: 800oC – 900oC 
− Duration : 2 or 3 days (50 hours)
− Heating environment: Neutral atmosphere
• Microstructure : A clumps (rossette) of graphite 
(due to decomposition of cemmentite) surrounded by a  
ferrite or pearlite matrix
• Properties:
− Similar to nodular cast iron and give higher strength 
− More ductile and malleability
• Applications : Pipe fittings, valve parts for railroad, marine 
and other heavy duty.
124
THE MICROSTRUCTURE OF
MALLEABLE CAST IRONS
Figure : Dark graphite rosettes in α‐Fe matrix.
Graphite rosettes
125
Non‐Ferrous Alloys
• Definition: Used for alloys which do not have iron as 
the base element.
• Examples: Al alloys, Cu alloys, Mg alloys, Ti alloys, 
Noble metals, Refractory metals, etc.
• Advantages of Ferrous alloys over Non‐Ferrous alloys:
– Generally greater strength
– Generally greater stiffness ( ↑E)
– Better for welding
• The advantages of Non‐Ferrous alloys over ferrous 
alloys:
– Good resistance to corrosion
– Much lower density
– Casting is often easies ( ↓ mel ng points)
– Cold working processes are often easier (ductility)
– Higher thermal and electrical conductivities
– colors 126
NonFerrous
Alloys
• Cu Alloys
Brass: Zn is subst. impurity
(costume jewelry, coins,
corrosion resistant)
Bronze: Sn, Al, Si, Ni are
subst. impurity
(bushings, landing
gear)
Cu-Be:
precip. hardened
for strength
• Al Alloys
-lower : 2.7g/cm3
-Cu, Mg, Si, Mn, Zn additions
-solid sol. or precip.
strengthened (struct.
aircraft parts
& packaging)
• Mg Alloys
-very low : 1.7g/cm3
-ignites easily
-aircraft, missles
• Refractory metals
-high melting T
-Nb, Mo, W, Ta• Noble metals
-Ag, Au, Pt
-oxid./corr. resistant
• Ti Alloys
-lower : 4.5g/cm3
vs 7.9 for steel
-reactive at high T
-space applic.
NON‐FERROUS ALLOYS
127
Aluminium and its alloys
• Atomic weight 26.97;  Crystal structure: FCC
• Appearance: silvery white metal
• Tm=660oC, boiling point 2270oC
• Relatively low density 2.7 g/cm3
(very light i.e. light weight vehicle, vessels, etc.) 
• Tensile strength= 45 MPa, E : 7.5 GPa
• Ductile and malleable
• High resistant to corrosion
(Al naturally produces a fine oxidized surface film which protect it from corrode)
• Stable against normal condition but attacked by both acids & alkalis.
• Nonmagnetic
• High electrical and thermal conductivities (second to copper)
• Non toxic (widely used as packing materials (food))
Characteristics
128
The All Aluminum 
Audi A8
(a) The Audi A8 automobile 
which has an all‐aluminum 
body structure. 
(b) The aluminum body 
structure, showing various 
components made by 
extrusion, sheet forming, 
and casting processes.  
Aluminium and its alloys
Disadvantages :
• Difficult to weld.
• Prone to severe spring back.
• Abrasive to tooling.
• Expensive than steel.
• Low melting point 660oC.
Applications :
• Used in applications that required 
lightness, high corrosion resistance, 
electrical and thermal conductivities.
• E.g : cooking utensil, container, 
appliances, building materials and 
etc.
130
Aluminium and its alloys
• Al alloys are alloys in which Al is the predominant metal.
• The typical alloying elements are : Cu, Mg, Mn, Si and Zn.
• Al alloys can be divided into 2 groups:
1. Wrought alloys ‐ shaping by working process.
E.g. forging, extrusion, rolling
– Non‐heat treatment wrought alloys
– Heat treatable wrought alloys
2. Cast alloys – shaping by casting process. E.g : die casting.
– Non‐heat treatment cast alloys
– Heat treatable cast alloys
 Non‐heat treatment alloys ‐An alloy which cannot be improved by heat treatment
 Heat treatable alloys ‐ An alloy whose mechanical strength is improved by 
precipitation hardening/ martensitic transformation.
131
Non‐heat treatment wrought alloys
• Do not respond to HT but have their properties controlled by the 
extent of the working to which they are subjected.
• E.g. Al with Mn (increase the TS of Al) 
• Applications: kitchen utensil, tubing, constructional material for 
boats and ship
Heat treatable wrought alloys
• The properties changed by HT.
• Common alloy addition:  Cu, Zn, Si
• E.g : 4% Cu, 0.8% Mg, 0.5% Si, 0.7% Mn and 94% Al is known as 
Duralumin. The heat treatment process used is quenching and then 
precipitation hardening at room temperature for about 4 days. This 
alloys is widely used in aircraft, bodywork.
• Applications: aircraft, bodywork, container bodies etc.
Aluminium and its alloys
132
Non‐heat treatment cast alloys
• E.g. Al with 9 –13% Si. The addition of Si will 
increase its fluidity for casting purposes.
• Applications: oil sumps, gear boxes, radiators.
Heat treatable cast alloys
• The addition of Cu, Mg to Al alloys enable the 
alloys to be heat treated to give a high 
strength casting materials.
Aluminium and its alloys
133
Aluminum Alloy Properties and 
Applications
Copper and its alloys
• Atomic weight 63.57
• Appearance: Reddish metal of bright luster
• Highly malleable and ductile
• High electrical and heat conductivitiy
• Excellent corrosion resistance.
• Relatively high strength.
• Tm=1083oC, boiling point 2336oC
• Sg = 8.94
• Used in pure state as sheet, tube, rod and wire
Disadvantages :
1) Difficult to machine. 
2) Expensive.
Characteristics
Applications : Jet aircraft landing gear bearing, radiator parts for cars and trucks, 
surgical and dental instruments.
135
Copper and its alloys
i. Brasses
• Cu based alloys in which Zn is the 
principal added element.
• Harder and stronger that Cu or Zn
• Malleable and ductile
• Develops high tensile with cold 
working 
• Ease of working
• Colour
• Resistance to atmospheric and 
marine corrosion
• Used for electrical fittings, 
ammunition cases, screws, 
household fittings, and 
ornaments.
ii.Bronze
• Contain up to 8% Sn and can be 
cold work
• Softer and weaker than steels
• It resists corrosion (especially in 
seawater)
• Wrought bronzes are stronger, 
better corrosion resistance but 
high cost compare brass
• Widely used for spring, bearing, 
bushing and similar fittings 
136
• Alloyed by other elements: Zn, Al, Sn and Ni
• Examples: Brass, Bronze, Copper‐Nickel, Copper‐Zinc‐Nickel, Aluminium Bronze
Copper and its alloys
iii. Copper – Nickel alloys
• a.k.a – cupronickels
• It is an alloy of Cu that 
contains Ni and strengthening 
elements, such as Fe and Mn
• Good resistance to seawater, 
alkalies, sulphric acids and 
alkaline solution.
• Poor resistance to nitric acids, 
cyanide solution
• Application: turbine blade, 
valve parts, pump rod liners 
and impellers 
iv. Aluminium Bronze
• Cu rich Al alloys
• Properties
− High strength
− Resistance to corrosion 
and wear
− High resistance to 
fatigue
− Fine golden colour
− Possibility of heat 
treatment in manner 
similar to steel
• Application: heat exchanger 
tubes
137
Wrought Copper and Brasses:  
Properties and Applications
Wrought Bronzes:  Properties and 
Applications
Magnesium and its alloys
• Atomic weight 24.302, Appearance: Silver‐white 
• Density 1.7 g/cm3, Tm = 627oC
• Light,  malleable, ductile metallic element
• Low TS, relatively soft, low E.
• At Troom difficult to deform. Most fabrication is by casting or hot working.
• Corrosion resistance in natural atmosphere. On the other hand relatively 
unstable especially susceptible to corrosion in marine environments. 
– E.g. Mg anode provide effective corrosion protection for water heaters, 
underground pipelines, ship hulls and ballast tanks.
• Mg alloys are used in applications where lightness is primary consideration, 
e.g. aircraft components, missile application.
• Replaced engineering plastics that have comparable densities since Mg are 
stiffer, more recyclable and less costly to produce. Example
– in a variety of handheld devices (chain saws, power tools, hedge clippers), 
– in automobiles (steering wheel and column, seat frames, transmission cases) and 
– in audio‐video‐computer‐communications equipment (laptop computers, cam 
recorders, TV sets, cellular telephones)
140
Wrought Magnesium Alloys:  
Properties and Forms
Titanium and its alloys
• Relatively low density (4.5 g/cm3)
• High Tm = 1668oC, E= 107 GPa
• Low strength when pure but alloying gives a considerable 
increase in strength, highly ductile and easily forged and 
machined
• Expensive metal: excellent corrosion resistance (immune 
to air, marine and a variety of industrial environment); 
high cost reflecting the difficulties in extraction and 
formation of material.
• Limitation: chemical reactivity with other materials at 
elevated temperature
• Applications: 
– pure Ti – chemical plant components, surgical implants, marine 
and aircraft engine parts.
– Ti alloys – steam turbine blades, rocket motor cases
142
Wrought Titanium Alloy Properties and 
Applications
The Noble Metals
• Characteristics/Properties:
– Expensive (precious)
– Soft, ductile
– Resistant to corrosion and oxidation 
– Good electrical conductivity
• A group of 8 elements:
– The precious metal group: silver (Ag) and gold (Au).
– The six platinum metals: platinum (Pt), palladium (Pd), 
iridium (Ir), rhodium (Rh), ruthenium (Ru), and 
osmium (Os).
144
The Noble Metals
Element Properties Application
Ag ↑electrical & themal
conductivity 
jewelry, dental restoration materials, brazing solder, 
coins, silver coatings (reflectors), electrical contact 
Au ↑ corrosion resistance, 
nontarnishing characteristics, 
good electrical conductivity
jewelry, electric wiring, colored‐glass production, 
dentistry, electronics, brazing solder, heat shielding 
foil in the engine compartment
Pt ↑ corrosion resistance, 
↑ Tm, 
ductility 
thermocouple, thermometer elements, electrical 
contact, electrodes, jewelry, catalyst in the 
production of sulfuric acid 
Pd properties ≈Pt
however lower cost 
telephone relay contacts, catalyst to remove oxygen 
from heat treating atmosphere
Ir most corrosion resistant, 
↑temperature
crucibles, extrusion dies
Rh ↑ reflec vity, 
↑corrosion resistance 
reflector for motion picture projectors and aircraft 
searchlight, alloying addition to Pt and Pd
Ru corrosion resistant  catalyst for synthesis of hydrocarbon, a hardener 
for Pt and Pd
Os ↑ hardness, 
↑wear resistance, 
good corrosion resistance 
fountain‐pen nibs, phonograph needles, electrical 
contacts instrument pivots
145
The Refractory Metals
• Five elements widely used: niobium (Nb), molybdenum (Mo), 
tantalum (Ta), tungsten (W), and rhenium (Re). 
• Properties: 
– Tm above 2000 °C
– High hardness at room temperature. 
– Chemically inert 
– Relatively high density
– Resistance to heat and wear
– Resistant to corrosion (ability to form a protective layer), although 
they do readily oxidize at high temperatures.
– Resistance to creep (the tendency of metals to slowly deform under 
the influence of stress)
– Resistant to thermal shock (repeated heating and cooling will not 
easily cause expansion, stress and cracking).
– Good electrical and heat conducting properties
• Applications include tools to work metals at high temperatures, wire 
filaments, casting molds, and chemical reaction vessels in corrosive 
environments.  146
The Refractory Metals
Element Properties Application
Nb
↑ Tm, immune to attack by 
most acids, a wide variety 
of strengths and elasticity
Superconducting alloys for electronic applications;
High strength alloys for aerospace applications; 
Moderately strengthened alloys for nuclear applications; 
aircraft gas turbines, aerospace rocket engines, insulators
Mo
↑ Tm, 
↑ resistance to arc erosion
Missile and rocket engine components, Die‐casting dies, 
Alloying additions; Electric furnace heating elements, 
boats, heat shields
Ta
corrosion resistant,
high temperature strength, 
low vapor pressure
Crucibles for handling molten metal and alloys, 
Electrolytic capacitors, Heat exchangers, Cutting tools, 
Surgical implants, Aerospace engine components, 
Vacuum tube filaments, 
W
↑ Tm (3410oC),
↑ density
Lamp filaments, Anodes and targets for x‐ray tubes, 
Electrodes for inert gas arc welding, Forming dies, 
Catalysts in chemical and petrochemical processes, 
Lubricants, Cutting tools for metal machining
Re
↑ Tm,
↑ density,
ductile to brittle transition 
temperature
Catalysts for reforming in conjunction with platinum, 
nuclear reactors, semiconductors, electronic‐tube 
components, thermocouples, gyroscopes, miniature 
rockets, electrical contacts, thermionic converters, 
aerospace applications. 147
Nonferrous Metals and Alloys
1
Thermal Treatment
of Metallic Material
(8 hours)

3.1 Time-Temperature Transformation Diagram (TTT)
 Products of cooling austenite
 Factors affecting position of the TTT diagram
3.2 Heat Treatment of Ferrous Metals
 Annealing
 Normalizing
 Quenching/Hardening
 Tempering
3.3 Hardenability of Steel
 Hardenability curve
 Martensite microstructure
2
HEAT TREATMENT

After completing this chapter, students should be
able to :
• Explain the principles of heat treatment.
• Explain the differences among the various kinds of
heat treatment processes.
3
OBJECTIVE

What is TTT diagram?
 Time-temperature transformation (TTT) diagram is also known as isothermal
transformation (IT) diagram or Bain S Curve.
 It shows the effect of time and temperature on the microstructure of steel.
 Generated from the % transformation vs log. times measurements.
 Plot as temperature vs. the log. of time for a steel alloy of definite composition.
 (why log. of time so that times of 1 min, 1 day or 1 week can be fitted into a reasonable space).
 Knowledge of the TTT diagram of steels is important in the processing of steels.
Why used TTT diagram?
 Because the iron-iron carbide phase diagram shows no time axis.
 To show the transformation of the microstructure especially for martensite, bainite
structure.
 To determine the microstructure produced in a steel at various rates of cooling.
4
3.1 TIME-TEMPERATURE-
TRANSFORMATION (TTT) DIAGRAM
5
3.1 TIME-TEMPERATURE-TRANSFORMATION
(TTT) DIAGRAM
• Fe-C system, Co = 0.77wt%C
• Transformation at T = 675C.
400
500
600
700
1 10 102 103 104 105
0%pearlite100%
50%
Austenite (stable)
TE (727°C)Austenite
(unstable)
Pearlite
T(°C)
100
50
0
1 102 104
T=675°C
y,
%transformed
time (s)
time (s)
isothermal transformation at 675°C
A plot of temperature vs. the logarithm of time for a steel alloy of definite composition
6
Products Of Cooling Austenite :
PEARLITE MORPHOLOGY
10m
- Smaller T:
colonies are
larger
- Larger T:
colonies are
smaller
• Ttransf just below TE
--Larger T: diffusion is faster
--Pearlite is coarser.
Two cases:
• Ttransf well below TE
--Smaller T: diffusion is slower
--Pearlite is finer.

The time-temperature transformation curves correspond to the start and finish
of transformations which extend into the range of temperatures where
austenite transforms to pearlite.
Refer Figure :
• Line AB indicate the rapid cooling of austenite.
• Horizontal line C-D marks the beginning and end of isothermal
transformations (isothermal means temperature stay constant).
• At point C, the transformation of austenite to pearlite begins.
• At point D, the transformation is complete. 7
3.1 TIME-TEMPERATURE-
TRANSFORMATION (TTT) DIAGRAM
8
Products Of Cooling Austenite
• Bainite:
-- lathes (strips) with long
rods of Fe3C
--diffusion controlled.
• Isothermal Transf. Diagram
Fe3C
(cementite)
5 m
(ferrite)
10 103 105
time (s)
10-1
400
600
800
T(°C)
Austenite (stable)
200
P
B
TE
0%
100%
50%
100% bainite
pearlite/bainite boundary
100% pearlite
A
A
9
Products Of Cooling Austenite
11
• Martensite:
--(FCC) to Martensite (BCT)
• Isothermal Transf. Diagram
x
x x
x
x
x
potential
C atom sites
Fe atom
sites
(involves single atom jumps)
time (s)10 103 10510-1
400
600
800
T(°C)
Austenite (stable)
200
P
B
TE
0%
100%
50%
A
A
S
M + A
M + A
M + A
0%
50%
90%
Martentite needles
Austenite
60m
•  to M transformation..
-- is rapid!
-- % transf. depends on T only.

 Formed when austenitized iron-carbon alloys are quenched to a
relative low temperature.
 Non-equilibrium single phase
 Rapid quenching will prevent the carbon diffusion.
 Carbon remain as interstitial impurities in martensite
 Instantaneously transformation
 Martensite:
 ƴ (FCC) to Martensite (BCT)
10
MARTENSITE MICROSTRUCTURE

• Two types of martensite microstructure
1. Lath ( massive martensite)
2. Lenticular (needlelike/platelike)
1. Lath martensite
– For alloy < about 0.6 wt% C
– Long and thin plates, form side by side, aligned parallel to one another
– Lath group form block
2. Lenticular martensite
– For alloy > ≈ 0.6 wt% C.
– Needlelike / platelike appearance.
– Under m/scope observation appears as a dark regions
11
MARTENSITE
MICROSTRUCTURE

Unit Cells
The unit cells for (a) austenite, (b) ferrite, and (c) martensite.  The effect of percentage of 
carbon (by weight) on the lattice dimensions for martensite is shown in (d).  
Note the interstitial position of the carbon atoms. Also note, the increase in dimension c
with increasing carbon content:  this effect causes the unit cell of martensite to be in the 
shape of a rectangular prism.

• Fine Pearlite vs Martensite:
• Hardness: fine pearlite << martensite.
13
Pearlite vs martensite

In TTT diagram for iron-carbon alloy, there are 5 regions to observe :
1. Stable austenite
2. Unstable austenite (to the left of the transformation start curve)
3. Pearlite and austenite region (upper side inside nose-shaped curve)
4. Austenite and bainite region (lower side inside nose-shaped curve)
5. Martensite region (below ≈ 200˚C)
 Below 200 down to -20°C = Martensitic start temperature (Ms)
 Below -20°C = Martensitic finish temperature (Mf) 14
3.1 TIME-TEMPERATURE-
TRANSFORMATION (TTT) DIAGRAM

15
3.1 TIME-TEMPERATURE-
TRANSFORMATION (TTT) DIAGRAM

16
Products Of Cooling Austenite
Example:

17
Products Of Cooling Austenite

18
Products Of Cooling Austenite

19
Products Of Cooling Austenite

20
3.1 TIME-TEMPERATURE-
TRANSFORMATION (TTT) DIAGRAM

1. Using the time-temperature-transformation
diagram given in of eutectoid composition, sketch
the time-temperature paths to produce the
following microstructures at room
temperature:(October 2010)
a) 100% Bainite,
b) 100% Martensite,
c) 50% Pearlite and 50% Martensite, and
d) 25% Pearlite and 75% Bainite.
21
EXERSICE

22
TIME-TEMPERATURE-TRANSFORMATION DIAGRAM

2. Using the Time-Temperature Transformation diagram
given in for eutectoid steel, draw and label time-
temperature cooling paths that will produce the
following microstructures. In each case assume that the
specimen begins at 850°C.(October 2012)
a) 100% tempered martensite,
b) 75% pearlite, 25% lower bainite,
c) 25% fine pearlite, 37.5% upper bainite and 37.5 austenite,
d) 80% upper bainite, 5.00% lower bainite, 15% martensite,
and
e) 50% pearlite, 12.5% bainite, 37.50% martensite.
23
EXERSICE

24
TIME-TEMPERATURE-TRANSFORMATION DIAGRAM
• reduces brittleness of martensite,
• reduces internal stress caused by quenching.
Adapted from
Fig. 10.24,
Callister 6e.
(Fig. 10.24
copyright by
United States
Steel
Corporation,
1971.)
TEMPERING MARTENSITE
• decreases TS, YS but increases %AR
YS(MPa)
TS(MPa)
800
1000
1200
1400
1600
1800
30
40
50
60
200 400 600
Tempering T (°C)
%AR
TS
YS
%AR
9m
• produces extremely small Fe3C particles surrounded by 
26
Products Of Cooling Austenite
60 m

(ferrite)
Fe3C
(cementite)
• Spheroidite:
-- crystals with spherical Fe3C
--diffusion dependent.
--heat bainite or pearlite for long times
--reduces interfacial area (driving force)
• Isothermal Transf. Diagram
10 103 105time (s)10-1
400
600
800
T(°C)
Austenite (stable)
200
P
B
TE
0%
100%
50%
A
A
Spheroidite
100% spheroidite
100% spheroidite

3. Using the Time-Temperature Transformation diagram for iron-carbon alloy
of eutectoid composition, specify the nature of the final microstructure (in term
of micro constituents present and approximate percentage) of a small specimen
that has been subjected to the following heat treatment : (March 2013)
a) Heated up to temperature 780°C and held until the
microstructure completely transformed to austenite. Quenched
rapidly to room temperature.
b) Reheated specimen (a) to temperature 55O°C, held for 20 s, then
quenched to room temperature.
c) Reheated specimen (a) to temperature 700°C and held for 24 hrs.
Then, left to cool to room temperature, naturally.
d) Reheated specimen (a) to temperature 800°C and held for 24 hrs.
Cooled rapidly at temperature 600°C, held for 100 s, then
quenched to room temperature.
e) Reheated specimen (a) to 350°C, held for 2 hrs, then cooled to
room temperature in normal air. 27
EXERSICE

28
TIME-TEMPERATURE-TRANSFORMATION DIAGRAM
 The addition of carbon, nickel, manganese, silicon and copper
move the nose-shaped curve to the right
 Molybdenum, chromium and vanadium move the pearlite C-curve
to the right and also displace it upwards to high temperature.
29
Factors affecting position of the TTT diagram

• Heat treatments are widely used in various manufacturing processes to
enhance the quality of a product.
• The basis for the understanding heat Fe-C phase diagram.
WHAT IS HEAT TREATMENT?
Process involved the heating and cooling of metals in the solid state. Heat
treatment can be a primary process in itself (heat in furnace), or as a secondary
phase of another process (casting, welding, forging).
TYPES OF HEAT TREATMENT?
The most common heat treatment process :
• Annealing
• Normalizing
• Spherodizing
• Quenching/Hardening
• Tempering
30
3.2 HEAT TREATMENT OF FERROUS METALS

3.2 HEAT TREATMENT OF
FERROUS METALS
WHY WE NEED TO DO HEAT
TREATMENT?
Heat treatments are usually
applied to :
• Change the mechanical
properties e.g : increase or
decrease the strength/
hardness/ machinability etc. of
metal.
• Relieve the internal stress
Several problems may occur if heat
treatment process is not carefully
performed.
eg : cracking, distortion.
WHEN WE NEED TO DO HEAT
TREATMENT?
Most parts will require heat
treatment either after or during
the processing for proper in-
service properties. Example :
• Before shaping
– To softening a metal for
forming.
• After forming
– To relieve strain hardening.
• Final finish
– To achieve final strength and
hardness. 31

32
TEMPERATURE REGIME OF STEEL
HEAT TREATMENT

 Annealing
 Process anneal
 Full anneal
 Normalizing
 Spherodizing
 Quenching/Hardening
 Tempering
33
FORMS OF HEAT
TREATMENT

Annealing :
A heat treatment in which a material is exposed to an elevated temperature for
an extended time period and then slowly cooled.
When it should be done :
Annealing is done between process steps to allow further working or for final
stress relief.
Purpose :
1) Relieve stress.
- relieve internal stresses induced by some previous treatment (e.g:
machining).
2) Soften the steel.
- improve machinability and respond better to forming operations.
3) Refinement of grain structures.
Three stages of annealing (applicable for all heat treatment under annealing):
1. Heat to the specified temperature.
2. Hold or “soaking” at that temperature for a specified time.
3. Cool slowly, usually to room temperature.
34
ANNEALING
Time and Temperature
are important at all 3 
steps

Purpose :
 Used to treat parts made out of low carbon steel (<0.25% Carbon) which
allow the parts to be soft enough to undergo further cold working without
fracturing.
 Commonly employed for wire & sheets steels because it restores the
ductility to cold-worked materials and permit further cold working to
achieve the required deformation.
Process :
 Raise the steel temperature just below the eutectoid region (line A1 at
727°C), about 500°C to 650°C for several hours until the recrystallization of
ferrite phase occur.
 Then, cooled in still air.
Microstructure desired :
 Fine grained structure
35
(i) PROCESS ANNEAL
Pearlite (α+Fe3C)

Purpose :
 Utilized for low, medium & high carbon steels.
 Full annealing is used to soften pieces which have been hardened by plastic
deformation, and which need to undergo subsequent machining/forming.
Process :
 Heat the steel above the austenite temperature either 15-40˚C above line A3
[hypo] – to form austenite or line A1 [hyper] – to form austenite and
cementite phases.
 Cool very slowly in furnace.
Microstructure produced :
 Coarse pearlite that will give soft and ductility properties. 36
(ii) FULL ANNEAL
• Similar to full annealing but performed at a higher
• temperature and cooling at faster rate (e.g: in air) to form fine pearlite.
• Normalizing is a process that makes the grain size normal.
• This process is usually carried out after forging, extrusion, drawing or heavy
bending operations. It is also used to avoid softening steel too much.
Purpose :
• Refine grains (decrease the average grain size).
• More uniform & desirable size distribution of pearlite
(fine-grain size).
• Increase toughness.
37
NORMALIZING

Process :
• Heat the steel above the austenite temperature (either 55-80˚C above line A3
[hypo] or line ACM [hyper]) .
• After sufficient time has been allowed for the alloy to completely transform
to austenite - austenitizing
• Removed from the furnace and cool it in air (at room temperature).
Microstructure produced :
 Fine pearlite (due to faster cooling rate) will give toughness properties &
acceptable softness to the metal.
Properties :
 Faster cooling provides higher strength and hardness but lower ductility if
compared to full annealing.
38
NORMALIZING
UC‐Upper critical temperature 
LC‐Lower critical temperature 
RT‐Room temperature
Purpose :
• Used for high carbon steels (Carbon>0.6%) that will be machined or cold
formed.
• Applied when more softness is needed.
Process :
• Heat the part to a temperature just below the eutectoid temperature (line A1
at 727°C) or at about 700°C in the α + Fe3C region for several hours (about
20 hours or more) and followed by slow cooling.
Microstructure produced :
• Cementite transforms into soft globes/spheroids which
dispersed throughout the ferrite matrix.
Properties :
• Result in a more ductile material.
• Improve machining in continuous operations such as lathe and screw
machined. These spheroids act as chip-breakers –easy machining.
39
SPHEROIDIZING

40
Effect of treatment
( pearlite vs spherodite)
41
THERMAL PROCESSING OF METALS
Annealing: Heat to Tanneal, then cool slowly.
Types of
Annealing
• Process Anneal:
Negate effect of
cold working by
(recovery/
recrystallization)
• Stress Relief: Reduce
stress caused by:
-plastic deformation
-nonuniform cooling
-phase transform.
• Normalize (steels):
Deform steel with large
grains, then normalize
to make grains small.
• Full Anneal (steels):
Make soft steels for
good forming by heating
to get , then cool in
furnace to get coarse P.
• Spheroidize (steels):
Make very soft steels for
good machining. Heat just
below TE & hold for
15-25h.
Quenching : It is the act of rapidly cooling the hot steel to harden the steel.
Hardenability :
 The ability of an alloy to be hardened by the formation of martensite as a
result of heat treatment.
 A qualitative measure of the rate at which hardness drops of with distance
Purpose :
 To increase strength and wear properties.
Process :
 Heat the steel above the austenite temperature (either 15-40˚C above line A3
[hypo] or line A1 [hyper]) until the austenite composition is form and
cooled very rapidly in the quench media (a.k.a. cooling medium).
Microstructure produced :
 Martensite (hard but brittle).
42
QUENCHING/HARDENING

To produce microstructure of martensite throughout
the cross section need to consider:
1. Composition alloy,
2. Type & character of quenching medium,
3. Geometry of specimen
43
QUENCHING/HARDENING 
1. Composition of alloy
– Higher carbon content gives higher hardenability.
– Alloying element gives higher hardenability compare to
plain carbon steel.
44
QUENCHING/HARDENING 
Water
• Advantages
– Most efficient quenching media in commercial use where
maximum hardness is required
• Disadvantage:
– Liable to cause distortion and cracking the sample
– Not suitable for higher carbon steel.
– Form soft spot
– Corrosion
45
2. Type & character of quenching medium
QUENCHING/HARDENING 
Oil
 Lower efficiency quenching media than water
 Oil such as mineral & cotton seed are used
 Less cracking and distortion compare to water
 Safety factors is required
Air
 Cooling with air pressure
 Less efficiency quenching media
46
2. Type & character of quenching medium
QUENCHING/HARDENING 
Medium
air
oil
water
Severity of Quench
small
moderate
large
Hardness
small
moderate
large
 When surface-to-volume ratio increases:
 cooling rate increases
 hardness increases
diameter size hardness value
47
3. Effect of geometry
QUENCHING/HARDENING 
Position
center
surface
Cooling rate
small
large
Hardness
small
large
Tempering :
• It is a process of heating a martensitic steel at a temperature below
the eutectoid temperature to make it softer and more ductile.
• Used to reduce brittleness on martensite (tempered martensite).
• Precipitation of fine carbide particle.
• BCT BCC
Purpose :
• To increase ductility and toughness of martensite.
• To relieve the internal stress.
Procedure :
• Immediately after quenching, sample is heated (normally below A1
line at about 250-650˚C)
• Held at that temperature for about 2 hours.
• Lastly removed from the bath and cooled in air (at room
temperature). 48
TEMPERING

Microstructure produced :
 Tempered martensite which is hard but more malleable and ductile
is produced.
 This microstructure consists of extremely small and uniformly
dispersed cementite particle embedded with a matrix of ferrite.
49
TEMPERING

Steel will oxidize (oxygen in air react with iron to form iron oxide)as it is
reheated and begin to show colors. The higher the temperature, the thicker the
oxide layer and the darker the colors. These temper colors sometimes used as a
guide to temperature.
50
TEMPERING

51
Summary : Processing Options

1. Describe the required heat treatment that Tony Stark should do on his mask
after he has finished cold forging process. (October 2012)
2. Explain the influence of quenching medium and specimen size on the
hardenability of steel. (October 2012)
3. Compare between normalizing process and full annealing process in terms of
microstructure, cooling rate, properties, cooling medium and purpose of those
heat treatments. (April 2011)
4. Describe the following heat treatment process in terms of the purpose,
temperature, cooling medium, microstructure produced and properties for
eutectoid steel. (September 2011)
a) Normalizing
b) Annealing
5. Heat treatment is used to change the microstructure and properties of
materials. (October 2010)
a) Differentiate between coarse pearlite and fine pearlite in terms of the type
of heat treatment and the properties of material that may be obtained from
the microstructures.
b) Briefly describe the hardening in terms of the purpose, process,
microstructure and effect to the properties of materials. 52
EXERCISE

Hardenability:
 A measure of the depth to which the metals of an alloy may be hardened by
the formation of martensite as a result of a given heat treatment.
 Hardening process (e.g: quenching) for steels consist of heating and rapid
cooling form martensite.
 The cooling rate depends on the medium used for the quenching, e.g: water
gives a faster cooling rate than oil and air cooling.
 Generally, the faster steel cools, the harder it will be.
The Jominy Test is used to measure the hardenability of a steel. 53
3.3 HARDENABILITY OF STEELS

Jominy test:
 used to measure the hardenability of steels by heat treatment which shows
the effects of cooling rate on steel hardness.
Jominy Process:
 Heating a standard test piece of the steel to a standard austenite state.
 Fixing it in a vertical position and then quenching it with a jet of water at
one end only, thus producing a range of cooling rates along the steel bar.
 After the quenching, a flat portion is ground along one side of the test
piece, 0.38mm deep, and hardness measurements are made along the
length of the test piece from the quench end.
Jominy distance:
 the distance from the quenched end of a Jominy bar which is related to the
cooling rate.
54
3.3 HARDENABILITY OF STEELS

• Hardenability curve is the graph showing the effect of the cooling
rate on the hardness of as-quenched steel.
• The cooling rate at the quench end is very fast but becomes slower
as the distance from the quench end increases.
• Therefore, the distance from the quench end is an equivalent
measure of the cooling rate, and can be used to give the
hardenability of the steel. 55
HARDENABILITY CURVE

• At quenched end - cools most rapidly, therefore it contains
most martensite.
• Cooling rate decrease with distance from quenched end:
greater C diffusion- more pearlite/bainite, lower hardness.
56
HARDENABILITY CURVE

End-Quench
Hardenability
Test
(a) End‐quench test and 
cooling rate.  
(b) Hardenability curves for 
five different steels, as 
obtained from the end‐
quench test.  Small 
variations in composition 
can change the shape of 
these curves.  Each curve 
is actually a band, and its 
exact determination is 
important in the heat 
treatment of metals for 
better control of 
properties.
1. Hardenability can be defined as the ability of an alloy to be hardened by the
formation of martensite. (March 2013)
a) Explain THREE (3) factors that influence the hardenability of steel.
b) Figure Q3 (a) shows a sample that has been preceded to Jominy End-
Quench Test. identify the microstructure at point A, B, C and D.
2. Define hardenability of steel. (April 2009)
3. With the aids of neat sketches, describe how hardenability can be
determined experimentally. (April 2009) 58
EXERSICE
CHAPTER 4
ENGINEERING
MATERIALS
(10 HOURS)
CONTENT:
4.1 CLASSIFICATION OF ENGINEERING MATERIALS
4.2 PLASTICS AND ELASTOMER: MOLECULAR,
STRUCTURES, PROPERTIES AND APPLICATIONS
4.3 CERAMIC: STRUCTURE, PROPERTIES AND
APPLICATIONS
4.4 COMPOSITE MATERIALS: TYPES, PROPERTIES AND
APPLICATIONS.
4.1Classification of
Engineering Materials
CLASSIFICATION OF ENGINEERING MATERIALS
RELATIONSHIP BETWEEN PROPERTIES,
STRUCTURE AND PROCESSING
CLASSIFICATION OF ENGINEERING MATERIALS
(METALS)
Metals can be further classified as Ferrous & Non-Ferrous, and
some examples include:
Ferrous Non-Ferrous
Steels Aluminium
Stainless
Steels
Copper
Cast Irons Titanium
CLASSIFICATION OF ENGINEERING MATERIALS
(POLYMERS)
Polymers can be further classified as
Thermoplastics Thermosets Elastomers
Acrylics Epoxy resins Rubbers
Nylons Phenolic Silicones
PVC Polyesters Polyurethanes
Polyethylene
CLASSIFICATION OF ENGINEERING MATERIALS
(CERAMICS)
Ceramics are compounds of metallic and
non-metallic elements, examples include;
• Oxides (alumina – insulation and
abrasives, zirconia – dies for metal
extrusion and abrasives)
• Carbides (tungsten-carbide tools)
• Nitrides (cubic boron nitride, 2nd in
hardness to diamond)
Materials in our lives – electronic & electrical
CLASSIFICATION OF ENGINEERING MATERIALS
CLASSIFICATION OF ENGINEERING MATERIALS
Materials in our lives – Civil & Structural
METAL AND NON-METAL USE IN
AUTOMOBILES
Some of the metallic and nonmetallic materials used in a typical automobile
Materials in our lives – Aerospace & Mechanical
CLASSIFICATION OF ENGINEERING MATERIALS
4.2 PLASTICS AND ELASTOMERS:
Molecular structures,
properties and applications
POLYMER - INTRODUCTION
 Naturally (those derived from plants, animals) –
wood, rubber, cotton, wool, leather, silk.
 Other natural polymer – proteins, enzymes,
starches, cellulose.
 Development of numerous polymer – synthesis
from small organic molecules.
 Synthetic polymer – plastics, rubbers, fibers
(inexpensive & properties managed to degree that
many are superior to their natural counterparts.
POLYMER MOLECULES
 To understand the chemistry of the polymer, we need
to understand the definition of hydrocarbon,
 Hydrocarbon
 are composed of hydrogen and carbon.
 Has covalent bonds for the intramolecular/interatomic
bonds but for intermolecules exist secondary bond, thus
these hydrocarbons have relatively low melting and
boiling points (p’).
 Saturated and unsaturated
 May have different atomic arrangements, isomerism
CnH2n+2 (Molecular formula)
POLYMER MOLECULES
 Most polymer are organic – review concept relating
to structure of their molecules.
 Each C atom has 4 electron that may participate in
covalent bonding, whereas every H atom has only 1
bonding electron.
 A single covalent bond exits when each of the
bonding atoms contributes 1 electron – saturated
(no new atoms may be joined without removal of
others that are already bonded.
 E.g. paraffin family ethane C2H6, propane C2H8
 Covalent bond –strong
 Van de waals bonds exit between molecules – low
melting & boiling temp. T boil rise with increasing
molecular weight
POLYMER MOLECULES
 Saturated hydrocarbon –all bonds are single
 Molecules that have double or triple covalent
bonds are termed unsaturated.
 Double or triple bonds between 2 C atoms involve
sharing of 2 or 3 pairs of electrons, respectively.
 Within molecule, atoms are bonded together by
covalent interatomic bonds.
C C
H
H H
H
H
H
POLMER MICROSTRUCTURE
Mer
• a structural entities or part
• a single mer is called a monomer
Functionality
 no of bonds that a given monomer can form
 Bifunctional mer – 2 covalent bonds with other monomer
forming 2D chainlike molecular structure
 Trifunctional mer – 3 active bonds, form 3D
molecular network structure
Bifunctional mer
OH
CH2
CH2CH2
trifunctional mer
( )n
POLMER MICROSTRUCTURE
• Mer – a repeat unit (repeated along the chain)
• Monomer – small molecule from which polymer is synthesized.
• Polymer – many mer
• The repeat units are enclosed in parentheses (), subscript n indicate
the number of times it repeats.
• R depicits either atoms i.e. H, Cl or an organic group i.e. CH3 (methyl),
C2H5 (ethyl), C6H5 (phenyl)
• vinyl or ethenyl is the functional group −CH=CH2, namely the ethene
molecule (H2C=CH2) minus one hydrogen atom
( )n( )n( )n
( )n
C C C C C C
HHHHHH
HHHHHH
Polyethylene (PE)
mer
ClCl Cl
C C C C C C
HHH
HHHHHH
Polyvinyl chloride (PVC)
mer
Polypropylene (PP)
CH3
C C C C C C
HHH
HHHHHH
CH3 CH3
mer
--CH2-CH2 -- -CH2-CHCl-- --CH2-CHCH3--
POLMER MICROSTRUCTURE
Polymer = many mers
CHEMISTRY OF POLYMER
Polymers
• Consist of many mers
• Are gigantic/ macromolecules
• Mostly these molecules are long and flexible chain, the
backbone of the chain is a string of carbon atoms.
• A large molecule (macromolecule) built up by repetitive
bonding (covalent) of smaller molecules (monomers)
• Generally not a well defined structure, or molecular weight.
(A A A A ) n n, degree of polymerization
POLYMER
STRUCTURE
Basic structure of some polymer
molecules:
(a) ethylene molecule;
(b) polyethylene, a linear chain of many
ethylene molecules;
(c) molecular structure of various
polymers.
These molecules are examples of the
basic building blocks for plastics.
BULK OR COMMODITY POLYMERS
Name(s)/Tradename Formula Monomer
Poly(vinylidene chloride)
(Saran A)
–(CH2-CCl2)n–
vinylidene chloride
CH2=CCl2
Polystyrene
(PS)
–[CH2-CH(C6H5)]n–
styrene
CH2=CHC6H5
Polyacrylonitrile
(PAN, Orlon, Acrilan)
–(CH2-CHCN)n–
acrylonitrile
CH2=CHCN
Polytetrafluoroethylene
(PTFE, Teflon)
–(CF2-CF2)n–
tetrafluoroethylene
CF2=CF2
Poly(methyl methacrylate)
(PMMA, Lucite, Plexiglas)
–[CH2-C(CH3)CO2CH3]n–
methyl methacrylate
CH2=C(CH3)CO2CH3
Poly(vinyl acetate)
(PVAc)
–(CH2-CHOCOCH3)n–
vinyl acetate
CH2=CHOCOCH3
cis-Polyisoprene
natural rubber
–[CH2-CH=C(CH3)-CH2]n–
isoprene
CH2=CH-C(CH3)=CH2
Polychloroprene (cis + trans)
(Neoprene)
–[CH2-CH=CCl-CH2]n–
chloroprene
CH2=CH-CCl=CH2
• Physical characteristics of a polymer depends on its
molecular weight, shape, differences in the structure of
the molecular chains.
• Covalent chain configurations and strength:
Direction of increasing strength
POLYMER STRUCTURE
Branched Cross-Linked NetworkLinear
secondary
bonding
MOLECULAR STRUCTURE
i. Linear polymers
 the repeat unit are joined together end to end in
single chain
 May have extensive van der Waals and hydrogen
bonding between the chains
 uninterrupted straight chain, spegetti
 These long chains are flexible
 Extensive van de waals and hydrogen bonding
between the chains
 e.g. Polyethylene,
poly(vinyl chloride),
nylon
Linear
secondary
bonding
MOLECULAR STRUCTURE
ii. Branched polymer
 occasional branches off longer chain
 which the side-branch chains are connected to the
main chain
 Lowering of the polymer density
 The branches may result from side reactions that
occur during the synthesis of polymer
 Branches considered to be part of the main chain
molecule
 e.g. high density polyethylene (HDPE) – primary linear
polymer & low density polyethylene (LDPE) – short
chain branches
B ranched
MOLECULAR STRUCTURE
iii. Crosslinked polymer
 The adjacent linear chains are joined one to
another at various positions by covalent bond
 of crosslinking is achieved either during synthesis
or by a non-reversible chemical reaction
 Many in rubber elastic materials
Cross-Linked
iv. Network polymer
 Having three active or more covalent bond, form
three dimensional network
 highly crosslinked
 Distinctive mechanical and thermal properties
 e.g. epoxies, phenol formaldehyde
Network
MOLECULAR STRUCTURE
CLASSIFICATION OF POLYMER
 Thermoplastics - Linear or branched polymers in
which chains of molecules are not interconnected to
one another.
 Thermosetting polymers - Polymers that are heavily
cross-linked to produce a strong three dimensional
network structure.
 Elastomers - These are polymers (thermoplastics or
lightly cross-linked thermosets) that have an elastic
deformation > 200%.
Thermoplastic Thermoset Elastomer
THERMOPLASTIC POLYMERS
Characteristic:
• Soften when heated
• Harden when cooled
• Reprocessable
• Relatively soft
• High viscosity at processing
temperatures
• Difficult to process
• Examples: polyethylene,
polypropylene, polystyrene
Properties:
• relatively soft
• melt processability
• lower thermal
resistance,
• higher creep,
• Higher moisture
absorption
CHARACTERISTICS AND TYPICAL APPLICATIONS
FOR COMMON THERMOPLASTIC
Polymer Major application characteristic Typical application
Polyethelylene
(HDPE, LDPE)
Chemically resistant and electrically
insulating, tough and relatively low
coefficient of fraction, low strength
and poor resistance to weathering
Flexible bottle, toys,
tumblers, battery part, ice
trays, film wrapping
materials
Polypropylene Resistant to heat distortion, excellent
electrical properties and fatigue
strength, chemically inert, relatively
inexpensive, poor resistance to uv
light
Sterilizable bottles,
packaging film, tv
cabinets, luggage, Tanks,
rope
Polyvinyl
cloride (PVC)
Good low cost, general purpose
materials, ordinarily rigid, but may be
made flexible with plasticizer,
susceptible to heat distortion
Floor coverings, pipe,
electrical wire insulation,
garden hose, valve, fitting
Polystyrene Excellent electrical properties and
optical clarity, good thermal and
dimensional stability, relatively
inexpensive
Packaging, wall tile,
battery cases, toys,
appliance housing
THERMOSETTING POLYMERS
(THERMOSETS)
Characteristic:
• do not melt on heating
• ease of their processing
• low cost
• Lose their stiffness properties at the heat distortion temperature
• Examples: rubbers, epoxies, polyester, phenolics
• NETWORK POLYMERS – have covalent cross links between
adjacent molecular chains.
• They become permanently hard during their formation and do not
soften upon heating.
• Only heating to excessive temp will cause severance of these link
bonds and polymer degration.
Properties:
• harder, stronger, better dimensional stability and more brittle than
thermoplastics.
Polymer Major application characteristic Typical application
Epoxies Excellent combination of
mechanical
properties and corrosion resistance;
dimensionally stable;
Good adhesion;
relatively inexpensive;
good electrical properties
Electrical moldings, sinks,
adhesives, protective
coatings,
used with fiberglass
laminates
Polyesters Excellent electrical properties and
low cost; can be formulated for
room- or high-temperature use;
often fiber reinforced
Helmets, fiberglass boats,
auto body components,
chairs, fans
Phenolics Excellent thermal stability to over
150C (300F); may be
compounded with a large number
of resins, fillers, etc.; inexpensive
Motor housings,
telephones, auto
distributors,
electrical fixtures
Characteristics and typical applications for
common thermoset
THERMOPLASTICS VS THERMOSETS
ELASTOMER (RUBBER)
Characteristic:
• Soft
• have low elastic modulus values
• show great dimensional change when
stressed but it will return to its original
dimensions immediately after the
deforming stress is removed
• low glass transition temperature.
Two type of rubber:
i. natural rubber
ii. synthetic rubber (SBR, NBR)
Classification of Natural rubber:
• R Class,
 composed of unsaturated chain polymers (these
unsaturated materials can have their properties
by modified by cross linking)
• M Class
 which are saturated chain linear polymers,
• U Class or polyerethanes and the Q Class
 silicone rubbers
ELASTOMER (RUBBER)
Characteristic and typical application for
common Elastomers
COMMON PLASTIC
COMMON PLASTIC
LOAD-ELONGATION CURVE AND TENSILE-TEST
SPECIMEN
(a) Load-elongation curve for polycarbonate, a thermoplastic.
(b) High-density polyethylene tensile-test specimen, showing uniform elongation (the long,
narrow region in the specimen).
PLASTIC PRODUCT RECOMMENDATIONS
SUMMARY: POLYMER CHAINS
Schematic illustration of polymer chains.
(a) Linear structure; thermoplastics such as acrylics, nylons, polyethylene, and polyvinyl chloride have
linear structures.
(b) Branched structure, such as polyethylene.
(c) Cross-linked structure; many rubbers and elastomers have this structure. Vulcanization of rubber
produces this structure.
(d) Network structure, which is basically highly cross-linked; examples include thermosetting plastics
such as epoxies and phenolics.
4.3 Ceramic:
Structure,
Properties,
and
Applications
47
 Ceramic (burnt stuff)-desirable properties a high temp heat
treatment process (firing)
 composed of at least two elements or more (e.g.,Al2O3, NaCl,
SiC, SiO2)
 Crystal structure more complex than metals
 Inorganic & non metallic materials
 Most ceramics – metallic & nonmetallic element – ionic or
predominantly ionic but having some covalent character
 Types of ceramic materials:
 Oxide
 Aluminum oxide/Alumina (Al203),
 Zirconium oxide/ Zirconia (ZrO2),
 Non-oxide
 Carbide, Silicate
CERAMICS
Class of ceramics
48
Traditional Ceramics:
primary raw materials is clay
Example: porcelain, bricks, tiles, sewer,
glasses, pipe, whiteware, high
temperature ceramics
Engineering Ceramics :
Contain more of pure compounds of oxides,
carbides, nitrides, etc.
Oxygen sensor
Example: refractory tubing, crucibal, spark
plung insulator, advance ceramic,
electroceramic
CERAMICS
49
Properties :
• Generally hard and brittle
• Generally electrical and thermal insulators
exceptions: graphite, diamond, Aluminium nitride (AlN)
• Can be optically opaque, semi-transparent, or transparent
• High chemical stability and high melting temperature
• Corrosion resistant
• Better compressive strength than tensile (5-10 times)
• Tmelt for glass is moderate, but large for other ceramics.
• Small toughness, ductility; large moduli & creep resist.
Applications:
• High T, wear resistant, novel uses from charge neutrality.
50
TAXONOMY OF CERAMICS
-
-
- -
-
-
-Advanced
-valvesreinforce
Glasses Clay
products
Refractories Abrasives Cements
ceramics
-optical
-composite
-containers/
household
-whiteware
-structural:
bricks
-bricks for
high T
(furnaces)
-sandpaper
-cutting
-polishing
-composites
structural
-engine
-rotors
-bearings
-sensors
Ceramic Materials
GLASSES
- Glasses
- Glass-Ceramic
51
GLASSES
• Non crystalline silicates containing network modifiers; Na2O,
CaO, K2O and Al2O3
• Typical example of glass;
soda-lime silica glass  70% SiO2 + soda (Na2O) and lime (CaO)
• Glass is transparent and easy to be fabricated
52
CHARACTERISTICS OF COMMON COMMERCIAL GLASSES
53
APPLICATIONS : GLASSES
54
96% Silica
Laboratory ware
Borosilicate, 81% Silica, 3.5%
Na2O, 2.5% Al2O3 and 3%
B2O3
Pyrex
Laboratory ware/oven ware
Containers,
windows
GLASS CERAMICS
• Most glass are amorphous (non crystalline)
• But can be transformed to crystalline by heat treatment  fine
grained polycrystalline material – glass-ceramics
• The heat treatment process  devertification process
• During the heat treatment process, a nucleating agent is
required to initiate crystallization or devertification process
• Easy to fabricate; mass production.
• Glass ceramic commercially under trade names of Pyroceram,
corning ware, cercor, vision
• Applications: ovenware, tableware, oven windows, range top –
primary coz of their strength & excellent resistant to thermal
shock
55
APPLICATIONS :GLASS CERAMICS
56
Properties/characteristics
High mechanical strength
Low coefficient of thermal expansion
(to avoid thermal shock)
high temperature capabilities
Good biological compatibility
Some optical transparent;
others are opaque
Electrical insulator
Other Applications
Glassware
Electrical insulator
Substrate for printed circuits board
Architectural cladding
Heat exchangers
Generator
CLAY
PRODUCTS
- Structural clay products
- Whitewares
57
CLAY PRODUCT
- Widely used as ceramic raw materials
- Inexpensive ingredient
- Found naturally in great abundance
• Adding water to clay
-- very amenable to shaping (form a plastic mass)
-- enables extrusion
-- enables slip casting
• The formed piece is dried to remove moisture
• Fired at elevated temp to improve its mechanical strength
• 2 broad classification
1) structural clay product - structural integrity is important
2) whitewares
58
CLAY COMPOSITION
A mixture of components used
(50%) 1. Clay
Clay facilitates the forming operation since, when mixed with water,
the mass may be made to become either hydroplastic or form a
slip. Also, since clays melt over a range of temperatures, the
shape of the piece being fired will be maintained.
(25%) 2. Filler – e.g. quartz (finely ground)
(25%) 3. Fluxing agent (Feldspar)
binds it together
The flux facilitates the formation of a glass having a relatively low
melting temperature
59
aluminosilicates + K+, Na+, Ca+
CLAY PRODUCT:
STRUCTURAL CLAY PRODUCT
used mainly in construction
Properties :
load-bearing strength, resistance to wear, resistance to chemical
attack, attractive appearance, and an ability to take a decorative finish.
Products :
facing buildings, surfacing highways, making containers for corrosive
acids, as aggregate for low-density concrete, as conduits for sewage, as
structural arches supporting bridges, as roofs, and as chimney liner
60Tiles bricks
sewer pipe
61
Bricks
conduits for sewage
roofs
chimney liners
Application : structural clay product
CLAY PRODUCT :WHITEWARES
- ceramic products that are white to off-white in appearance
- become white after high temp firing
- frequently contain a significant vitreous, or glassy,
component.
Properties :
imperviousness to fluids, low conductivity of electricity,
chemical inertness, and an ability to be formed into
complex shapes.
Products :
china dinnerware, lavatory sinks and toilets,
dental implants, and spark-plug insulators, 62
63
lavatory sinks and toilets, plumbing
fixture (sanitary ware)
china dinnerware (Porcelain, pottery, tableware)
dental implants
spark-plug insulators
Application : Whiteware
REFRACTORIES CERAMICS
64
65
Characteristic of Refractory Ceramics
 Can withstand high temperature without
melting or decomposing
 Can remain inert even at sever conditions
 Can provide thermal insulations
 In a form of bricks (most common)
 Use as furnace linings for metal refining,
glass manufacturing heat treatment and
power generation
REFRACTORIES CERAMICS
Several classification
• fireclay-used in furnace construction, to confine hot atm & to
thermally insulate structural members from excessive temp (alumina
& silica)
• Silica (asid refractories) – high temp load bearing capacity (used in
arched roofs of steel & glass making furnace),
• basic – magnesia(MgO) + Ca, Cr, Fe + silica (used in some steel
making furnace)
• special refractories – e.g. (SiC) cruciable material & electrical
resistance heating elements & internal furnace component
Raw ingredients – (both) large & fine particles
• Upon firing, fine particles –formation of bonding phase –increased
strength of the brick
• Control the porosity – porosition reduction incred strength, load
bearing capacity, resistance to corrosive materials
• However, diminished the thermal insulation characteristic and
resistance to thermal shock
67
APPLICATION: REFRACTORIES CERAMICS
• Need a material to use in high temperature furnaces.
• Fireclay bricks, crucible material, internal furnace
components
Fireclay bricks
crucible
internal furnace components
• Consider Silica (SiO2) - Alumina (Al2O3) system.
• Phase diagram shows:
mullite, alumina, and crystobalite (made up of SiO2)
tetrahedra as candidate refractories.
3
Composition (wt% alumina)
T(°C)
1400
1600
1800
2000
2200
20 40 60 80 1000
alumina
+
mullite
mullite
+ L
mullite
Liquid
(L)
mullite
+ crystobalite
crystobalite
+ L
alumina + L
3Al2O3-2SiO2
APPLICATION: REFRACTORIES
ABRASIVE CERAMIC
69
ABRASIVE CERAMICS
• Used to wear, grind and cut away other material
• Hardness and wear resistance important
• High degree of toughness – do not want material
which deform or facture during cutting!
• Diamond is the best but expensive
• Other examples; Tungsten carbide (WC) , Alumina
(Al2O3) and Silica(SiO2), SiC, silica sand
70
71
APPLICATION: ABRASIVE CERAMICS
• Abrasive are used in several forms-Bonded to grinded wheels
- as coating abbrasive – the abrasive particles/powder is
coated on some type of paper or cloth material; sand
paper, wood, metal ceramics & plasric
- loose grains – grinding, lapping & polishing wheels often
employ loose abrasive grain that are delivered in some
type of oil or water based vehicles (diamods, SiC, iron
oxide) grinding wheel, sandpaper
grinding wheel
5
• Tools:
--for grinding glass, tungsten, carbide, ceramics
--for cutting Si wafers
--for oil drilling
blades oil drill bits
APPLICATION: ABRASIVE CERAMICS
CEMENTS
73
74
Cements
• Inorganic cements : cement, plaster of paris and lime
• known as binder,
• When mixed with water, forms a paste which harden as
a results of complex hydration reactions
• substance that sets and hardens independently
• can bind other materials together
• The role of cement is similar to glassy bonding when clay
product & refractory brick are fired.
•The different is cementitious bond develop at room temp.
•Lime involved in hardening reaction
APPLICATION : CEMENTS
• as an ingredient in the production of mortar in masonry, and
concrete
75
Mortar
concrete
• Produced in extremely large quantities.
• Portland cement:
--mix clay and lime bearing materials
--calcinate (heat mixture to 1400°C in rotary kiln)
--primary constituents:
tri-calcium silicate
di-calcium silicate
• Adding water
--produces a paste which hardens
--hardening occurs due to hydration (chemical reactions
with the water).
• Forming: done usually minutes after hydration begins.
16
CEMENTS
CEMENTS
 Hydration reactions begin just as soon as water is
added to the cement
1)Setting i.e. stiffening of once plastic phase (several
hours)
2)Hardening –water actually participates in a chemical
bonding reaction
 Porland cement- its hardness develops by
chemical reaction with water
 Used in mortar & concrete to bind aggregated of
inert particles (sand) into cohesive mass
(composite materials)
ADVANCED CERAMICS
78
ADVANCED CERAMIC
 Ceramics that displays unique
electrical, magnetic and optical
properties
 Utilized in microelectromechanical
system (MEMS), Sensors, fuel
cells, superconductors, actuators,
electronics packaging,
semiconductor devices, solar cells,
fibre optics, laser production, etc
79
MEMS
Ceramic cannula in fibre optics
80
Applications: Advanced Ceramics
 Ceramic Armor
 Al2O3, B4C, SiC & TiB2
 Extremely hard materials
 shatter the incoming bullet
 energy absorbent material underneath
81
Applications: Advanced Ceramics
Electronic Packaging
 Chosen to securely hold microelectronics & provide heat transfer
 Must match the thermal expansion coefficient of the
microelectronic chip & the electronic packaging material. Additional
requirements include:
- good heat transfer coefficient
- poor electrical conductivity
 Materials currently used include:
 Boron nitride (BN)
 Silicon Carbide (SiC)
 Aluminum nitride (AlN)
- thermal conductivity 10x that for Alumina
- good expansion match with Si
CERAMIC TYPES AND CHARACTERISTICS
EXERCISE :
1. Describe the main Difference between traditional ceramics and
engineering ceramics.
2. List two example of applications for traditional ceramics and
engineering ceramics.
3. Some of our modern kitchen cookware is made of ceramic materials.
a) List three (3) important characteristics required of a materials to be used
for this application.
b) Choose the material that most suitable for cookware.
83
4.4 COMPOSITE MATERIALS:
TYPES, PROPERTIES AND APPLICATION
COMPOSITE MATERIAL
• Consists of two or more physically and/or chemically
distinct, suitably arranged or distributed phases with an
interface separating them.
• Composite – multiphase materials (metal alloys, ceramics &
polymers) artificially made
• Has characteristics that are not represent by any of the
components in isolation.
• Material have specific & unusual prop in i.e. aerospace,
underwater, bio-engineering & transportation industries.
• e.g. low density, strong, stiff, abrasion, impact resistance & do
not easily corrode.
composites
Particle-reinforced Fiber-reinforced Structural
Large- particle
Dispersion-
strengthened
(0.01 and 0.1 µm)
Continuous
(aligned)
Discontinuous
(short)
aligned
Randomly
oriented
Laminates Sandwich panel
CLASSIFICATION OF COMPOSITE MATERIALS
PARTICLE REINFORCED COMPOSITES
• The particle diameter is typically a few microns (μ)
• Particle reinforced composites are much easier and less
costly than making fiber reinforced composites.
• Particulate phase is harder & stiffer than the matrix.
• Particulate –same dimension in all direction
1. Large - Particle
Particulate Flake Filler
PARTICLE REINFORCED COMPOSITES
Based on reinforcement or strengthening mechanism.
Example:
• concrete composed of cement (matrix) and sand & gravel
(particulates). Cerment (ceramic metal composite) matrix
“metal” such as Co, Ni, particles “ceramic” such as WC or
TiC.
1. Large - Particle (cont.)
Concrete is a mixture of cement and
aggregate, giving a robust, strong
material that is very widely used
PARTICLE REINFORCED COMPOSITES
Based on reinforcement or strengthening mechanism.
Example:
• Used as cutting tools for hardened steel – carbide is brittle.
toughness is enhanced by inclusion in the ductile metal
matrix. Withstand high temp generate during cutting.
1. Large - Particle (cont.)
PARTICLE REINFORCED COMPOSITES
Based on reinforcement or strengthening mechanism.
Example:
• automobile tire which has carbon black particles in a
matrix of polyisobutylene elastomeric polymer. Carbon
black evenly distributed though out the rubber (inexpensive
material) – enhanced TS, toughness, tear & abrasion
resistance
1. Large - Particle (cont.)
PARTICLE REINFORCED COMPOSITES
• The particle diameter is small particles between 0.01 and 0.1 μm(10–100nm)
• An example : metal matrix composite with a fine distribution.
Metal & metal alloys + dispersed phases (metallic/ nonmetallic/oxide
materials)
• The strengthening mechanism involve the interactions between the particles
dislocation between the matrix. Particle matrix interaction leads to
strengthening
2. Dispersion Strengthen
FIBER-REINFORCED COMPOSITE
•The fibers can be in the form of long continuous fibers, or
discontinuous fibers, particles, whiskers and even weaved
sheets, wires.
•Fiberglass is likely the best know fiber reinforced composite.
(a)
Continuous and aligned
(b)
Discontinuous and aligned
(c)
discontinuous and
randomly oriented
• Aligned Continuous fibers
• Examples:
fracture
surface
matrix: (Mo) (ductile)
fibers:’ (Ni3Al) (brittle)
2m
--Metal: '(Ni3Al)-(Mo)
by eutectic solidification.
--Glass w/SiC fibers
formed by glass slurry
Eglass = 76GPa; ESiC = 400GPa.
(a)
(b)
FIBER-REINFORCED COMPOSITE
• Discontinuous, random 2D fibers
• Example: Carbon-Carbon
--process: fiber/pitch, then
burn out at up to 2500C.
--uses: disk brakes, gas
turbine exhaust flaps, nose
cones.
• Other variations:
--Discontinuous, random 3D
--Discontinuous, 1D
fibers lie
in plane
view onto plane
C fibers:
very stiff
very strong
C matrix:
less stiff
less strong
FIBER-REINFORCED COMPOSITE
Factor that influence composites properties
1. Fiber length
- short fiber --- less significant improvement in strength
- more effective if continuous fiber
2. Fiber orientation
- parallel alignment - align direction, reinforcement and strength are max;
perpendicular to alignment, they are minimum
- random alignment -Able to support multiple direction forces
3. Fiber concentration
- Better properties when fiber distribution is uniform
FIBER-REINFORCED COMPOSITE
MATRIX
COMPONENTS OF COMPOSITE
REINFORCEMENT
INTERFACE
MATRIX
• A bulk phase, which is continuous
• Surrounds the reinforcements
• Providing uniform load distribution to the
reinforcing constituents
• General polymer and metal – ductility is desirable
• Ceramic matrix to improve fracture toughness
• Examples:
metal-, polymer- and ceramic- matrix
Purpose of Matrix :
• to bind and hold the reinforcements.
• to transfer load to and between reinforcements.
• allows the strength of the reinforcements to be used to
their full potential by providing effective load transfer from
external forces to the reinforcement.
• to protect the reinforcements from environments and
handling.
• provides a solid form to the composite which aids handling
during manufacture and is typically required in a finished
part.
• controls the transverse properties, interlaminar strength
and elevated-temperature strength of the composite.
MATRIX
REINFORCEMENT
• Fiber reinforcement are classified as follows
a) Fibers – normally polymer or ceramics (amorphous or
polycrystalline) i.e glass, carbon, boron, aluminum
oxide, SiC
b) Whiskers – thin single crystals that have very small
diameters) i.e. Graphie, SiC, Al2O3
c) Wires – metal/alloys that have relatively large
diameters. . i.e. steel, Molybdenum, W
• provide superior levels of strength and stiffness to
the composite.
• provide thermal and electrical conductivity,
controlled thermal expansion, and wear resistance
in addition to structural properties.
IMPORTANT CHARACTERISTICS FOR REINFORCEMENT
• Diameter size
 strength decreases with an increases of diameter
• A high aspect ratio (l/d)
 allows a very large fraction of the applied load to be
transferred via the matrix to stiff and strong fiber
• High degree of flexibility
 it is a characteristic of material having a high
modulus and a small diameter.
 Permits a variety of techniques for making
composites
INTERFACES
• can be defined as a bounding surface where a
discontinuity of some kind occurs (between matrix and
reinforcement).
• the interface is an essentially two-dimensional region
through which material parameters such as
 concentration of an element, crystal structure,
atomic registry, elastic modulus, density and
coefficient of thermal expansion, change from one
side to another
CLASSIFICATION OF COMPOSITES (MATRIX)
Ceramic-Matrix
Composite
(CMC)
Metal-Matrix
Composite
(MMC)
Polymer Matrix
Composite
(PMC)
composite
POLYMER-MATRIX COMPOSITES (PMC)
 PMCs consist of a polymer resin as the matrix, with
fibers as the reinforcement medium
 They may be reinforced with glass, carbon and aramid
fibers, etc.
 Polymer Matrix
 The most widely used (least expensive) polymer resins are
polyesters and vinyl ester.
 Epoxies (more expensive)
 PMCs for aerospace applications
 Better mechanical properties and resistance to moisture than
polyesters and vinyl ester.
 Polyimide resins for high temperature applications
 aerospace application – polyetheretherketone,
polyphenylene sulfide, polyetherimide
EXAMPLE OF PMC:
Glass Fiber-Reinforced Polymer (GFRP) Composites
• fiberglass consist of glass fibers (continuous or discontinuous) contained
within polymer matrix (polyester resin)
• widely use due to
a. Easily drawn into high strength fiber
b. Easily to be processes to composite ( less cost)
c. Very high specific strength
d. Most type chemical inertness -- variety of corrosion environment
• Limitation
a. High strength but not very stiff (rigidity) – not suitable for structure application
b. Low service temperature ( below 200oC) – improve by adding high temp purity silica
and high temp polymer (polymide) – ( 300oC)
• Application
 plastic pipeline, tanks and vessel for chemical process industry, storage
containers, automotive & marine bodies
 Transportation industries – decrease vehicle weight & boost fuel efficiency
Polymer-Matrix Composites (PMC)
EXAMPLE OF PMC:
Carbon Fiber-Reinforced Polymer (CFRP) Composites
 Carbon widely use as fiber reinforced due to
a. Highest specific modulus and specific strength
b. High tensile modulus and high strength retain at elevated temp
c. At room temp, carbon fiber are not effected by moisture, most
solvent, acids bases
d. Low fabrication cost and effective
 Limitation
a) fabrication of carbon fiber are complex
b) at high temp, carbon - high tendency to oxidized
 Application
sport and recreational equipment ( fishing rod, golf clubs), filament wound
rocket motor casing, pressure vessel, aircraft structural, Helicopters (wing,
body, stabilizer), crank arms for bicycle
Polymer-Matrix Composites (PMC)
EXAMPLE OF PMC:
Aramid Fiber-Reinforced Polymer Composites
 aramid – chemical name : poly paraphenylene (polymer)
 high strength, high modulus materials (outstanding strength to weight ratio)
 good longitudinal tensile strength, toughness, impact resistant,
resistance to creep and fatigue failure
 even polymer group but resist to combustion and stable to relatively high
temperature ( application range -200oC to 200oC)
 degradation to strong acid and base but inert to solvent and other
chemical
 Trade name-Kevlar, Nomex
 Polymer matrix – epoxies, polyesters
 Higher fatigue resistant than carbon PMC
 Application:
 Racing yachts and private boats, helmets, rocket engine cases, gasket,
clutch lining, ballistic products (bulletproof vest & armor), tires, ropes,
sporting goods
Polymer-Matrix Composites (PMC)
EXAMPLE OF PMC:
Boron/epoxies composite
 Golf clubs, tennis rackets, horizontal stabilizers and tail
section of military aircraft, helicopter rotor blade
Polymer-Matrix Composites (PMC)
CROSS-SECTIONS OF FIBER-REINFORCED
MATERIALS
(a) Cross-section of a tennis racket, showing graphite and aramid (Kevlar) reinforcing fibers.
(b) Cross-section of boron fiber-reinforced composite material
Polymer-Matrix Composites (PMC)
POLYMER-MATRIX COMPOSITES (PMC)
Advantages:
 found widespread applications.
 can be easily fabricated into any large complex
shape, do not involve high pressures and temp.
(less degradation of reinforcement)
 Equipment required may be simpler; (hand lay-
up)
Disadvantages:
• low maximum working temperatures.
• high coefficients of thermal expansion and hence
dimensional instability (except: carbon fibre-
reinforced polymers )
• sensitivity to radiation (except: epoxies) and
moisture.
• The absorption of water from the environment may
have many harmful effects which degrade mechanical
performance, including swelling.
• formation of internal stresses and lowering of the
glass transition temperature.
Polymer-Matrix Composites (PMC)
Properties
• improve strengths and stiffnesses,
• Ease of molding for complex shapes,
• high environmental resistance all coupled with low densities
• Make the resultant composite superior for many
applications
Polymer-Matrix Composites (PMC)
Fibre Reinforced Polymer
Application in general:
• Aramid and carbon fibers have strengths and low
densities and are used in many applications,
particularly aerospace, in spite of their higher
cost.
• In electronic applications, glass fiber from E-glass
type is used as reinforcement in substrate
application because the fibers have very desirable
and stable electrical properties.
Polymer-Matrix Composites (PMC)
BOEING 757-200
Application of advanced composite materials in Boeing 757-200 commercial aircraft.
METAL-MATRIX COMPOSITE (MMC)
Examples of metal-matrix composite parts.
METAL-MATRIX COMPOSITES (MMC)
 The matrix is a ductile metal
 The most common metals employed in MMC are
aluminum, copper, titanium and magnesium.
 Typical fibers used in the composite systems are
carbon and silicon carbide
 Metals are mainly reinforced to increase or decrease
their properties to suit the needs of the design.
 Reinforcement
- may improve sp stiffness, sp strength, abrasion resistance,
creep resistance, thermal conductivity, dimensional stability
- Particulate, fibers (continuous & discontinuous), wiskers
- E.g. Boron aluminum oxide, refractory metals
Advantages :
• higher application temperature ranges,
• higher transverse stiffness and strengths,
• high electric and thermal conductivities and can be fabricated with
conventional metal working equipment
• high toughness values. higher strength-to-density, stiffness-to-density ratios as
well as better fatigue resistances, lower coefficients of thermal expansion (CTE)
and better wear resistances as compared with monolithic metals
Disadvantages:
 most metals are heavy
 Susceptible to interfacial degradation at
the reinforcement and matrix interface
 susceptible to corrosion
 high material and fabrication costs
 exhibit degradation of properties at very
high temperatures
METAL-MATRIX COMPOSITES (MMC)
EXAMPLE MMC
• Automotive
• Al alloy MMC; reinforced with aluminum oxide
and carbon fibers
• drive shaft ( higher vibration rotational speed)
• Extruded stabilizer bars
• Forged suspension and transition
components
• Aerospace (MMC is light in weight)
• Al alloys MMC;
• boron fibers – space shuttle orbiter
• Continuous graphite fibers – Hubble Space
telescope
METAL-MATRIX COMPOSITES (MMC)
METAL MATRIX AUTOMOTIVE BRAKE CALIPER
Aluminum-matrix composite brake caliper
using nanocrystallyne alumina fiber
reinforcement
METAL-MATRIX COMPOSITE MATERIALS AND
APPLICATIONS
CERAMIC-MATRIX COMPOSITES (CMC)
• Contains a ceramic matrix such as alumina and
calcium alumino silicate reinforced by fibers such as
carbon or silicon carbide.
• The main objective is to increase the toughness,
strength and stiffness of the material.
• High temp & severe stresses applications –
automobile & aircraft gas turbine engines
• Fracture toughness value for ceramic materials are
low.
• Reinforced – particulates, fibers, whiskers of one
ceramics
• Matrix- another ceramics
Advantages:
• a very high application temperature range (>2000ºC).
• provide advanced heat engine applications
• low density and usually have very high elastic modulus
values
• chemical inertness.
Disadvantages:
 brittleness which makes them easily susceptible to flaw
 Only employed high temperature reinforcement
 High temperature for processing (High production costs)
 lack uniformity in properties and have low thermal and mechanical
shock resistances as well as low tensile strengths
CERAMIC-MATRIX COMPOSITES (CMC)
EXAMPLE OF CMC
• SiC wiskers reinforced Al2O3
 cutting tool material replacing the metallic carbide
cutting tool
 Cutting tool insert for machining hard metal alloys
 Resistance to thermal shock
 Improve strength, fracture toughness
• C/C composite
 Disc brake, hot pressing mold
CERAMIC-MATRIX COMPOSITES (CMC)
CHARACTERISTICS OF COMPOSITE
MATERIALS
• CMCs: Increased toughness • PMCs: Increased E/
• MMCs:
Increased
creep
resistance
20 30 50 100 200
10-10
10-8
10-6
10-4
6061 Al
6061 Al
w/SiC
whiskers (MPa)
ss (s-1)
E(GPa)
G=3E/8
K=E
Density,  [Mg/m3]
.1 .3 1 3 10 30
.01
.1
1
10
102
103
metal/
metal alloys
polymers
PMCs
ceramics
fiber-reinf
un-reinf
particle-reinf
Force
Bend displacement
COMPOSITE BENEFITS
STRUCTURAL COMPOSITES
Laminate composite
1. Laminar Composites
• Composed of 2D sheets or panels.
• Sheets (panels) with different orientation of high strength
directions are stacked and glued together
• Examples : plywood and modern ski, application more in
aircraft
The layers are stacked & cemented
together such that the orientation of high
strength direction varies with each
successive layer
STRUCTURAL COMPOSITES
1. Laminar Composites (cont.)
• # of laminated – varies
• joined by plastic adhesive ( for glass, effect from adhesive more
importance)
• improve corrosion resistance with low cost , high strength & light
weight
• improve thermal expansion characteristic
• improve fatigue failure
• Stacked and bonded fiber-reinforced sheets
-- stacking sequence: e.g., 0/90
-- benefit: balanced, in-plane stiffness
A small sample of Aerospace grade
Carbon-fibre/Epoxy laminate
Plywood is used widely in
construction
STRUCTURAL COMPOSITES
2. Sandwich Panels
• Consist of two strong and stiff sheet (faces) separated by a layer of less-
dense material (core materials) or structure for instance honeycomb which
provides strength to shear.
• Benefit: These structure combine relatively high strength and stiffness with
low density.
• Application
 roofs, walls, and aircraft structures (wings, fuselage, tailplane skin).
STRUCTURAL COMPOSITES
2. Sandwich Panels (cont.)
Diagram of an assembled composite sandwich (A), and its
constituent face sheets or skins (B) and honeycomb core (C)
(alternately: foam core)
• Faces – support all load (relatively stiff & strong materials)
- example : Al alloy, fiber reinforce plastic,
titanium, steel, plywood
- thick enough to withstand tensile & compressive
stresses from loading
• Core –lightweight, low modulus of Elasticity.
-Rigid polymeric foams (phenolics, epoxy,
polyurethanes), synthetic rubber
 Wood (balsa wood)
 Honeycomb ( thin foils that have been formed
into interlocking hexagonal cells)
- Function:
1) provide continuous support for faces
2) have sufficient shear strength to withstand
transverse shear stresses
3) thick enough to provide high shear stiffness(to
resist buckling of the panel) shear rigidity
COMPOSITE SAILBOARD CROSS-SECTION
Cross-section of a composite sailboard, an example of advanced materials construction.
SUMMARY:
METHODS OF REINFORCING PLASTICS
Schematic illustration of methods of reinforcing plastics (matrix) with (a) particles, (b)
short or long fibers or flakes, and (c) continuous fibers. The laminate structures shown in
(d) can be produced from layers of continuous fibers or sandwich structures using a foam
or honeycomb core.
• Composites are classified according to:
-- the matrix material (CMC, MMC, PMC)
-- the reinforcement geometry (particles, fibers, layers).
• Composites enhance matrix properties:
-- MMC: enhance y, TS, creep performance
-- CMC: enhance Kc
-- PMC: enhance E, y, TS, creep performance
• Particulate-reinforced:
-- Elastic modulus can be estimated.
-- Properties are isotropic.
• Fiber-reinforced:
-- Elastic modulus and TS can be estimated along fiber dir.
-- Properties can be isotropic or anisotropic.
• Structural:
-- Based on build-up of sandwiches in layered form.
SUMMARY: COMPOSITE
SUMMARY:
CLASSIFICATION OF ENGINEERING MATERIALS

Mec281 lecture

  • 1.
  • 2.
    This course coverssome fundamentals of materials science, which are necessary for the understanding of materials properties for their appropriate applications. The major families of materials such as metals, ceramics, polymers and composite are discussed for their structures, properties and applications. Course Description
  • 3.
    • CO1 :Explainbasic concepts of structure, mechanical and physical properties of engineering materials. [PO1, LO1]. • CO2 ;Apply the basics concepts to identify the relationships between properties and structure of materials. [PO3, LO3, SS1]. • CO3 :Choose the suitable material for appropriate engineering applications. [PO3, LO3, SS1]. Course Outcome
  • 4.
    • Course Work: 40% Test 1 : 15% Test 2 : 15% Quiz (x4) : 10% (i-Learn) • Final Examination : 60% • Total : 100% ASSESSMENT
  • 5.
    Syllabus content CHAPTER CONTENT/SUB-CHAPTER 1 STRUCTURE (10HOURS) 1. Atomic Structure. 2. Interatomic Bonding Amorphous and Crystalline Solid. 3. Crystal Structures. 4. Efficiency of Atomic Packing, Density Computation, Miller Indices. 5. Relationship between Atomic Structure, Crystal Structures and Properties of Material. 2 METALLIC MATERIALS (14 HOURS) 1. Solidification Of Pure Metal And Alloys 2. Phase Diagram: Microstructure Development, Microconstituent of Phases. 3. Fe-Fe3C System: Microstructure Development, Microconstituent of Phases. 4. Ferrous and Non-Ferrous Metals 3 THERMAL TREATMENT OF METALLIC MATERIALS (8 HOURS) 1. Heat Treatment of Ferrous Metals 2. Hardenability 3. Isothermal Transformation Diagram (TTT Diagram) 4 ENGINEERING MATERIALS (10 HOURS) 1. Classification of Engineering Materials 2. Plastics And Elastomer: Molecular Structures, Properties and Applications 3. Ceramic: Structure, Properties, and Applications 4. Composite Materials: Types, Properties and Applications.
  • 6.
    REFERENCES  William D.Callister, Jr., Materials Science and Engineering and Engineering, An Introduction, John Wiley & Sins, Inc., 2011.  William F. Smith, Foundations of Materials Science and Engineering, Second Edition. McGraw-Hill, 2000.  William F. Smith, Structure and Properties of Engineering Alloys, Second Edition, McGraw-Hill, 1993.  K.R. Tretheway and J. Chamberlain, Corrosion, Longman Scientific Technical, 1998.
  • 7.
    Teaching Plan (June– October 2014) Week Date Syllybus Activity(s) 1* 9/6/14 – 15/6/14 CHAPTER 12* 16/6/14 – 22/6/14 Tutorial 1 3 23/6/14 – 29/6/14 Tutorial 2 4 30/6/14 – 6/7/14 CHAPTER 2 Tutorial 3 5 7/7/14 – 13/7/14 Tutorial 4 & QUIZ 1’ 6 14/7/14 – 20/7/14 Tutorial 5 7 21/7/14 – 25/7/14 26/7/14 – 3/8/14 Mid Term Break 8 4/8/14 – 10/8/14 TEST 1 (8/8/14) 9 11/8/14 – 17/8/14 CHAPTER 3 Tutorial 6 & QUIZ 2’ 10 18/8/14 – 24/8/14 Tutorial 7 11 25/8/14 – 31/8/14 Tutorial 8 & QUIZ 3’ 12 1/9/14 – 7/9/14 CHAPTER 4 Tutorial 9 13** 8/9/14 – 14/9/14 TEST 2 (12/9/14) 14** 15/9/14 – 21/9/14 Tutorial 10 & QUIZ 4’ 2 days 22/9/14 – 23/9/14 Revision 3 weeks 24/9/14 – 17/10/14 Examination Remarks: (online –iLearn ) *Entrance Survey **Exit Survey Quiz’ SuFO (18 Ogos – 3 September 2014) Lecture Notes, Tutorial, etc. - FOLDER (June – October 2014)
  • 8.
    Tutorial Tutorial Topic 1 Atomicstructure 2 Interatomic bonding, Crystal Structures 3 APF, Density Computation, Miller Indices. 4 Phase diagram 5 Iron-Iron Carbide Phase Diagram 6 Ferrous and Non-Ferrous Metal 7 TTT- Diagram 8 Heat Treatment of Ferrous Metal 9 Plastic and Elastomer 10 Ceramic and Composite materials
  • 9.
    CHAPTER 1 :STRUCTURE (10 hours)
  • 10.
    SUBCONTENT : 1.1 ATOMIC STRUCTURE. 1.2INTERATOMIC BONDING AMORPHOUS AND CRYSTALLINE SOLID. 1.3  CRYSTAL STRUCTURES. 1.4 EFFICIENCY OF ATOMIC PACKING, DENSITY COMPUTATION,  MILLER INDICES.  1.5 RELATIONSHIP BETWEEN ATOMIC STRUCTURE, CRYSTAL STRUCTURES AND PROPERTIES OF MATERIAL.
  • 11.
  • 12.
    4 1.1 ATOMIC STRUCTURE Allmatter is made up of tiny particles called atoms. What are ATOMS? Since the atom is too small to be seen even with the most powerful microscopes, scientists rely upon on models to help us to understand the atom. Even with the world’s best microscopes we cannot clearly see the structure or behavior of the atom.
  • 13.
    5 Even though wedo not know what an atom looks like, scientific models must be based on evidence. Many of the atom models that you have seen may look like the one below which shows the parts and structure of the atom. Is this really an  ATOM? This model represents the  most modern version of the  atom. Bohr Theory Wave Mechanical Atomic Model
  • 14.
    6 Protons and neutrons join together  to form the nucleus – the central  part of the atom + + ‐‐ Electrons  move  around the  nucleus Neutron Proton Electron Nucleon or  Nucleus Fig. :A simplified diagram of atom Shell @ Orbital @ Energy level •Atoms are made of a nucleus that contains protons, neutrons and electrons that  orbit around the nucleus at different levels, known as shells. What does an ATOM look like?
  • 15.
    7 •These particles have the following properties: Particle Charge LocationMass (amu) Symbol Proton Positive (+ve) Nucleus 1.0073 Neutron Neutral Nucleus 1.0087 Electron Negative (-ve) Orbital 0.000549 ‐ To describe the mass of atom, a unit of mass called the atomic mass unit (amu) is used. •The number of protons, neutrons and electrons in an atom completely determine  its properties and identity. This is what makes one atom different from another.  +
  • 16.
    8 Most atoms areelectrically neutral, meaning that they have an equal number of protons and electrons. The positive and negative charges cancel each other out. Therefore, the atom is said to be electrically neutral. Why are all ATOMS are ELECTRICALLY NEUTRAL? + ‐ Neutron Proton Electron ++ +‐ ‐ + ‐ Fig. : Beryllium atom  Proton    = 4 Electron = 4 NEUTRAL CHARGE
  • 17.
    9 cation ‐ ion with a positive charge ‐If a neutral atom loses one or more electrons, it becomes a cation. anion ‐ ion with a negative charge  ‐ If a neutral atom gains one or more electrons, it becomes an anion. Na 11 protons 11 electrons Na+ 11 protons 10 electrons Cl 17 protons 17 electrons Cl‐ 17 protons 18 electrons Cations are smaller than their “parent atom” because  there is less e‐e repulsion Anions are larger than their “parent atom” because there is  more e‐‐ e repulsion If an atom gains or loses electrons, the atom is no longer neutral and it become electrically charged . The atom is then called an ION.
  • 18.
    10 periodic: a repeatingpattern table: an organized collection of information Periodic Table (P.T.) An arrangement of elements in order of atomic number; elements with similar properties are in the same group. Basics of the PERIODIC TABLE
  • 19.
    11 The periodic tablebelow is a simplified representation which usually gives the : 1) period: horizontal row on the P.T. •Designate electron energy levels 2) group or family: vertical column on the P.T. Two main classifications in P.T.
  • 20.
    12 ATOMIC NUMBER andATOMIC MASS 1) ATOMIC NUMBER 2) ATOMIC MASS Atom can be described using : The element helium has the atomic number 2, is represented by the symbol He, its atomic mass is 4 and its name is helium. ATOMIC MASS , A = no. of protons (Z) + number of neutrons (N) SYMBOL ATOMIC NUMBER, Z = no. of protons
  • 21.
  • 22.
    14 ATOMIC NUMBER tells how many PROTONS (Z) are in its atoms which determine the  atom’s identity.  The list of elements (ranked according to an increasing no. of protons) can be looked up  on the Periodic Table. So, if an atom has 2 protons (atomic no. = 2), it must be helium(He).  ATOMIC MASStells the sum of the masses of  PROTONS (Z) and NEUTRONS (N) within the  nucleus  E.g : Lithium: Atomic number = 3 3 protons, Z 4 neutrons, N Atomic mass, A = 3 + 4 = 7 BUT...  although each element has a defined number of protons, the number of neutrons  is not fixed   isotopes
  • 23.
    15 •Atoms which have the same  number of protons but different  numbers of neutrons. •Atoms which have the same atomic number but different atomic  mass . •Eg :Hydrogen has 3 isotopes.  Natural Isotope Proton Neutron Atomic Mass Hydrogen 1 (hydrogen) 1 0 1 Hydrogen 2 (deuterium) 1 1 2 Hydrogen 3 (tritium) 1 2 3 H1 1 H (D)2 1 H (T)3 1 Same atomic no. @ no. of protons Different mass number ISOTOPES
  • 24.
  • 25.
    17 Naturally occurring carbon consists of three isotopes,  12C, 13C, and 14C.  State the number of protons,  neutrons, and electrons in each of these carbon atoms.  12C 13C 14C 66                        6 #p   _______         _______                _______      #n   _______         _______             _______      #e   _______         _______            _______      EXERCISE
  • 26.
    18 The electron cloud that surrounded the nucleus is divided into 7 shells (a.k.a energy level)  K (1st shell, closest to nucleus) followed by L, M, N, O, P, Q. Each of the shell, hold a limited no. of electrons.  E.g : K (2 electrons), L (8 electrons), M (18 electrons), N (32 electrons). 3rd shell 4th shell 2nd shell 1st shell K (2 electrons) L (8 electrons) M (18 electrons) N (32 electrons) ELECTRON SHELLS
  • 27.
    • Within eachshell, the electrons occupy sub shell (energy sublevels) – s, p, d, f, g, h, i. Each sub shell holds a different types of orbital. • Each orbital holds a max. of 2 electrons. • Each orbital has a characteristic energy state and characteristic shape. • s - orbital –Spherical shape –Located closest to nucleus (first energy level) –Max 2 electrons • p - orbital - There is 3 distinct p - orbitals (px, py, pz) - Dumbbell shape - Second energy level - 6 electrons ORBITAL
  • 28.
    20 d- orbital - Thereis 5 distinct d – orbitals - Max 10 electrons - Third energy level
  • 29.
    Table : Thenumber of available electron states in some of the electrons shells and subshells. The max. no. of electrons that can occupy a specific shell can be found using the following formula: Electron Capacity = 2n2
  • 30.
    • The followingrepresentation is used : • Example: it means that there are two electrons in the ‘s’ orbital of the first energy level. The element is helium. ELECTRON CONFIGURATIONS Electron configuration – the ways in which electrons are arranged around the nucleus of atoms. The following representation is used : 1s2 Energy level @ Principal quantum no. Orbital No. of electrons in the orbital
  • 31.
    Based on theAufbau principle, which assumes that electrons enter orbital of lowest energy first. The electrons in their orbital are represented as follows : 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d107p6 The sequence of addition of the electrons as the atomic number increases is as follows with the first being the shell number the s, p, d or f being the type of subshell, the last number being the number of electrons in the subshell.
  • 32.
    24 e-e- e- 2nd shell (energy level) Lithium(3 electrons) How to Write the  Electron Configuration of the Element? e-e- e- e- e- e- e- e- e- 3rd shell (energy level) Magnesium (12 electrons) e- e- e-
  • 33.
    25 Exercise: Electron Configurations Atom Symbol Atomic NumberElectron configuration Hydrogen H Helium He Lithium Li Beryllium Be Chlorine Cl Argon Ar Potasium K Calcium Ca
  • 34.
    TRANSITION ELEMENT  Cr [Z =24] 1s2 2s2 2p6 3s2 3p6 4s1 3d5 (correct) halfly filled Mo [Z = 42] … 5s1 4d5 (correct) halfly filled Cu [Z = 29] 1s2 2s2 2p6 3s2 3p6 4s1 3d10 (correct) completely filled Ag [Z = 47] … 5s1 4d10 (correct) completely filled Au [Z = 79] …6s1 5d10 (correct) completely filled
  • 35.
    Exercise Write the electron configuration for below element. a) K b) K1+ c)Fe d) Fe3+ 1s2 2s2    2p6    3s2    3p6    4s2    3d10   4p6 5s2    4d10    5p6    6s2    4f14     5d10 6p6     7s2    5f14    6d10 7p6
  • 36.
  • 37.
    1.2 INTERATOMIC BONDINGAMORPHOUS AND CRYSTALLINE SOLID 2) Secondary Atomic Bonding Van der Waals 1) Primary Interatomic Bonding Metallic, ionic and covalent • The forces of attraction that hold atoms together are called chemical bonds which can  be divided into 2 categories : • Chemical reactions between elements involve either the releasing/receiving or sharing of  electrons .
  • 38.
    How is ionic bonding formed?? 30 1) IONIC BONDING PRIMARYINTERATOMIC BONDING •Often found in compounds composed of electropositive  elements (metals) and electronegative elements (non metals) •Electron are transferred to form a bond •Large difference in electronegativity required 
  • 39.
  • 40.
    • Properties : Solid at room temperature (made of ions)  High melting and boiling points  Hard and brittle  Poor conductors of electricity in solid state  Good conductor in solution or when molten IONIC BONDING
  • 41.
    • Predominant bondingin Ceramics Give up electrons Acquire electrons He - Ne - Ar - Kr - Xe - Rn - F 4.0 Cl 3.0 Br 2.8 I 2.5 At 2.2 Li 1.0 Na 0.9 K 0.8 Rb 0.8 Cs 0.7 Fr 0.7 H 2.1 Be 1.5 Mg 1.2 Ca 1.0 Sr 1.0 Ba 0.9 Ra 0.9 Ti 1.5 Cr 1.6 Fe 1.8 Ni 1.8 Zn 1.8 As 2.0 CsCl MgO CaF2 NaCl O 3.5 EXAMPLE : IONIC BONDING
  • 42.
  • 43.
  • 44.
    • Electrons are  shared to form a bond.  • Most frequently occurs between atoms with similar electronegativities.  •Often found in: 2) COVALENT BONDING How is covalent bonding formed?? • Molecules with nonmetals • Molecules with metals and nonmetals (Aluminum phosphide (AlP) • Elemental solids (diamond, silicon, germanium) • Compound solids (about column IVA) (gallium arsenide - GaAs, indium antimonide - InSb and silicone carbide - SiC) • Nonmetallic elemental molecules (H₂, Cl₂, F₂, etc)
  • 46.
    Properties • Gases, liquids,or solids (made of molecules) • Poor electrical conductors in all phases • Variable ( hard , strong, melting temperature, boiling point) 2) COVALENT BONDING
  • 47.
    • Molecules withnonmetals • Molecules with metals and nonmetals • Elemental solids • Compound solids (about column IVA) He - Ne - Ar - Kr - Xe - Rn - F 4.0 Cl 3.0 Br 2.8 I 2.5 At 2.2 Li 1.0 Na 0.9 K 0.8 Rb 0.8 Cs 0.7 Fr 0.7 H 2.1 Be 1.5 Mg 1.2 Ca 1.0 Sr 1.0 Ba 0.9 Ra 0.9 Ti 1.5 Cr 1.6 Fe 1.8 Ni 1.8 Zn 1.8 As 2.0 SiC C(diamond) H2O C 2.5 H2 Cl2 F2 Si 1.8 Ga 1.6 GaAs Ge 1.8 O 2.0 columnIVA Sn 1.8 Pb 1.8 EXAMPLE : COVALENT BONDING
  • 48.
  • 49.
    • Occur whensome electrons in the valence shell separate from their atoms and exist in a cloud surrounding all the positively charged atoms. • The valence electron form a ‘sea of electron’. • Found for group IA and IIA elements. • Found for all elemental metals and its alloy. 3) METALLIC BONDING How is metallic bonding formed??
  • 50.
  • 51.
    Properties:  Good electricalconductivity  Good heat conductivity  Ductile  Opaque 3) METALLIC BONDING
  • 52.
  • 53.
  • 54.
    • Three bonding mechanism  – Fluctuating Induced Dipole Bonds •Eg: Inert gases, symmetric molecules (H2, Cl2) – Polar molecule‐Induced Dipole Bonds • Asymmetrical molecules such as HCl, HF – Permanent Dipole Bonds • Hydrogen bonding • Between molecules   • H‐F, H‐O, H‐N
  • 55.
  • 56.
    48 Summary of BONDING * Directional bonding       – Strength of bond is not equal in all directions * Nondirectional bonding – Strength of bond is equal in all directions TypeBond energy Melting point Hardness Conductivity Comments Ionic bonding Large (150-370kcal/mol) Very high Hard and brittle Poor -required moving ion Nondirectional (ceramic) Covalent bonding Variable (75-300 kcal/mol) Large -Diamond Small – Bismuth Variable Highest – diamond (>3550) Mercury (-39) Very hard (diamond) Poor Directional (Semiconductors, ceramic, polymer chains) Metallic bonding Variable (25-200 kcal/mol) Large- Tungsten Small- Mercury Low to high Soft to hard Excellent Nondirectional (metal) Secondary bonding Smallest Low to moderate Fairly soft Poor Directional inter-chain (polymer) inter-molecular
  • 57.
    Ceramics (Ionic & covalentbonding): Metals (Metallic bonding): Polymers (Covalent & Secondary): secondary bonding Large bond energy large Tm large E small  Variable bond energy moderate Tm moderate E moderate  Directional Properties Secondary bonding dominates small T small E large  SUMMARY : PRIMARY BONDING
  • 59.
    Exercise : Final Exam [March 2002] 1a] Briefly describedifferences between metallic bond and covalent bond. Support your answer with an example and simple sketch. (7 Marks)
  • 60.
  • 61.
    1.3 CRYSTAL STRUCTURE Crystal structure Crystalline Material SingleCrystal polycrystal Noncrsytalline material (Amorphous) * comprised of many single crystal or grain
  • 62.
    • atoms packin periodic, 3D arrays • typical of: Crystalline materials... -metals -many ceramics -some polymers • atoms have no periodic packing • occurs for: Noncrystalline materials... -complex structures -rapid cooling Si Oxygen crystalline SiO2 noncrystalline SiO2 "Amorphous" = Noncrystalline
  • 63.
    •No recognizable long- rangeorder •Completely ordered •In segments •Entire solid is made up of atoms in an orderly array Amorphous Polycrystalline Crystal •Atoms are disordered •No lattice •All atoms arranged on a common lattice •Different lattice orientation for each grain Structure of SOLID
  • 64.
    • Some engineeringapplications require single crystals: --turbine blades The single crystal turbine blades are able to operate at a higher working temperature than crystalline turbine blade and thus are able to increase the thermal efficiency of the gas turbine cycle.
  • 65.
    • Most engineeringmaterials are polycrystals. grain
  • 66.
    1a] With theaid of sketches, explain the following terms : i. Crystalline materials ii. Amorphous materials iii. Single crystalline iv. Polycrystalline [8 marks] QUESTION : FINAL EXAM [OCT 2012]
  • 67.
    59 Lattice (lines networkin 3D) + Motif (atoms are arranged in a repeated pattern) = CRYSTAL STRUCTURE Most metals exhibit a crystal structure which show a unique arrangement of atoms in a crystal. A lattice and motif help to illustrate the crystal structure. CRYSTAL STRUCTURE lattice motif crystal structure =+
  • 68.
    Lattice - Thethree dimensional array formed by the unit cells of a crystal is called lattice. Unit Cell - When a solid has a crystalline structure, the atoms are arranged in repeating structures called unit cells. The unit cell is the smallest unit that demonstrate the full symmetry of a crystal. A crystal is a three- dimensional repeating array. + =
  • 69.
    61 Fig. : Thecrystal structure (a) Part of the space lattice for natrium chloride (b)Unit cell for natrium chloride crystal Unit cell - a tiny box that describe the crystal structure. •Crystal structure may be present with any of the four types of atomic bonding. •The atoms in a crystal structure are arranged along crystallographic planes which are designated by the Miller indices numbering system. •The crystallographic planes and Miller indices are identified by X-ray diffraction. Fig. : The wavelength of the X-ray is similar to the atomic spacing in crystals.
  • 70.
    62 BRAVAIS LATTICE -describe the geometric arrangement of the lattice points and the translational symmetry of the crystal. CRYSTAL SYSTEM AND CRYSTALLOGRAPHY cubic, hexagonal, tetragonal, rhombodhedral, orthorhombic, monoclinic, triclinic. •7 crystal systems : •By adding additional lattice point to 7 basic crystal systems – form 14 Bravais lattice.
  • 71.
    Crystal Structure of Metals • Simple Cubic (SC) ‐ Manganese •Body‐centered cubic (BCC) ‐ alpha iron, chromium, molybdenum, tantalum,  tungsten, and vanadium. • Face‐centered cubic (FCC) ‐ gamma iron, aluminum, copper, nickel, lead, silver,  gold and platinum. Common crystal structures for metals: FCCSC BCC
  • 72.
    64 SIMPLE CUBIC (SC) • The atoms lie on a grid: layers of rows and  columns. • Sit at the corners of stacked cubic No.of atom at corner = 8 x 1/8 = 1 atom Total No. of atom in one unit cell = 1 atom Example : Manganese
  • 73.
    Body‐centered Cubic Crystal  Structure The body-centered cubic(bcc) crystal structure: (a) hard-ball model; (b) unit cell; and (c) single crystal with many unit cells
  • 74.
    66 BODY CENTERED CUBIC STRUCTURE (BCC) • Cubic unitcell with 8 atoms located at the corner & single atom at cube center Example : Chromium, Tungsten,Molybdenum,Tantalum, Vanadium No. of atom at corner = 8 x 1/8 = 1 atom No. of atom at center = 1 atom Total No. of atom in one unit cell = 2 atoms
  • 75.
    Face‐centered Cubic Crystal  Structure The face-centered cubic(fcc) crystal structure: (a) hard-ball model; (b) unit cell; and (c) single crystal with many unit cells
  • 76.
    68 FACE CENTERED CUBIC STRUCTURE (FCC) Atoms are locatedat each of the corners and the centers of all the cube faces. Each corner atom is shared among 8 unit cells,face centered atom belong to 2. Example : Cu,Al,Ag,Au, Ni, PtNo. of atom at corner = 8 x 1/8 = 1 atom No. of atom at face = 6 x 12 = 3 atoms Total No. of atom in one unit cell = 4 atoms
  • 77.
    69 1.4 EFFICIENCY OFATOMIC PACKING,DENSITY COMPUTATION AND MILLER INDEX
  • 78.
    70 APF = no.of atom, n x volume of atoms in the unit cell, (Vs) volume of the unit cell, (Vc) ATOMIC PACKING FACTOR •Atomic packing factor (APF) is defined as the efficiency of atomic arrangement in a unit cell. •It is used to determine the most dense arrangement of atoms. It is because how the atoms are arranged determines the properties of the particular crystal. •In APF, atoms are assumed closely packed and are treated as hard spheres. •It is represented mathematically by :
  • 79.
    71 close-packed directions a R=0.5a contains 8x 1/8 = 1 atom/unit cell EXAMPLE Calculate the APF for Simple Cubic (SC)?
  • 80.
    72 EXERCISE a) BCC b)FCC Calculate the APF for BCC and FCC ?
  • 81.
    73 a (lattice constant)and R (atom radius) Atoms/unit cell Packing Density (APF) Examples Simple cubic a = 2R 1 52% CsCl BCC a = 4R/√3 2 68% Many metals: α-Fe, Cr, Mo, W FCC a = 4R/√2 4 74% Many metals : Ag, Au, Cu, Pt Table : APF for simple cubic, BCC, FCC and HCP
  • 82.
    74 1a] Give thedefinition of a unit cell. Briefly describe lattice constant in the unit cell. [ 4 marks] 1b] Give the definition of APF for a unit cell and calculate the APF for FCC. [4 marks] QUESTION : FINAL EXAM [Oct 2010]
  • 83.
    75 DENSITY COMPUTATIONS • A knowledge of the crystal structure of a metallic  solid permits computation of its density through the  relationship : Where ρ= n A Vc NA n = number of atoms associated with each unit cell A = atomic weight Vc = volume of the unit cell NA = Avogadro’s number (6.023 x 1023 atoms/mol)
  • 84.
    76 Calculate the densityfor nickel (simple cubic structure). Note that the unit cell edge length (a) for nickel is 0.3524 nm. EXAMPLE
  • 85.
    77 Copper has anatomic radius of 0.128 nm, FCC crystal structure and an atomic weight of 63.5 g/mol. Compute its density and compare the answer with its measured density. EXERCISE Element Symbol Atomic weight (amu) Density of solid, 20oC (g/cm3) Crystal Structure, 20oC Atomic radius (nm) Copper Cu 63.55 8.94 FCC 0.128
  • 86.
    78 1b] Platinum hasa FCC structure, a lattice parameter of 0.393 nm and an atomic weight of 195.09 g/mol. Determine : i. Atomic radius [in cm] ii. Density of platinum [ 6marks] QUESTION : TEST 1 [August 2012]
  • 87.
    79 Miller indices isused to label the planes and directions of atoms in a crystal. Why Miller indices is important? To determine the shapes of single crystals, the interpretation of X-ray diffraction patterns and the movement of a dislocation , which may determine the mechanical properties of the material. MILLER INDICES Miller indices • (h k l) : a specific crystal plane or face • {h k l} : a family of equivalent planes • [h k l] : a specific crystal direction • <h k l> : a family of equivalent directions Figure : Planes of the form {110} in cubic systems
  • 88.
    80 POINT COORDINATES - Theposition of any point located within a unit cell may be specified in terms of its coordinates (x,y,z) z y x Example : BCC structure Point Number x axis y-axis z-axis Point Coordinated 1 2 3 4 5 6 7 8 9
  • 89.
    81 MILLER INDICES OFA DIRECTION How to determine crystal direction indices? i) Determine the length of the vector projection on each of the three axes, based on . ii) These three numbers are expressed as the smallest integers and negative quantities are indicated with an overbar. iii) Label the direction [hkl]. Figure : Examples of direction Axis X Y Z Head (H) x2 y2 z2 Tail (T) x1 y1 z1 Head (H) –Tail (T) x2-x1 y2-y1 z2-z1 Reduction (if necessary) Enclosed [h k l] * No reciprocal involved.
  • 90.
    82 EXAMPLE : CRYSTALDIRECTION INDICES 0,0,0 1,1,01 1 1,0,0 0,1,0
  • 91.
    83 EXERCISE : CRYSTALDIRECTION INDICES 0½ 1 1 0 1 1 1 1
  • 92.
    84 EXERCISE : CRYSTALDIRECTION INDICES 0 ½ 0 ¾ ½ ½ ½
  • 93.
    Determine the directionindices of the cubic direction between the position coordinates TAIL (3/4, 0, 1/4) and HEAD (1/4, 1/2, 1/2)?
  • 94.
    Draw the followingMiller Indices direction. a) [ 1 0 0 ] b) [ 1 1 1 ] c) [ 1 1 0 ] d) [ 1 1 0 ]
  • 95.
    87 i) Determine thepoints at which a given crystal plane intersects the three axes, say at (a,0,0),(0,b,0), and (0,0,c). If the plane is parallel an axis, it is given an intersection ∞. ii) Take the reciprocals of the three integers found in step (i). iii) Label the plane (hkl). These three numbers are expressed as the smallest integers and negative quantities are indicated with an overbar,e.g : a. MILLER INDICES OF A PLANE How to determine crystal plane indices? Figure : Planes with different Miller indices in cubic crystals Axis X Y Z Interceptions Reciprocals Reduction (if necessary) Enclosed (h k l )
  • 96.
    +x +y +z _ z _ y _ x (1 , 0, 0) (0 , 1 , 0) (0 , 0 , 1) _ (0 , 0 , 1) _ (0 , 1 , 0) _ (1 , 0 , 0)
  • 97.
  • 98.
    EXERCISE. : CRYSTALPLANE INDICES
  • 99.
    0 EXERCISE. : CRYSTALPLANE INDICES ½
  • 100.
    Determine the MillerIndices plane for the following figure below?
  • 101.
    Draw the followingMiller Indices plane. a) ( 1 0 0 ) b) ( 0 0 1 ) c) ( 1 0 1 ) d) ( 1 1 0 )
  • 102.
    94 NOTE (for planeand direction): • PLANE Make sure you enclosed your final answer in brackets (…) with no separating commas → (hkl) • DIRECTION Make sure you enclosed your final answer in brackets (…) with no separating commas → [hkl] • FOR BOTH PLANE AND DIRECTION Negative number should be written as follows : -1 (WRONG) 1 (CORRECT) Final answer for labeling the plane and direction should not have fraction number do a reduction.
  • 103.
    95 1.5 RELATIONSHIP BETWEEN ATOMICSTRUCTURE, CRYSTAL STRUCTURES AND PROPERTIES OF MATERIALS
  • 104.
    96 PHYSICAL PROPERTIES OFMETALS •Solid at room temperature (mercury is an exception) •Opaque •Conducts heat and electricity •Reflects light when polished •Expands when heated, contracts when cooled •It usually has a crystalline structure Physical properties are the characteristic responses of materials to forms of energy such as heat, light, electricity and magnetism. The physical properties of metals can be easily explained as follows :
  • 105.
    Mechanical Properties  Terminology for Mechanical Properties The Tensile Test: Stress‐Strain Diagram  Properties Obtained from a Tensile Test  Hardness of Materials
  • 106.
    98 MECHANICAL PROPERTIES OFMETALS Mechanical properties are the characteristic dimensional changes in response to applied external or internal mechanical forces such as shear strength, toughness, stiffness etc. The mechanical properties of metals can be easily explained as follows :
  • 107.
  • 108.
  • 109.
    Terminology  Load ‐The force applied to a material during testing.  Strain gage or Extensometer ‐ A device used for  measuring change in length (strain).  Engineering stress ‐ The applied load, or force,  divided by the original cross‐sectional area of the  material.  Engineering strain ‐ The amount that a material  deforms per unit length in a tensile test.
  • 110.
    Stress-Strain Diagram Strain () (L/Lo) 4 1 2 3 5 Elastic Region Plastic Region Strain Hardening Fracture ultimate tensile strength Elastic region slope =Young’s (elastic) modulus yield strength Plastic region ultimate tensile strength strain hardening fracture necking yield strength UTS y εEσ  ε σ E   12 y εε σ E  
  • 111.
    Stress-Strain Diagram (cont) •Elastic Region (Point 1 –2) - The material will return to its original shape after the material is unloaded( like a rubber band). - The stress is linearly proportional to the strain in this region. εEσ  : Stress(psi) E : Elastic modulus (Young’s Modulus) (psi) : Strain (in/in) σ ε - Point 2 : Yield Strength : a point where permanent deformation occurs. ( If it is passed, the material will no longer return to its original length.) ε σ E or
  • 112.
    • Strain Hardening -If the material is loaded again from Point 4, the curve will follow back to Point 3 with the same Elastic Modulus (slope). - The material now has a higher yield strength of Point 4. - Raising the yield strength by permanently straining the material is called Strain Hardening. Stress-Strain Diagram (cont)
  • 113.
    • Tensile Strength(Point 3) - The largest value of stress on the diagram is called Tensile Strength(TS) or Ultimate Tensile Strength (UTS) - It is the maximum stress which the material can support without breaking. • Fracture (Point 5) - If the material is stretched beyond Point 3, the stress decreases as necking and non-uniform deformation occur. - Fracture will finally occur at Point 5. Stress-Strain Diagram (cont)
  • 114.
    Figure : Stressstrain diagram Typical regions that can be observed in a stress- strain curve are: • Elastic region • Yielding • Strain Hardening • Necking and Failure • This diagram is used to determine how material will react under a certain load.
  • 115.
  • 116.
  • 117.
    The stress-strain curvefor an aluminum alloy.
  • 118.
    1100.2 8 0.6 1 Magnesium, Aluminum Platinum Silver, Gold Tantalum Zinc, Ti Steel,Ni Molybdenum Graphite Si crystal Glass-soda Concrete Si nitride Al oxide PC Wood( grain) AFRE( fibers)* CFRE* GFRE* Glass fibers only Carbon fibers only Aramid fibers only Epoxy only 0.4 0.8 2 4 6 10 20 40 60 80 100 200 600 800 1000 1200 400 Tin Cu alloys Tungsten <100> <111> Si carbide Diamond PTFE HDPE LDPE PP Polyester PS PET CFRE( fibers)* GFRE( fibers)* GFRE(|| fibers)* AFRE(|| fibers)* CFRE(|| fibers)* Metals Alloys Graphite Ceramics Semicond Polymers Composites /fibers E(GPa) Eceramics > Emetals >> Epolymers 109 Pa Composite data based on reinforced epoxy with 60 vol% of aligned carbon (CFRE), aramid (AFRE), or glass (GFRE) fibers. Young’s Moduli: Comparison
  • 119.
  • 120.
    112 Graphite/ Ceramics/ Semicond Metals/ Alloys Composites/ fibers Polymers Yieldstrength,y(MPa) PVC Hardtomeasure, sinceintension,fractureusuallyoccursbeforeyield. Nylon 6,6 LDPE 70 20 40 60 50 100 10 30 200 300 400 500 600 700 1000 2000 Tin (pure) Al(6061)a Al (6061)ag Cu (71500)hr Ta (pure) Ti (pure)a Steel (1020)hr Steel (1020)cd Steel (4140)a Steel (4140)qt Ti (5Al-2.5Sn)a W (pure) Mo (pure) Cu (71500)cw Hardtomeasure, inceramicmatrixandepoxymatrixcomposites,since intension,fractureusuallyoccursbeforeyield. HDPE PP humid dry PC PET ¨ Room T values a = annealed hr = hot rolled ag = aged cd = cold drawn cw = cold worked qt = quenched & tempered Yield Strength: Comparison
  • 121.
    113 tensile stress,  engineeringstrain,  y p = 0.002 Yield Strength, y tensile stress,  engineering strain,  Elastic initially Elastic+Plastic at larger stress permanent (plastic) after load is removed p plastic strain
  • 122.
    114 F  bonds stretch return to initial 1. Initial2. Small load 3. Unload F  Linear- elastic Non-Linear- elastic Elastic Deformation • Atomic bonds are stretched but not broken. • Once the forces are no longer applied, the object returns to its original shape. • Elastic means reversible.
  • 123.
    115 Typical stress-strain behavior fora metal showing elastic and plastic deformations, the proportional limit P and the yield strength σy, as determined using the 0.002 strain offset method (where there is noticeable plastic deformation). P is the gradual elastic to plastic transition.
  • 124.
    116 1. Initial 2.Small load 3. Unload . F  linear elastic linear elastic plastic planes still sheared F elastic + plastic bonds stretch & planes shear plastic Plastic Deformation (Metals) • Atomic bonds are broken and new bonds are created. • Plastic means permanent.
  • 125.
    117 Permanent Deformation • Permanent deformationfor metals is accomplished by means of a process called slip, which involves the motion of dislocations. • Most structures are designed to ensure that only elastic deformation results when stress is applied. • A structure that has plastically deformed, or experienced a permanent change in shape, may not be capable of functioning as intended.
  • 126.
    118 • After yielding, the stress necessary to  continue plastic deformation in metals  increases to a maximum point (M) and  then decreases to the eventual fracture  point (F). •All deformation up to the maximum  stress is uniform throughout the tensile  sample.  • However, at max stress, a small  constriction or neck begins to form. • Subsequent deformation will be confined  to this neck area. • Fracture strength corresponds to the  stress at fracture.  Region between M and F: • Metals: occurs when noticeable necking starts. •  Ceramics: occurs when crack propagation starts. •  Polymers: occurs when polymer backbones are aligned and about to break. Tensile Strength, TS
  • 127.
  • 128.
    120 Room T values Si crystal <100> Graphite/ Ceramics/ Semicond Metals/ Alloys Composites/ fibers Polymers Tensilestrength,TS(MPa) PVC Nylon 6,6 10 100 200 300 1000 Al(6061) a Al (6061) ag Cu (71500) hr Ta (pure) Ti (pure)a Steel (1020) Steel (4140) a Steel (4140) qt Ti (5Al-2.5Sn) a W (pure) Cu (71500) cw LDPE PP PC PET 20 30 40 2000 3000 5000 Graphite Al oxide Concrete Diamond Glass-soda Si nitride HDPE wood ( fiber) wood(|| fiber) 1 GFRE(|| fiber) GFRE( fiber) CFRE(|| fiber) CFRE( fiber) AFRE(|| fiber) AFRE( fiber) E-glass fib C fibers Aramid fib Based on data in Table B4, Callister 6e. a     = annealed hr   = hot rolled ag = aged cd = cold drawn cw = cold worked qt   = quenched & tempered AFRE, GFRE, & CFRE = aramid, glass, & carbon fiber‐reinforced epoxy composites, with 60 vol% fibers. Tensile Strength: Comparison
  • 129.
    121 • Tensile stress,: • Shear stress, : Area, A Ft Ft   Ft Ao original area before loading Area, A Ft Ft Fs F F Fs   Fs Ao Stress has units: N/m2 or lb/in2 Engineering Stress
  • 130.
  • 131.
    123 Engineering tensile strain, Engineering tensile stress,  smaller %EL (brittle if %EL<5%) larger %EL (ductile if %EL>5%) • Another ductility measure: 100% x A AA AR o fo   •  Ductility may be expressed as either percent elongation (% plastic strain at fracture)  or percent reduction in area. • %AR > %EL is possible if internal voids form in neck.  Lo Lf Ao Af 100% x l ll EL o of   Ductility, %EL Ductility is a measure of the plastic  deformation that has been sustained at  fracture: A material that  suffers very  little plastic  deformation is  brittle.
  • 132.
    124 Toughness Lower toughness: ceramics Higher toughness: metals Toughness is the abilityto absorb energy up to fracture (energy per unit volume of material). A “tough” material has strength and ductility. Approximated by the area under the stress-strain curve.
  • 133.
    • Energy tobreak a unit volume of material • Approximate by the area under the stress-strain curve. 21 smaller toughness- unreinforced polymers Engineering tensile strain,  Engineering tensile stress,  smaller toughness (ceramics) larger toughness (metals, PMCs) Toughness
  • 134.
    126 Linear Elastic Properties Modulusof Elasticity, E: (Young's modulus) • Hooke's Law:  = E  • Poisson's ratio: metals:  ~ 0.33 ceramics:  ~0.25 polymers:  ~0.40  Linear- elastic 1 E  Units: E: [GPa] or [psi] : dimensionless F F simple tension test xy
  • 135.
  • 136.
  • 137.
    True Stress andTrue Strain  True stress The load divided by the actual cross-sectional area of the specimen at that load.  True strain The strain calculated using actual and not original dimensions, given by εt ln(l/l0). •The relation between the true stress‐true  strain diagram and engineering stress‐ engineering strain diagram.   •The curves are identical to the yield point.
  • 138.
    (c)2003 Brooks/Cole, adivision of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license. The stress-strain behavior of brittle materials compared with that of more ductile materials
  • 139.
    131 ‐‐brittle response (aligned chain, cross linked & networked case) ‐‐plastic response (semi‐crystalline case)  Stress-Strain Behavior: Elastomers 3 different responses: A –brittle failure B – plastic failure C ‐ highly elastic (elastomer) initial: amorphous chains are kinked, heavily cross-linked. final: chains are straight, still cross-linked 0 20 40 60 0 2 4 6 (MPa)  8 x x x elastomer plastic failure brittle failure Deformation is reversible!
  • 140.
  • 141.
    133 Metals can failby brittle or ductile fracture. FRACTURE MECHANISM OF METALS Ductile fracture is better than brittle fracture because : Ductile fracture occurs over a period of time, where as brittle fracture is fast and can occur (with flaws) at lower stress levels than a ductile fracture. Figure : Stress strain curve for brittle and ductile material
  • 142.
  • 143.
    (c)2003 Brooks/Cole, adivision of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license. • Localized deformation of a ductile material during a tensile test produces a necked region. • The image shows necked region in a fractured sample Ductile Fracture
  • 144.
    136 1c] Ductility isone of the important mechanical properties. i] Define the ductility of a metal. ii] With the aid of schematic diagrams, describe elastic and plastic deformations. [6 marks] QUESTION : FINAL EXAM [April 2011]
  • 145.
    Ductile fracture Brittlefracture What are the differences between ductile fracture & brittle fracture?
  • 146.
    Hardness of Materials Hardness test - Measures the resistance of a material to penetration by a sharp object.  Macrohardness - Overall bulk hardness of materials measured using loads >2 N.  Microhardness Hardness of materials typically measured using loads less than 2 N using such test as Knoop (HK).  Nano-hardness - Hardness of materials measured at 1– 10 nm length scale using extremely small (~100 µN) forces.
  • 147.
    139 Hardness • Hardness isa measure of a material’s resistance to localized plastic deformation (a small dent or scratch). • Quantitative hardness techniques have been developed where a small indenter is forced into the surface of a material. • The depth or size of the indentation is measured, and corresponds to a hardness number. • The softer the material, the larger and deeper the indentation (and lower hardness number).
  • 148.
    140 •  Resistance to permanently indenting the surface. •  Large hardness means: ‐‐resistance to plastic deformation or cracking in compression. ‐‐better wear properties. e.g., 10mm sphere apply knownforce (1 to 1000g) measure size of indent after removing load dD Smaller indents mean larger hardness. increasing hardness most plastics brasses Al alloys easy to machine steels file hard cutting tools nitrided steels diamond Hardness
  • 149.
  • 150.
  • 152.
    Indentation Geometry for Brinnel  Testing Figure Indentation geometryin Brinell hardness testing: (a) annealed metal; (b) work- hardened metal; (c) deformation of mild steel under a spherical indenter. Note that the depth of the permanently deformed zone is about one order of magnitude larger that the depth of indentation. For a hardness test to be valid, this zone should be developed fully in the material.
  • 153.
    Hardness  Scale  Conversions Figure Chart forconverting various hardness scales. Note the limited range of most scales. Because of the many factors involved, these conversions are approximate.
  • 154.
    146 Conversion of  Hardness Scales Also see: ASTME140 - 07 Volume 03.01 Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness
  • 155.
    147 Correlation  between  Hardness and  Tensile  Strength • Both hardnessand tensile strength are indicators of a metal’s resistance to plastic deformation. • For cast iron, steel and brass, the two are roughly proportional. • Tensile strength (psi) = 500*BHR
  • 156.
    148 1c] Hardness isone of the important mechanical properties in engineering. Describe FOUR [4] types of hardness measurement method in terms of name and types of indenter. [ 4 marks] QUESTION : FINAL EXAM [Oct 2012]
  • 157.
    149 •  Stress and strain:  These are size‐independent measures of load and displacement, respectively. •  Elastic behavior:  This reversible behavior often shows a linear relation between stress and strain. To minimize deformation, select a material with a large elastic modulus (E or G). •  Plasticbehavior:  This permanent deformation behavior occurs when the tensile (or compressive) uniaxial stress reaches y. •  Toughness:  The energy needed to break a unit volume of material. •  Ductility:  The plastic strain at failure. Summary
  • 158.
  • 159.
    CONTENTS 2.1 Solidification of Pure Metal and Alloys 2.2 Phase diagram: Microstructure development,  Microconstituentof phases. 2.3 Fe‐Fe3C system: Microstructure development,  Microconstituent of phases. 2.4 Ferrous and Non‐Ferrous Metals 2
  • 160.
  • 161.
    2.1 Solidification of Pure Metal and Alloys • Terminology •Solution – Metal Solid Solution – Type of Solid Solution • Substitutional Solid Solution • Interstitial Solid Solution – The Solubility Limit • Solidification 4 • Cooling Curve – Cooling Curve of Pure Metal – Cooling Curve of Alloys – Development  of Phase  Diagram – Cooling Curve for Binary  Isomorphous
  • 162.
  • 163.
    6 Solvent In an alloy,the element or compound present in greater amount. Solute In an alloy, the element or compound present in lesser amount. Solution When two components combine to form a single phase. Solubility Degree to which the two components mix. Solubility limit The max. concentration of solute that may be added without forming a new phase. TERMINOLOGY
  • 164.
    Components: The elements orcompounds which are mixed initially (e.g., Al and Cu) Phases: The physically and chemically distinct material regions that result (e.g.,  and ). Example : Liquid L (liquid) + α (alpha-solid) Aluminum-Copper Alloy (darker phase)  (lighter phase) TERMINOLOGY * Note that solid, gas and liquid is a phase. 7
  • 165.
    SOLUTION • When 2 components combined they can  either remain separate or combine to form  a single phase which is referred to as a  solution. •i.e. – Alcohol and water – completely soluble – Hot choc – powder mix soluble in water but  limited extent – Oil and vinegar – insoluble liquids can be  temporarily mixed 8
  • 166.
    9 • Most metals are combined to form alloy in order to impart  specific characteristic. • An alloy is a combination of two or more elements (added  impurity atoms), at least one of which is a metal. •The addition of impurity atoms to a metal will result in the  formation of a solid solution. • A solid solution is a solid‐state solution of one or more  solutes in a solvent.  • E.g : Steel/Cast Iron (Iron base alloys),  Bronze/Brass (Copper base alloys),  Al alloys, Ni base alloys, Mg base alloys, Ti alloys. METALLIC SOLID SOLUTION
  • 167.
    10 Characteristic of solidsolution: • Form when solute atoms are added to the host material. • Crystal structure is maintained. • No new structure formed. • Compositionally homogeneous. Solute Used to denote an  element/compound present in a  minor concentration Solvent Element / compound that is  present in the greatest amount  (host atoms) METALLIC SOLID SOLUTION
  • 168.
    11 TYPES OF SOLIDSOLUTION i. Substitutional solid solution ii. Interstitial solid solution Known as point defects (where an atom is missing or is in an irregular place in the lattice structure).
  • 169.
    Substitutional Solid Solution Hume-Rothery Rules Substitutional solid solution with complete solubility exists when : RULE     PROPERTIES CONDITIONS 1 Atomic radius Less than about ± 15% difference in   atomic radii 2 Crystal structure Same crystal structure (e.g : BCC, FCC or HCP). 3 Electronegativity Similar electronegativity/ smaller diff. 4 Valence electron Similar valance electron  12 Note: Not all alloys systems that fit these rules will form appreciable solid solutions Host atoms are replaced/substitute with solute/ impurity atoms.
  • 170.
    13 EXAMPLE 1 :Cu-Ni system • Both metals are completely soluble in each other because all the requirement of Hume Rothery Rules have been satisfactorily fulfilled. • The solid phase is a substitutional solid solution. System RULE 1 Atomic radius, R (nm) RULE 2 Crystal structure RULE 3 E/negativity RULE 4 Valences Cu Ni 0.128 0.125 FCC FCC 1.90 1.80 +2 +2 Substitutional Solid Solution
  • 171.
    14 EXAMPLE 2: Cu-Agsystem • Both metals are partially soluble in each other because one of the requirement of Hume Rothery Rules have not been satisfactorily fulfilled. • The solid phase is a substitutional solid solution. System RULE 1 Atomic radius, R (nm) RULE 2 Crystal structure RULE 3 E/negativity RULE 4 Valences Cu Ag 0.128 0.144 FCC FCC 1.90 1.80 +2 +1 Substitutional Solid Solution
  • 172.
    15 The atoms ofthe parent or solvent metal are bigger than the atoms of the alloying or solute metal. In this case, the smaller atoms fit into spaces between the larger atoms. Interstitial Solid Solution exists when : • Impurity atoms fill the voids in the solvent atom lattice. • It interstices among the host atoms. • Atomic diameter of an interstitial impurity must be smaller than host atoms. • Normal max. allowable concentration of interstitial impurity atom is low (<10%). Interstitial Solid Solution
  • 173.
    • Solubility Limit:Max concentration for which only a solution occurs. • Question : What is the solubility limit at 20oC? Answer : If Co < 65wt% sugar: If Co > 65wt% sugar: • Solubility limit increases with T: Ex: Phase Diagram: Water-Sugar System Pure Sugar Temperature(°C) 0 20 40 60 80 100 Co=Composition (wt% sugar) L (liquid solution i.e., syrup) Solubility Limit L (liquid) + S (solid sugar) 65 20 40 60 80 100 Pure Water THE SOLUBILITY LIMIT 16
  • 174.
    SOLIDIFICATION OF PUREMETAL & ALLOYS COOLING CURVE PHASE DIAGRAM 17
  • 175.
    SOLIDIFICATION • Solidification isthe most important phase transformation because most of metals/alloys undergo this transformation before becoming useful objects. • Solidification involve liquid-solid phase transformation, e.g : casting process. • The solidification process differs depending on whether the metal is a pure element or an alloy. 18
  • 176.
    19 Liquid Nucleus Liquid Grain Grain boundaries (means regionbetween crystals) Crystals growing (irregular grain) (a) (b) (c) Nucleation  of Crystals Crystal  Growth Crystals Grow  Together and Form  Grain Boundaries Solution (Liquid State) SOLIDIFICATION Solidification of Pure Metal and Alloys 1. The formation of stable nuclei in the melt (nucleation) 2. The growth of nuclei into crystal 3. The formation of a grain structure
  • 177.
    SOLIDIFICATION OF PUREMETAL & ALLOYS COOLING CURVE PHASE DIAGRAM 20
  • 178.
    • Used to determine phase transition temperature. •Temperature and time data of cooling molten metal is  recorded and plotted. • Produce a graph known as PHASE DIAGRAM which  shows the relationship among temperature,  composition and phases present in alloy COOLING CURVE 21
  • 179.
    22 A pure metalsolidifies at a constant temperature equal to its freezing point, which is the same as its melting point. Figure : Cooling curve for a pure metal during casting Cooling Curve of Pure Metal
  • 180.
    23 Most alloys freezeover a temperature range rather than at a single temperature. Figure : a) Phase diagram for a copper-nickel alloy system and b) Associated cooling curve for a 50%Ni-50%Cu composition during casting Cooling Curve of Alloys
  • 181.
    • Series ofcooling curves at different metal composition are first constructed. • Points of change of slope of cooling curves (thermal arrests) are noted and phase diagram is constructed. • More the number of cooling curves, more accurate is the phase diagram. Development  of Phase Diagram 24
  • 182.
    25 • For pure metal, the cooling  curves show horizontal  thermal arrest at their  freezes points, as seen for  pure A and pure B (at AB  and CD). • Different composition will  give different cooling  curves. •The slope changes at L1‐L9  are correspond to the  liquidus point. • The slope changes at S1‐S9  are correspond to the  solidus points. Freezing zone Cooling Curve For Binary Isomorphous L1 S1 A B D C L9 S9 1
  • 183.
    26 L1 S1 By removing thetime axis and replacing it with composition get straight lines Connection of points on a phase diagram representing the temp. at which each alloy in the system begins to solidify --- obtain liquidus line Join all the points where the liquid has solidified is complete --- obtain solidus line Red regions – material is liquid Green regions – solid and liquid phases are in equilibrium. Blue regions – material is solid 2 3
  • 184.
    SOLIDIFICATION OF PUREMETAL & ALLOYS COOLING CURVE PHASE DIAGRAM 27
  • 185.
  • 186.
    2.2 Phase diagram: Microstructure development,  Microconstituent of phases. • Phase Diagram •The Lever Rule • Binary Phase Diagram – Binary Isomorphous Phase Diagram (COMPLETE SOLID SOLUTION) – Binary Eutectic Phase Diagram (NO SOLID SOLUTION) – Binary Eutectic Phase Diagram (LIMITED SOLID SOLUTION) 29 • Invariant Equilibrium • Terminology
  • 187.
    Learning objective: Students should be able to: • Schematically sketch and label the various phase  regions for simple binary phase diagrams. •Determine the phase(s) present, composition(s) and relative amount of phase(s). • Discuss the development of the microstructures,  upon cooling, for several situations.  • Locate the invariant point and write reaction for  all the transformations for either heating or  cooling. 30
  • 188.
  • 189.
    32 Types of PHASE DIAGRAM? 1. Unary – Consists of One components in an alloy 2.Binary – Consists of two components in an alloy 3. Ternary‐ Consists of three components in an alloy Example: Unary Phase Diagram PHASE DIAGRAM
  • 190.
    33 What do I need to know about BINARY PHASE DIAGRAM? Definition : Consists two components in an alloy.  Types : 1. Complete solid solution (e.g. Cu and Ni are completely soluble) 2.No solid solution (e.g. Pb insoluble in copper) 3. Limited solid solution (e.g. Sn has limited solubility in Pb) PHASE DIAGRAM
  • 191.
    34 There are three(3)types of binary phase diagram : 1) Complete solid solution 2) No solid solution 2) Limited solid solution Alcohol and water Oil and water Pepper powder and water −Complete solubility in liquid and solid - Result in single phase - Result in multi phase −Often soluble up to limit - Result in multi phase Cu and Ni Pb and Copper Zinc and Copper, Sn and Pb BINARY PHASE DIAGRAM
  • 192.
  • 193.
    36 Isomorphous • Complete liquid& solid solubility • Only one solid phase forms • Same crystal structure Example : Cu-Ni system • 2 phases: L (liquid), α (FCC solid solution) • 3 different phase fields/regions 1) Liquid phase(L)  homogeneous liquid solution (Cu + Ni) 2) Two phases  α (FCC solid solution) + liquid (L) 3) α phase (FCC solid solution)  substitutional solid solution (consists both Cu-Ni) Figure : Cu-Ni system Note that : • Liquidus is line above which all of alloy is liquid • Solidus is line below which all of alloy is solid BINARY ISOMORPHOUS PHASE DIAGRAM
  • 194.
    37 • Rule 1:If we know T and Co, then we know: --the # and types of phases present. wt% Ni20 40 60 80 1000 100 0 110 0 120 0 130 0 140 0 150 0 160 0 T(°C) L (liquid)  (FCC solid solution) L +  liquidus solidus A(1100,60) B(1250,35) Cu-Ni system Some common features of phase diagrams  “α”,“β” and “γ” and etc. are used to indicate solid solution phases.  “L” represents a liquid. BINARY ISOMORPHOUS PHASE DIAGRAM: # and types of phases
  • 195.
    • Rule 2:If we know T and Co, then we know: --the composition of each phase (weight percent, wt%). wt% Ni 20 1200 1300 T(°C) L (liquid)  (solid)L +  liquidus solidus 30 40 50 TA A D TD TB B tie line L +  433532 CoCL C Cu-Ni system Determination of phase compositions 1. Locate the temperature. 2. If one phase present, the composition = overall composition (Co) of alloy. 3. If two phase present, use tie line. BINARY ISOMORPHOUS PHASE DIAGRAM: composition of phases 38
  • 196.
    • Sum ofweight fractions: • Conservation of mass (Ni): • Combine above equations: WL  W  1 Co  WLCL  WC  R R  S W  Co  CL C  CL  S R  S WL  C  Co C  CL • A geometric interpretation: Co R S WWL CL C moment equilibrium: 1 W solving gives Lever Rule WLR  WS THE LEVER RULE Let WL = fraction of liquid and Wα = fraction of solid (unknown) 39
  • 197.
  • 198.
    • Rule 3:If we know T and Co, then we know: --the amount of each phase [e.g: Single phase (1.0 or 100%)]. Cu-Ni system SR Note •Within single phase alloy, the alloy is completely (100%) that phase. •If two phase alloy exists, use Lever Rule 41 BINARY ISOMORPHOUS PHASE DIAGRAM: weight fractions of phases wt% Ni 20 1200 1300 T(°C) L (liquid)  (solid) L +  liquidus solidus 30 40 50 TA A D TD TB B tie line L +  433532 CoCL C R S
  • 199.
    42 EXAMPLE : Calculatethe amounts of α and L at 1250°C in the Cu-35% Ni alloy? THE LEVER RULE
  • 200.
    43 EXERCISE : Determinethe relative amount on each phase in the Cu 40% Ni alloy shown in Figure below at 1300°C, 1270°C, 1250°C and 1200°C ? THE LEVER RULE
  • 201.
    44 Consider Co =35wt% Ni Figure : Cooling of Cu-Ni alloy Microstructure A B C D E BINARY ISOMORPHOUS PHASE DIAGRAM: Microstructure wt% Ni 20 1200 1300 30 40 50 1100 L (liquid)  (solid) L +  L +  T(°C) A D B 35 Co L: 35wt%Ni : 46wt%Ni C E L: 35wt%Ni 46 43 32 24 35 36 : 43wt%Ni L: 32wt%Ni L: 24wt%Ni : 36wt%Ni
  • 202.
  • 203.
    46 •Region above line ced = liquid solution •Line ce and ed= liquidus •Line cfegd = solidus •Region below line feg = mixture of solid A & B •Point e = eutectic point  (the lowest temp. at which a liquid solution can exist) BINARY EUTECTIC PHASE DIAGRAM (NO SOLID SOLUTION) Eutectic: the composition of a mixture that has the lowest melting point where the phases simultaneously crystallize from molten solution at this temperature. From the Greek 'eutektos', meaning ‘easily melted’. No solid solution where the components are completely soluble in the liquid state but complete insoluble in the solid state. Example : Pb-Cu system
  • 204.
    47 Determination of phaseand phase composition: Same as in binary isomorphous system. Determination of weight fraction Weight fraction of liquid, WL= R/(R+Q) Weight fraction of solid A, WA = Q/(R+Q) BINARY EUTECTIC PHASE DIAGRAM (NO SOLID SOLUTION) HYPOEUTECTIC HYPEREUTECTIC Three phases in equilibrium at eutectic point compositions and temperature Eutectic reaction L A+ B
  • 205.
  • 206.
    The eutectic microstructureforms in the alternating layers which is known as lamellar: → atomic diffusion of lead and tin only occur over relatively short distances in solid state. Eutectic α Eutectic β Figure : Lamellar eutectic structure BINARY EUTECTIC PHASE DIAGRAM (NO SOLID SOLUTION) 49
  • 207.
    50 Liquid Hypoeutectic alloy Hypereutecticalloy When the composition of an alloy, places it to the left of the eutectic point When the composition of an alloy, places it to the right of the eutectic point First solid to form : Primary α (a.k.a. proeutectic α) First solid to form : Primary β (a.k.a. proeutectic β) β BINARY EUTECTIC PHASE DIAGRAM (NO SOLID SOLUTION)
  • 208.
  • 209.
    52 2.  Cooling curve at hypo/hypereutectic alloy Once the liquid reach TE, it will have the eutectic composition and  will freeze at that temperature to form solid eutectic mixture of  two phases.    TL = temperatureof liquid TE = temperature at eutectic point Figure : Cooling curve at hypo/hyper eutectic alloy Liquid + Solid Liquid Solid BINARY EUTECTIC PHASE DIAGRAM (No SOLID SOLUTION) TE HYPOEUTECTIC HYPOEUTECTIC
  • 210.
  • 211.
    54 Limited solid solution where the components are completely  soluble in the liquid state but limited solubility in the solid state.  E.g : Sn‐Pbsystem, Cu‐Ag system α, β = solid solution ae, be = liquidus ac, cd, bd = solidus cf, dg = solvus • 3 single phase region = α, β, L • Solvus cf denotes the solubility limit of B in A • Solvus dg shows the solubility limit of A in B BINARY EUTECTIC PHASE DIAGRAM (LIMITED SOLID SOLUTION)
  • 212.
    CE Eutectic temp. (TE) :below TE form 2 different solid phases. Eutectic point a.k.a. triple point. Eutectic composition (CE)Figure : Copper-silver phase diagram Solvus Liquidus Solidus BINARY EUTECTIC PHASE DIAGRAM (LIMITED SOLID SOLUTION) TM Ag TM Cu 55
  • 213.
    56 Determination of phaseand phase composition: Same as in binary isomorphous system Determination of weight fraction Weight fraction of liquid, WL= Q/(R+Q) Weight fraction of β, Wβ = R/(R+Q) BINARY EUTECTIC PHASE DIAGRAM (LIMITED SOLID SOLUTION)
  • 214.
    • 3 singlephase regions (L, ) • Limited solubility: : mostly Cu : mostly Ni • TE: No liquid below TE • CE: Min. melting T composition Ex.: Cu-Ag system L (liquid)  L +  L+  Co, wt% Ag 20 40 60 80 1000 200 1200 T(°C) 400 600 800 1000 CE TE 8.0 71.9 91.2 779°C Cu-Ag system BINARY EUTECTIC PHASE DIAGRAM (LIMITED SOLID SOLUTION) Eutectic reaction L α + β (Liq.) (s.s) (s.s) 57
  • 215.
    EXERCISE: 1) Label eachphase region (i), (ii) and (iii). 2) Determine Tm for pure Sn and Bi. 3) Determine the eutectic temperature and eutectic composition. Sn-Bi phase diagram β α + L (i) (ii) (iii) BINARY EUTECTIC PHASE DIAGRAM (LIMITED SOLID SOLUTION) 58
  • 216.
    EXAMPLE:  Pb‐Sn EUTECTIC SYSTEM For a40wt%Sn-60wt%Pb alloy at 150oC, find... --the phases present: --the compositions of the phases: --the relative amounts of each phase: Pb-Sn system L +  L+  200 T(°C) 18.3 Co, wt% Sn 20 40 60 80 1000 Co 300 100  L (liquid)  183°C 61.9 97.8 150 BINARY EUTECTIC PHASE DIAGRAM (LIMITED SOLID SOLUTION) 59
  • 217.
  • 218.
    BINARY EUTECTIC PHASEDIAGRAM (LIMITED SOLID SOLUTION) : MICROSTRUCTURES 1. Consider Co < 2wt% Sn Liquid Pb-Sn system Liquid +  grains of solid                     polycrystal of  grains phase solid) 61
  • 219.
    BINARY EUTECTIC PHASEDIAGRAM (LIMITED SOLID SOLUTION) : MICROSTRUCTURES : Cowt%Sn L +  200 T(°C) Co, wt% Sn 10 18.3 200 Co 300 100 L  30 L: Cowt%Sn  +  400 (sol. limit at TE) TE 2 (sol. limit at Troom) L    2. Consider 2wt%Sn < Co < 18.3wt%Sn  polycrystal + fine  crystals phase solid) Pb-Sn system Liquid Liquid +  grains of solid                     polycrystal of  grains phase solid) 62
  • 220.
    L +  200 T(°C) Co,wt% Sn 20 400 300 100 L  60 L: Cowt%Sn  +  TE : 18.3wt%Sn  0 80 100 L +  CE18.3 97.8 61.9 183°C : 97.8wt%Sn 3. Consider Co = CE = 61.9 wt% Sn BINARY EUTECTIC PHASE DIAGRAM (LIMITED SOLID SOLUTION) : MICROSTRUCTURES Eutectic reaction L α + β (Liq.) (s.s) (s.s) Pb-Sn system EUTECTIC Cooling Curve 63
  • 221.
    L +  200 T(°C) Co,wt% Sn 20 400 300 100 L  60 L: Cowt%Sn  +  TE  0 80 100 L +  Co18.3 61.9 L  L primary  97.8 S S R R eutectic  eutectic  4.  Consider 18.3wt%Sn < Co < 61.9wt%Sn BINARY EUTECTIC PHASE DIAGRAM (LIMITED SOLID SOLUTION) : MICROSTRUCTURES HYPOEUTECTIC 64
  • 222.
    5.  Consider 61.9wt%Sn < Co < 97.8wt%Sn BINARY EUTECTICPHASE DIAGRAM (LIMITED SOLID SOLUTION) : MICROSTRUCTURES HYPEREUTECTIC Pb‐Sn system 65
  • 223.
    HYPOEUTECTIC & HYPEREUTECTIC BINARY EUTECTICPHASE DIAGRAM (LIMITED SOLID SOLUTION) Eutectic mixture  Proeutectic β or Primary β Proeutectic  or Primary  Eutectic mixture  : Co=85wt%Sn Eutectic reaction L α + β (Liq.) (s.s) (s.s) 66
  • 224.
    67 Different systems have different types of alloy transformation. Invariant equilibrium involve : – 3 phases co‐exist in.  – Exist only at one temperature / fixed temp. –Composition for 3 phases co‐exist is fixed at the point. – Zero degree of freedom. Below are the example of alloy transformation at invariant  equilibrium : 1.Eutectic  2.Eutectoid 3.Peritectic 4.Peritectoid INVARIANT EQUILIBRIUM 5. Metatectic 6. Monotectic 7. Synthectic
  • 225.
    INVARIANT EQUILIBRIUM Invariant Point ReactionExample System Eutectic l α + β Ag‐Cu,  Pb‐Sn Eutectoid γ α + β Fe‐C,  Al‐C Peritectic l + α β Cu‐Zn Peritectoid β + α γ Al‐Ni,  Cu‐Zn Metatectic α l + β U‐Mn Monotectic l1 α + l2 Cu‐Pb Syntectic l1 +  l2 α K‐Zn,  Na‐Zn L α β L + α L + β α + β γ α βγ + α γ + β α + β α β L β + α L + α L + β α β γγ + α α + β γ + β α β L β + α L + α L + β L1 α L2 L1 + α L1 + L2 L2 + α L1 α L2L1 + α L1 + L2 L2 + α 68
  • 226.
    69 EXAMPLE: Find theeutectoid and peritectic reactions in the Cu-Zn system? INVARIANT EQUILIBRIUM
  • 227.
  • 228.
    71 • Liquidus :Line above which all of alloy is liquid. • Solidus : Line below which all of alloy is solid. • Solvus : Boundaries between solid phase regions. • Invariant point : It is a point at which three phases are in equilibrium. • Eutectic structure : The resulting microstructure consists of alternating layers, called lamellae, of α and β that form during eutectic reaction. • Proeutectic : Form before (higher temperature) eutectic. • Terminal solid solutions : Phases containing the pure components which situated at the end of the phase diagram. • Hypoeutectic : Having a composition less than eutectic. • Hypereutectic : Having a composition greater than eutectic. TERMINOLOGY
  • 229.
  • 230.
    2.3  Fe‐Fe3C system: Microstructure development,  Microconstituent of phases. • Fe‐Fe3C Phase Diagram −Allotropy  Transformation − Solid Phases − Phase Transformation Reactions − Microstructural Changes Eutectoid Hypoeutectoid Steel Hypereutectoid Steel 73
  • 231.
    LEARNING OBJECTIVE 74 Students should be able to : • Sketch and label in the iron‐iron carbide phase  diagram up to eutectic isotherm.  • Specify whether the alloy is hypoeutectoidor  hypereutectoid. • Identify the proeutectoid phase. • Explain the development of the microstructure at a temperature just below the eutectoid. • Compute the relative amount of pearlite and  proeutectoid phase.
  • 232.
  • 233.
  • 234.
    ALLOTROPIC TRANSFORMATION • A material that can exist in more than one lattice structure  (depending on temperature‐heating@cooling)                allotropic. •An allotropic material is able to exist in two or more forms having  various properties without change in chemical composition. • E.g : Upon heating, pure iron experiences two changes in crystal  structure: – At room temperature, it exists as ferrite,or α iron (BCC). – When we heat it to 912°C, it experiences an allotropic  transformation to austenite,or γ iron (FCC). – At 1394°C, austenite reverts back to a BCC phase called δ ferrite. 77
  • 235.
    912°C 1538°C 768°C ALLOTROPIC TRANSFORMATION Allotropy of iron(Fe)  Delta iron Austenite Alfa iron (BCC)                      (FCC)                 (BCC) High Temp Low Temp Moderate  Temp 78
  • 236.
    Phases present inFe-Fe3C system : 1) δ Ferrite 2) γ (Austenite) 3) α Ferrite 4) Fe3C (Cementite) 5) α + Fe3C (Pearlite) 79 SOLID PHASES
  • 237.
    80 1) δ Ferrite • This is a solid solution of carbon in iron and has a BCC crystal  structure (same structure as α‐ferrite). • It is a phase which exists at extreme temperature (>1400°C)  and stable only at high temperature, above 1394 °C. •It melts at 1538 °C. • The maximum solubility of C in Fe is 0.09% at 1495°C. This has  no real practical significance in engineering.  SOLID PHASES Figure : δ Ferrite crystal structure
  • 238.
    81 2) Austenite (γ Iron)    • It is also known as (γ) gamma‐iron, which is an interstitial solid  solution of carbon dissolved in iron with a face centered cubic  crystal (FCC) structure.  •Transforms to BCC δ‐ferrite at 1394°C. • The maximum solubility of carbon in austenite, 2.14%. • Austenite is normally unstable below eutectoid temperature  unless cooled rapidly. • It is a non magnetic material. Figure :Austenite (γ iron) crystal structure SOLID PHASES
  • 239.
    82 3. α Ferrite • It is also known as alpha(α) iron, which is an interstitial solid  solution of a small amount of carbon dissolved in iron with a Body  Centered Cubic (BCC) crystal structure.   • It is the softeststructure on the iron‐iron carbide diagram.   • Stable form of iron at room temperature. • The maximum solubility of C is 0.022 wt%.  • Ferrite dissolves considerably less carbon than austenite.  • Transforms to FCC γ‐austenite at 912°C. • α ‐ferrite is magnetic (below 768°C). Figure : Ferrite (α iron) crystal structure SOLID PHASES
  • 240.
    83 3) Cementite (Fe3C) •Cementite is also known as iron carbide which has a chemical formula, Fe3C. • Fe3C is an intermetallic compound. It is because a fixed amount of C and a fixed amount of Fe are needed to form cementite (Fe3C). • It is a hard and brittle material, low tensile strength and high compressive strength. • It contains 6.70 wt% C and 93.3 wt% Fe. • This intermetallic compound is metastable, it remains as a compound indefinitely at room temperature, but decomposes (very slowly, within several years) into α-Fe and C (graphite) at 650 - 700°C. SOLID PHASES
  • 241.
    84 5) α + Fe3C (Pearlite) •It is resulted from transformation of austenite of eutectoid  composition on very   slow cooling.  • Pearlite is a laminated structure (lamellar structure) formed of  alternate layers of ferrite (white matrix‐ferritic background) and cementite (thin plate).  • In most steels, the microstructure consists of both α+Fe3C  (pearlite) phases. • It has intermediate mechanical properties between α and Fe3C.  Cementite (hard) Ferrite (soft) Figure : Pearlite microstructure (Light background is the ferrite matrix, dark lines are the cementite network) SOLID PHASES
  • 242.
  • 243.
    The iron-carbon diagramexhibits three phase transformation reactions : 86 PhaseTransformation Reactions
  • 244.
    % Carbon HYPOHYPO HYPER HYPER EUTECTOIDEUTECTIC Peritectic PhaseTransformation Reactions 87
  • 245.
    MICROSTRUCTURAL CHANGES • Microstructure that exists in those reactions depends on : −Composition(carbon content)  − Heat treatment  • Three significant regions can be made relative to the steel portion of the  diagram which known as: 1) Eutectoid − Carbon content 0.76% and temperature 727°C. − It entirely consists of pearlite (α + Fe3C). 2) Hypoeutectoid − Carbon content from 0.022 to 0.76%. − It consist of pearlite and primary (proeutectoid) ferrite. 3) Hypereutectoid − Carbon content from 0.76 to 2.14%. − It consist of pearlite and primary (proeutectoid) cementite. 88
  • 246.
    89 EUTECTOID STEEL γ α+    Fe3C austenite                 pearlite αFe3C Pearlite Figure : Photomicrograph of a eutectoid steel showing the pearlite microstructure consisting of alternating layers of α ferrite (thick layers, light phase) and Fe3C (thin layers most of which appear dark). Note : • Many cementite layers are so thin  that adjacent phase boundaries are  indistinguishable (appear dark). • Alternating layers  of α and Fe3C  form pearlite.
  • 247.
  • 248.
    91 HYPOEUTECTOID STEEL Figure :Microstructures for Fe-Fe3C system of hypoeutectoid composition Co α’        +       α +    Fe3C  (proeutectoid ferrite)    +      (pearlite) Note : Eutectoid α = Ferrite that is present in the pearlite. Proeutectoid (meaning pre- or before eutectoid) = Formed above eutectoid temperature. α’               +             γ (proeutectoid ferrite)   +      (Austenite) γ (Austenite)
  • 249.
  • 250.
    93 EXERCISE Consider an Fe– C alloy containing 0.25 wt% C, at a temperature just below the eutectoid temperature. Determine a) the mass fractions of proeutectoid ferrite and pearlite HYPOEUTECTOID STEEL b) the mass fractions of total ferrite, eutectoid ferrite and cementite.
  • 251.
    94 HYPEREUTECTOID STEEL Note : EutectoidFe3C= Cementite that is present in the pearlite Figure : Microstructures for Fe-Fe3C system of hypereutectoid composition Fe3C’           +        γ (proeutectoid cementite)  +  (Austenite) γ (Austenite) Fe3C’      +     α +    Fe3C  (proeutectoid cementite)  +         (pearlite)
  • 252.
  • 253.
    96 EXERCISE Consider an Fe– C alloy containing 1.25 wt% C, at a temperature just below the eutectoid temperature. Determine a) the mass fractions of proeutectoid cementite and pearlite HYPEREUTECTOID STEEL b) the mass fractions of total ferrite, cementite and eutectoid cemmentite.
  • 254.
    97 Figure : Photomicrographof a 1.4wt% C steel having a microstructure consisting of a white proeutectoid cementite network surrounding the pearlite colonies. Hypereutectoid steel +Fe3C (pearlite) + proeutectoid cementite(Fe3C) Hypoutectoid steel +Fe3C (pearlite) + proeutectoid ferrite(α) Figure : Photomicrograph of a 0.38wt% C steel having a microstructure consisting of pearlite and proeutectoid ferrite. HYPO vs HYPER EUTECTOID STEEL
  • 255.
  • 256.
    2.4 Ferrous and Non‐Ferrous Metals • Introduction •Classification of Metal Alloys • Classification of Ferrous Alloys – Steel • Plain Carbon Steel • Low Carbon Steel • Medium Carbon Steel • High Carbon Steel • Stainless Steel • Tool Steel – Cast Iron • Gray Cast Irons • Nodular (Ductile) Cast Irons • White Cast Irons • Malleable Cast Irons 99 • Non‐Ferrous Alloys – Aluminium and its alloys – Copper and its alloys – Magnesium and its alloys – Titanium and its alloys – The Noble  Metal – The Refractory Metals
  • 257.
  • 258.
    INTRODUCTION 1. Ferrous • Metal alloys that  contain iron as a prime  constituent. •E.g : steels, cast iron. • Tend to have a higher  chance of corrosion.  2) Nonferrous  • Metal alloy contain less  @ no iron.  • E.g : Cu, Al, Mg, Ti and  its alloys • Have a much higher  resistance to corrosion. Metal alloys can be divided into two categories : Note : The word ferrous is derived from the Latin term "Ferrum" which means "containing iron". 101
  • 259.
    INTRODUCTION Advantages of Ferrous  alloys  over Non‐Ferrous  alloys: Advantages of Non‐Ferrous  alloys  over ferrous alloys: – Generally greater strength. – Generally greater stiffness. –Better for welding – Good resistance to corrosion. – Casting and cold working  processes and are often  easier. – High ductility. – Higher thermal and electrical  conductivities. – Colors. 102
  • 260.
    CLASSIFICATION OF METAL ALLOYS 103 Al Cu MgTi Noble  Metal Refractory  metal
  • 261.
    CLASSIFICATION OF FERROUS ALLOY  Definition : Those of which iron is the prime constituent. Advantages : 1. Iron ores exist in abundant quantities within  the earth’s  crust. 2. Produced from economical process : Extraction, refining,  alloying and fabrication techniques are available.  3. Versatile material : Wide range of mechanical and physical  properties.   Disadvantages : 1. Tends to corrode. 2. High density. 3. Low electrical conductivity.  104
  • 262.
    CLASSIFICATION OF FERROUS ALLOY • The ferrous alloys are classified based on the  percentage of carbon present in the ferrous.  (steel <2.14 %C, cast iron 2.14 ‐ 4.3%C) •Carbon is the most important commercial  steel alloy (↑C, ↑hardness, ↑ strength,  ↑bri leness, ↓ weldability) 105
  • 263.
  • 264.
    Low Alloy HighAlloy low carbon <0.25wt%C med carbon 0.25-0.6wt%C high carbon 0.6-1.4wt%C Uses auto struc. sheet bridges towers press. vessels crank shafts bolts hammers blades pistons gears wear applic. wear applic. drills saws dies high T applic. turbines furnaces V. corros. resistant Example 1010 4310 1040 4340 1095 4190 304 Additions none Cr,V Ni, Mo none Cr, Ni Mo none Cr, V, Mo, W Cr, Ni, Mo plain HSLA plain heat treatable plain tool austentitic stainless Name Hardenability 0 + + ++ ++ +++ 0 TS - 0 + ++ + ++ 0 EL + + 0 - - -- ++ increasing strength, cost, decreasing ductility Steels 107
  • 265.
    Steels • Are iron carbon alloys that may contain carbon  less than 2.14%. • Classification by carbon content –Low, medium and high carbon type • Subclasses by concentration of other alloying  elements : – Plain carbon steel – Alloy steel • The microstructures of steel are normally ferrite  and relatively soft and weak but good ductility  and toughness. 108
  • 266.
    First digit indicates the family to which the steel belongs (a.k.a. the major alloying elements) :  Second digit indicate % of major alloying elements (1 means 1%).  Last two digits(3rd and 4thnumber) indicate amount of carbon in steel (10 means 0.10% C).  Example • SAE 5130 means alloy chromium steel, containing 1% of chromium and 0.30% of Carbon. • AISI 1020 which means 10 indicates plain carbon steel with 0.2% amount of Carbon. *SAE : Society of Automotive Engineers             *AISI : American Iron and Steel Institute 109 Steels
  • 267.
    Plain Carbon Steels • Iron with less than 1% carbon alloy contains a  small amount of manganese, phosphorous, sulfur  and silicon. • Disadvantages of plain carbon steel: –Hardenability is low – Loss of strength and embrittleness – Subjected to corrosion in most environments • 3 groups: – Low carbon steels – Medium carbon steels – High carbon steels 110
  • 268.
    Low Carbon Steels (< 0.25%C ) Plain carbon steels • unresponsive to heat treatments  intended to form martensite. • Microstructures consist of ferrite  and pearlite •Properties: – Relatively soft and weak, but  possess high ductility and toughness – Good formability, Good weldability – Low cost – Rated at 55‐60% machinability • Application: Auto‐body  components, structural shapes,  sheets for pipelines, building,  bridges, tin cans, nail, low  temperature pressure vessel. High‐strength low alloy (HSLA)  steels • Low Carbon Steel combine with 10  wt% of alloying elements, such as  Mn, Cr, Cu, V, Ni, Mo • Properties: – higher strength than plain low  carbon steels. – ductile, formable and machinable – More resistance to corrosion • Strengthening by heat treatment. • Application : bridges, towers,  support columns in high rise  building, pressure vessels. 111
  • 269.
    Medium Carbon Steel • Composition: 0.25 ‐ 0.6% C •Advantages: – Machinability is 60‐70%.  Both hot and cold rolled  steels machine better  when annealed.  – Good toughness and  ductility – Fair formability – Responds to heat  treatment but often used  in natural condition. • Plain medium carbon steel  −Low hardenability − Heat treatment:    quenching and tempering • Heat treatable steel   −Containing Cr, Ni and Mo −Heat treated alloy stronger    than Low Carbon Steel, lower  ductility and toughness than  Low Carbon Steel  Applications : Couplings, forgings, gears, crankshafts other high‐strength  structural components.  : Steels in the 0.40 to 0.60% C range are also used for rails,  railway wheels and rail axles. 112
  • 270.
    High Carbon Steels • Composition:  0.6% ‐ 1.4% C •Properties:  – hardest – strongest – least ductile of the carbon  steels • Application:  – Used for withstanding wear. – A holder for  a sharp cutting  edge.  E.g : drills, woodworking tools,  axes, turning and planning tools,  milling cutters, knives. – Used for spring materials,  high‐strength wires, cutting  tools, and etc. • Advantages: – Hardness is high – Wear resistance is high – Fair formability • Disadvantages: – Low toughness, formability – Not recommended for  welding – Usually joined by brazing with  low temperature silver alloy  making it possible to repair or  fabricate tool steel parts without  affecting their heat treated  condition. 113
  • 271.
    Stainless Steels • Primary alloying element  is chromium (>11%)  •Others element : Nickel, Manganese, Molybdenum. • Called stainless because in the presence of oxygen, they develop a  thin, hard, adherent film of chromium oxide (Cr2O3) that protect the  metal from corrosion. • Highly resistance to corrosion. • 3 basic types of stainless are – Martensite – Ferritic – Austenitic • Applications − Decorative trim, nozzles. − Springs, pump rings, aircraft fittings. − Cookware, chemical and food processing equipment. − Turbine blades, steam boilers, parts in heating furnaces. − Temporary implant devices such as fractures plates, screw and hip nails. − The best choice for the walls of a steam boiler because it is corrosion resistant  to the steam and condensate. 114
  • 272.
    Tool Steels • High carbon steel alloys (containing Cr, V,  W and Mo) that have been designed to prevent wear resistance  and toughness combined with high strength. • Have excess carbides (carbon alloys) which make  them hard and wear resistant. •Most tool steels are used in a heat treated state  generally hardened and tempered. • Applications:  – gauges, shear knives, punches, chisels, cams, mould for  die casting. – Best choice for a drill bit because it is very hard and wear  resistant and thus will retain a sharp cutting edge. 115
  • 273.
    Cast Irons • Carbon contents :  Greater than 2.14wt% C. • Si content : 0.5‐3wt%Si  (used to control kinetics of carbide formation) • Commercial range : 3.0‐4.5 wt% C + other alloying elements. • The differences between cast irons and steels : – Carbon content. – Silicon content. – Carbon microstructure (stable form and unstable form). • Properties :  – Low melting points (1150‐1300°C). – Some cast iron are brittle. • Microstructure:   – Most commonly graphite (C) & ferrite. 116
  • 274.
    Cast Irons • Properties of cast iron is controlled by three main factors: – The chemical composition of the iron –The rate of cooling of the casting in the mould – The type of graphite formed • Advantages: – Low tooling and production cost – Ready availability – Good machinability without burring – Readily cast into complex shapes – High inherent damping – Excellent wear resistance and high hardness • Types of cast irons : • Gray Cast Irons • Nodular (Ductile) Cast Irons • White Cast Irons • Malleable Cast Irons 117
  • 275.
    Gray Cast Irons • Composition : Carbon content : 2.5 ‐ 4.0 wt% C and Silicon content  : 1.0 ‐3.0wt% Si. • Microstructure : Graphite flakes surrounded by  α‐ferrite or  pearlite matrix.  • The formation of graphite occurs because of the cooling rate is  too slow where austenite in unstable position and brake down  to give graphite microstructure.  • Properties: – Less hard and brittle (easy to machine) – Very weak in tension due to the pointed and sharp end of graphite flake – Good during compression (high compressive strength) – Low shrinkage in mould due to formation of graphite flakes – High damping capacity – Low melting temperature (1140‐1200oC). • Applications: Base choice for milling machine base because it  effectively absorbs vibration (good vibration damping). 118
  • 276.
    THE MICROSTRUCTURE OF GRAYCAST IRONS Graphite flakes * Graphite flakes shows fracture surface (gray appearance). Figure : Dark graphite flakes in a‐Fe matrix. 119
  • 277.
    Ductile (Nodular) Cast Irons • Composition: Mg or Ce is added to the gray iron composition  before casting occurs (to prevent the formation of  graphite flakes during the slow cooling of the iron) •Microstructure  :  Nodular or spherical‐like graphite structure in  pearlite or ferritic matrix. • Properties :  – Significant increase in material ductility. – Tensile strength > gray cast iron. – Others mechanical properties ≈ steel. • Applications  : Valves, pump bodies, gear and other automotive  and machine components. • A HT can be applied to pearlite nodular iron to give  microstructure of graphite nodules in ferrite (ferrite structure is  more ductile and weldable but less tensile strength) 120
  • 278.
    THE MICROSTRUCTURE OF DUCTILE(or NODULAR) CAST IRONS Figure : Dark graphite nodules in α‐Fe matrix. Graphite nodules (a.k.a. spherical‐like) * Note that the carbon is in the shape of small sphere, not flakes. 121
  • 279.
    White Cast Iron • Composition: 2.5 < C < 4.0%C and Si<1% •Microstructure : Pearlite and cementite (due to rapid cooling). • An intermediate metal for the production of malleable cast  iron. • Properties: – Relatively very hard, brittle and not weldable compare  to gray cast iron – When it is annealed, it become malleable cast iron – Not easily to machine – Fracture surface: white appearance 122
  • 280.
    THE MICROSTRUCTURE OF WHITECAST IRONS Figure : Light Fe3C regions surrounded by pearlite. Pearlite Fe3C (Light regions) 123
  • 281.
    Malleable Cast Irons • Is produced by the HT of white cast irons − Heating temperature: 800oC –900oC  − Duration : 2 or 3 days (50 hours) − Heating environment: Neutral atmosphere • Microstructure : A clumps (rossette) of graphite  (due to decomposition of cemmentite) surrounded by a   ferrite or pearlite matrix • Properties: − Similar to nodular cast iron and give higher strength  − More ductile and malleability • Applications : Pipe fittings, valve parts for railroad, marine  and other heavy duty. 124
  • 282.
    THE MICROSTRUCTURE OF MALLEABLECAST IRONS Figure : Dark graphite rosettes in α‐Fe matrix. Graphite rosettes 125
  • 283.
    Non‐Ferrous Alloys • Definition: Used for alloys which do not have iron as  the base element. • Examples: Al alloys, Cu alloys, Mg alloys, Ti alloys,  Noble metals, Refractory metals, etc. •Advantages of Ferrous alloys over Non‐Ferrous alloys: – Generally greater strength – Generally greater stiffness ( ↑E) – Better for welding • The advantages of Non‐Ferrous alloys over ferrous  alloys: – Good resistance to corrosion – Much lower density – Casting is often easies ( ↓ mel ng points) – Cold working processes are often easier (ductility) – Higher thermal and electrical conductivities – colors 126
  • 284.
    NonFerrous Alloys • Cu Alloys Brass:Zn is subst. impurity (costume jewelry, coins, corrosion resistant) Bronze: Sn, Al, Si, Ni are subst. impurity (bushings, landing gear) Cu-Be: precip. hardened for strength • Al Alloys -lower : 2.7g/cm3 -Cu, Mg, Si, Mn, Zn additions -solid sol. or precip. strengthened (struct. aircraft parts & packaging) • Mg Alloys -very low : 1.7g/cm3 -ignites easily -aircraft, missles • Refractory metals -high melting T -Nb, Mo, W, Ta• Noble metals -Ag, Au, Pt -oxid./corr. resistant • Ti Alloys -lower : 4.5g/cm3 vs 7.9 for steel -reactive at high T -space applic. NON‐FERROUS ALLOYS 127
  • 285.
    Aluminium and its alloys • Atomic weight 26.97;  Crystal structure: FCC •Appearance: silvery white metal • Tm=660oC, boiling point 2270oC • Relatively low density 2.7 g/cm3 (very light i.e. light weight vehicle, vessels, etc.)  • Tensile strength= 45 MPa, E : 7.5 GPa • Ductile and malleable • High resistant to corrosion (Al naturally produces a fine oxidized surface film which protect it from corrode) • Stable against normal condition but attacked by both acids & alkalis. • Nonmagnetic • High electrical and thermal conductivities (second to copper) • Non toxic (widely used as packing materials (food)) Characteristics 128
  • 286.
  • 287.
    Aluminium and its alloys Disadvantages : • Difficult to weld. •Prone to severe spring back. • Abrasive to tooling. • Expensive than steel. • Low melting point 660oC. Applications : • Used in applications that required  lightness, high corrosion resistance,  electrical and thermal conductivities. • E.g : cooking utensil, container,  appliances, building materials and  etc. 130
  • 288.
    Aluminium and its alloys • Al alloysare alloys in which Al is the predominant metal. • The typical alloying elements are : Cu, Mg, Mn, Si and Zn. • Al alloys can be divided into 2 groups: 1. Wrought alloys ‐ shaping by working process. E.g. forging, extrusion, rolling – Non‐heat treatment wrought alloys – Heat treatable wrought alloys 2. Cast alloys – shaping by casting process. E.g : die casting. – Non‐heat treatment cast alloys – Heat treatable cast alloys  Non‐heat treatment alloys ‐An alloy which cannot be improved by heat treatment  Heat treatable alloys ‐ An alloy whose mechanical strength is improved by  precipitation hardening/ martensitic transformation. 131
  • 289.
    Non‐heat treatment wrought alloys • Do not respond to HT but have their properties controlled by the  extent of the working to which they are subjected. •E.g. Al with Mn (increase the TS of Al)  • Applications: kitchen utensil, tubing, constructional material for  boats and ship Heat treatable wrought alloys • The properties changed by HT. • Common alloy addition:  Cu, Zn, Si • E.g : 4% Cu, 0.8% Mg, 0.5% Si, 0.7% Mn and 94% Al is known as  Duralumin. The heat treatment process used is quenching and then  precipitation hardening at room temperature for about 4 days. This  alloys is widely used in aircraft, bodywork. • Applications: aircraft, bodywork, container bodies etc. Aluminium and its alloys 132
  • 290.
    Non‐heat treatment cast alloys • E.g. Al with 9 –13% Si. The addition of Si will  increase its fluidity for casting purposes. •Applications: oil sumps, gear boxes, radiators. Heat treatable cast alloys • The addition of Cu, Mg to Al alloys enable the  alloys to be heat treated to give a high  strength casting materials. Aluminium and its alloys 133
  • 291.
  • 292.
    Copper and its alloys • Atomic weight 63.57 • Appearance: Reddish metal of bright luster •Highly malleable and ductile • High electrical and heat conductivitiy • Excellent corrosion resistance. • Relatively high strength. • Tm=1083oC, boiling point 2336oC • Sg = 8.94 • Used in pure state as sheet, tube, rod and wire Disadvantages : 1) Difficult to machine.  2) Expensive. Characteristics Applications : Jet aircraft landing gear bearing, radiator parts for cars and trucks,  surgical and dental instruments. 135
  • 293.
    Copper and its alloys i. Brasses • Cu based alloys in which Znis the  principal added element. • Harder and stronger that Cu or Zn • Malleable and ductile • Develops high tensile with cold  working  • Ease of working • Colour • Resistance to atmospheric and  marine corrosion • Used for electrical fittings,  ammunition cases, screws,  household fittings, and  ornaments. ii.Bronze • Contain up to 8% Sn and can be  cold work • Softer and weaker than steels • It resists corrosion (especially in  seawater) • Wrought bronzes are stronger,  better corrosion resistance but  high cost compare brass • Widely used for spring, bearing,  bushing and similar fittings  136 • Alloyed by other elements: Zn, Al, Sn and Ni • Examples: Brass, Bronze, Copper‐Nickel, Copper‐Zinc‐Nickel, Aluminium Bronze
  • 294.
    Copper and its alloys iii. Copper – Nickel alloys •a.k.a – cupronickels • It is an alloy of Cu that  contains Ni and strengthening  elements, such as Fe and Mn • Good resistance to seawater,  alkalies, sulphric acids and  alkaline solution. • Poor resistance to nitric acids,  cyanide solution • Application: turbine blade,  valve parts, pump rod liners  and impellers  iv. Aluminium Bronze • Cu rich Al alloys • Properties − High strength − Resistance to corrosion  and wear − High resistance to  fatigue − Fine golden colour − Possibility of heat  treatment in manner  similar to steel • Application: heat exchanger  tubes 137
  • 295.
  • 296.
  • 297.
    Magnesium and its alloys • Atomic weight 24.302, Appearance: Silver‐white  • Density 1.7 g/cm3, Tm= 627oC • Light,  malleable, ductile metallic element • Low TS, relatively soft, low E. • At Troom difficult to deform. Most fabrication is by casting or hot working. • Corrosion resistance in natural atmosphere. On the other hand relatively  unstable especially susceptible to corrosion in marine environments.  – E.g. Mg anode provide effective corrosion protection for water heaters,  underground pipelines, ship hulls and ballast tanks. • Mg alloys are used in applications where lightness is primary consideration,  e.g. aircraft components, missile application. • Replaced engineering plastics that have comparable densities since Mg are  stiffer, more recyclable and less costly to produce. Example – in a variety of handheld devices (chain saws, power tools, hedge clippers),  – in automobiles (steering wheel and column, seat frames, transmission cases) and  – in audio‐video‐computer‐communications equipment (laptop computers, cam  recorders, TV sets, cellular telephones) 140
  • 298.
  • 299.
    Titanium and its alloys • Relatively low density (4.5 g/cm3) • High Tm= 1668oC, E= 107 GPa • Low strength when pure but alloying gives a considerable  increase in strength, highly ductile and easily forged and  machined • Expensive metal: excellent corrosion resistance (immune  to air, marine and a variety of industrial environment);  high cost reflecting the difficulties in extraction and  formation of material. • Limitation: chemical reactivity with other materials at  elevated temperature • Applications:  – pure Ti – chemical plant components, surgical implants, marine  and aircraft engine parts. – Ti alloys – steam turbine blades, rocket motor cases 142
  • 300.
  • 301.
    The Noble Metals • Characteristics/Properties: – Expensive (precious) –Soft, ductile – Resistant to corrosion and oxidation  – Good electrical conductivity • A group of 8 elements: – The precious metal group: silver (Ag) and gold (Au). – The six platinum metals: platinum (Pt), palladium (Pd),  iridium (Ir), rhodium (Rh), ruthenium (Ru), and  osmium (Os). 144
  • 302.
    The Noble Metals Element Properties Application Ag↑electrical & themal conductivity  jewelry, dental restoration materials, brazing solder,  coins, silver coatings (reflectors), electrical contact  Au ↑ corrosion resistance,  nontarnishing characteristics,  good electrical conductivity jewelry, electric wiring, colored‐glass production,  dentistry, electronics, brazing solder, heat shielding  foil in the engine compartment Pt ↑ corrosion resistance,  ↑ Tm,  ductility  thermocouple, thermometer elements, electrical  contact, electrodes, jewelry, catalyst in the  production of sulfuric acid  Pd properties ≈Pt however lower cost  telephone relay contacts, catalyst to remove oxygen  from heat treating atmosphere Ir most corrosion resistant,  ↑temperature crucibles, extrusion dies Rh ↑ reflec vity,  ↑corrosion resistance  reflector for motion picture projectors and aircraft  searchlight, alloying addition to Pt and Pd Ru corrosion resistant  catalyst for synthesis of hydrocarbon, a hardener  for Pt and Pd Os ↑ hardness,  ↑wear resistance,  good corrosion resistance  fountain‐pen nibs, phonograph needles, electrical  contacts instrument pivots 145
  • 303.
    The Refractory Metals • Five elements widely used: niobium (Nb), molybdenum (Mo),  tantalum (Ta), tungsten (W), and rhenium (Re).  • Properties:  –Tm above 2000 °C – High hardness at room temperature.  – Chemically inert  – Relatively high density – Resistance to heat and wear – Resistant to corrosion (ability to form a protective layer), although  they do readily oxidize at high temperatures. – Resistance to creep (the tendency of metals to slowly deform under  the influence of stress) – Resistant to thermal shock (repeated heating and cooling will not  easily cause expansion, stress and cracking). – Good electrical and heat conducting properties • Applications include tools to work metals at high temperatures, wire  filaments, casting molds, and chemical reaction vessels in corrosive  environments.  146
  • 304.
    The Refractory Metals Element Properties Application Nb ↑ Tm, immune to attack by  most acids, a wide variety  of strengths and elasticity Superconducting alloys for electronic applications; High strength alloys for aerospace applications;  Moderately strengthened alloys for nuclear applications;  aircraft gas turbines, aerospace rocket engines, insulators Mo ↑ Tm,  ↑ resistance to arc erosion Missile and rocket engine components, Die‐casting dies,  Alloying additions; Electric furnace heating elements,  boats, heat shields Ta corrosion resistant, high temperature strength,  low vaporpressure Crucibles for handling molten metal and alloys,  Electrolytic capacitors, Heat exchangers, Cutting tools,  Surgical implants, Aerospace engine components,  Vacuum tube filaments,  W ↑ Tm (3410oC), ↑ density Lamp filaments, Anodes and targets for x‐ray tubes,  Electrodes for inert gas arc welding, Forming dies,  Catalysts in chemical and petrochemical processes,  Lubricants, Cutting tools for metal machining Re ↑ Tm, ↑ density, ductile to brittle transition  temperature Catalysts for reforming in conjunction with platinum,  nuclear reactors, semiconductors, electronic‐tube  components, thermocouples, gyroscopes, miniature  rockets, electrical contacts, thermionic converters,  aerospace applications. 147
  • 305.
  • 306.
  • 307.
     3.1 Time-Temperature TransformationDiagram (TTT)  Products of cooling austenite  Factors affecting position of the TTT diagram 3.2 Heat Treatment of Ferrous Metals  Annealing  Normalizing  Quenching/Hardening  Tempering 3.3 Hardenability of Steel  Hardenability curve  Martensite microstructure 2 HEAT TREATMENT
  • 308.
     After completing thischapter, students should be able to : • Explain the principles of heat treatment. • Explain the differences among the various kinds of heat treatment processes. 3 OBJECTIVE
  • 309.
     What is TTTdiagram?  Time-temperature transformation (TTT) diagram is also known as isothermal transformation (IT) diagram or Bain S Curve.  It shows the effect of time and temperature on the microstructure of steel.  Generated from the % transformation vs log. times measurements.  Plot as temperature vs. the log. of time for a steel alloy of definite composition.  (why log. of time so that times of 1 min, 1 day or 1 week can be fitted into a reasonable space).  Knowledge of the TTT diagram of steels is important in the processing of steels. Why used TTT diagram?  Because the iron-iron carbide phase diagram shows no time axis.  To show the transformation of the microstructure especially for martensite, bainite structure.  To determine the microstructure produced in a steel at various rates of cooling. 4 3.1 TIME-TEMPERATURE- TRANSFORMATION (TTT) DIAGRAM
  • 310.
    5 3.1 TIME-TEMPERATURE-TRANSFORMATION (TTT) DIAGRAM •Fe-C system, Co = 0.77wt%C • Transformation at T = 675C. 400 500 600 700 1 10 102 103 104 105 0%pearlite100% 50% Austenite (stable) TE (727°C)Austenite (unstable) Pearlite T(°C) 100 50 0 1 102 104 T=675°C y, %transformed time (s) time (s) isothermal transformation at 675°C A plot of temperature vs. the logarithm of time for a steel alloy of definite composition
  • 311.
    6 Products Of CoolingAustenite : PEARLITE MORPHOLOGY 10m - Smaller T: colonies are larger - Larger T: colonies are smaller • Ttransf just below TE --Larger T: diffusion is faster --Pearlite is coarser. Two cases: • Ttransf well below TE --Smaller T: diffusion is slower --Pearlite is finer.
  • 312.
     The time-temperature transformationcurves correspond to the start and finish of transformations which extend into the range of temperatures where austenite transforms to pearlite. Refer Figure : • Line AB indicate the rapid cooling of austenite. • Horizontal line C-D marks the beginning and end of isothermal transformations (isothermal means temperature stay constant). • At point C, the transformation of austenite to pearlite begins. • At point D, the transformation is complete. 7 3.1 TIME-TEMPERATURE- TRANSFORMATION (TTT) DIAGRAM
  • 313.
    8 Products Of CoolingAustenite • Bainite: -- lathes (strips) with long rods of Fe3C --diffusion controlled. • Isothermal Transf. Diagram Fe3C (cementite) 5 m (ferrite) 10 103 105 time (s) 10-1 400 600 800 T(°C) Austenite (stable) 200 P B TE 0% 100% 50% 100% bainite pearlite/bainite boundary 100% pearlite A A
  • 314.
    9 Products Of CoolingAustenite 11 • Martensite: --(FCC) to Martensite (BCT) • Isothermal Transf. Diagram x x x x x x potential C atom sites Fe atom sites (involves single atom jumps) time (s)10 103 10510-1 400 600 800 T(°C) Austenite (stable) 200 P B TE 0% 100% 50% A A S M + A M + A M + A 0% 50% 90% Martentite needles Austenite 60m •  to M transformation.. -- is rapid! -- % transf. depends on T only.
  • 315.
      Formed whenaustenitized iron-carbon alloys are quenched to a relative low temperature.  Non-equilibrium single phase  Rapid quenching will prevent the carbon diffusion.  Carbon remain as interstitial impurities in martensite  Instantaneously transformation  Martensite:  ƴ (FCC) to Martensite (BCT) 10 MARTENSITE MICROSTRUCTURE
  • 316.
     • Two typesof martensite microstructure 1. Lath ( massive martensite) 2. Lenticular (needlelike/platelike) 1. Lath martensite – For alloy < about 0.6 wt% C – Long and thin plates, form side by side, aligned parallel to one another – Lath group form block 2. Lenticular martensite – For alloy > ≈ 0.6 wt% C. – Needlelike / platelike appearance. – Under m/scope observation appears as a dark regions 11 MARTENSITE MICROSTRUCTURE
  • 317.
  • 318.
     • Fine Pearlitevs Martensite: • Hardness: fine pearlite << martensite. 13 Pearlite vs martensite
  • 319.
     In TTT diagramfor iron-carbon alloy, there are 5 regions to observe : 1. Stable austenite 2. Unstable austenite (to the left of the transformation start curve) 3. Pearlite and austenite region (upper side inside nose-shaped curve) 4. Austenite and bainite region (lower side inside nose-shaped curve) 5. Martensite region (below ≈ 200˚C)  Below 200 down to -20°C = Martensitic start temperature (Ms)  Below -20°C = Martensitic finish temperature (Mf) 14 3.1 TIME-TEMPERATURE- TRANSFORMATION (TTT) DIAGRAM
  • 320.
  • 321.
     16 Products Of CoolingAustenite Example:
  • 322.
  • 323.
  • 324.
  • 325.
  • 326.
     1. Using thetime-temperature-transformation diagram given in of eutectoid composition, sketch the time-temperature paths to produce the following microstructures at room temperature:(October 2010) a) 100% Bainite, b) 100% Martensite, c) 50% Pearlite and 50% Martensite, and d) 25% Pearlite and 75% Bainite. 21 EXERSICE
  • 327.
  • 328.
     2. Using theTime-Temperature Transformation diagram given in for eutectoid steel, draw and label time- temperature cooling paths that will produce the following microstructures. In each case assume that the specimen begins at 850°C.(October 2012) a) 100% tempered martensite, b) 75% pearlite, 25% lower bainite, c) 25% fine pearlite, 37.5% upper bainite and 37.5 austenite, d) 80% upper bainite, 5.00% lower bainite, 15% martensite, and e) 50% pearlite, 12.5% bainite, 37.50% martensite. 23 EXERSICE
  • 329.
  • 330.
    • reduces brittlenessof martensite, • reduces internal stress caused by quenching. Adapted from Fig. 10.24, Callister 6e. (Fig. 10.24 copyright by United States Steel Corporation, 1971.) TEMPERING MARTENSITE • decreases TS, YS but increases %AR YS(MPa) TS(MPa) 800 1000 1200 1400 1600 1800 30 40 50 60 200 400 600 Tempering T (°C) %AR TS YS %AR 9m • produces extremely small Fe3C particles surrounded by 
  • 331.
    26 Products Of CoolingAustenite 60 m  (ferrite) Fe3C (cementite) • Spheroidite: -- crystals with spherical Fe3C --diffusion dependent. --heat bainite or pearlite for long times --reduces interfacial area (driving force) • Isothermal Transf. Diagram 10 103 105time (s)10-1 400 600 800 T(°C) Austenite (stable) 200 P B TE 0% 100% 50% A A Spheroidite 100% spheroidite 100% spheroidite
  • 332.
     3. Using theTime-Temperature Transformation diagram for iron-carbon alloy of eutectoid composition, specify the nature of the final microstructure (in term of micro constituents present and approximate percentage) of a small specimen that has been subjected to the following heat treatment : (March 2013) a) Heated up to temperature 780°C and held until the microstructure completely transformed to austenite. Quenched rapidly to room temperature. b) Reheated specimen (a) to temperature 55O°C, held for 20 s, then quenched to room temperature. c) Reheated specimen (a) to temperature 700°C and held for 24 hrs. Then, left to cool to room temperature, naturally. d) Reheated specimen (a) to temperature 800°C and held for 24 hrs. Cooled rapidly at temperature 600°C, held for 100 s, then quenched to room temperature. e) Reheated specimen (a) to 350°C, held for 2 hrs, then cooled to room temperature in normal air. 27 EXERSICE
  • 333.
  • 334.
     The additionof carbon, nickel, manganese, silicon and copper move the nose-shaped curve to the right  Molybdenum, chromium and vanadium move the pearlite C-curve to the right and also displace it upwards to high temperature. 29 Factors affecting position of the TTT diagram
  • 335.
     • Heat treatmentsare widely used in various manufacturing processes to enhance the quality of a product. • The basis for the understanding heat Fe-C phase diagram. WHAT IS HEAT TREATMENT? Process involved the heating and cooling of metals in the solid state. Heat treatment can be a primary process in itself (heat in furnace), or as a secondary phase of another process (casting, welding, forging). TYPES OF HEAT TREATMENT? The most common heat treatment process : • Annealing • Normalizing • Spherodizing • Quenching/Hardening • Tempering 30 3.2 HEAT TREATMENT OF FERROUS METALS
  • 336.
     3.2 HEAT TREATMENTOF FERROUS METALS WHY WE NEED TO DO HEAT TREATMENT? Heat treatments are usually applied to : • Change the mechanical properties e.g : increase or decrease the strength/ hardness/ machinability etc. of metal. • Relieve the internal stress Several problems may occur if heat treatment process is not carefully performed. eg : cracking, distortion. WHEN WE NEED TO DO HEAT TREATMENT? Most parts will require heat treatment either after or during the processing for proper in- service properties. Example : • Before shaping – To softening a metal for forming. • After forming – To relieve strain hardening. • Final finish – To achieve final strength and hardness. 31
  • 337.
     32 TEMPERATURE REGIME OFSTEEL HEAT TREATMENT
  • 338.
      Annealing  Processanneal  Full anneal  Normalizing  Spherodizing  Quenching/Hardening  Tempering 33 FORMS OF HEAT TREATMENT
  • 339.
     Annealing : A heattreatment in which a material is exposed to an elevated temperature for an extended time period and then slowly cooled. When it should be done : Annealing is done between process steps to allow further working or for final stress relief. Purpose : 1) Relieve stress. - relieve internal stresses induced by some previous treatment (e.g: machining). 2) Soften the steel. - improve machinability and respond better to forming operations. 3) Refinement of grain structures. Three stages of annealing (applicable for all heat treatment under annealing): 1. Heat to the specified temperature. 2. Hold or “soaking” at that temperature for a specified time. 3. Cool slowly, usually to room temperature. 34 ANNEALING Time and Temperature are important at all 3  steps
  • 340.
     Purpose :  Usedto treat parts made out of low carbon steel (<0.25% Carbon) which allow the parts to be soft enough to undergo further cold working without fracturing.  Commonly employed for wire & sheets steels because it restores the ductility to cold-worked materials and permit further cold working to achieve the required deformation. Process :  Raise the steel temperature just below the eutectoid region (line A1 at 727°C), about 500°C to 650°C for several hours until the recrystallization of ferrite phase occur.  Then, cooled in still air. Microstructure desired :  Fine grained structure 35 (i) PROCESS ANNEAL Pearlite (α+Fe3C)
  • 341.
     Purpose :  Utilizedfor low, medium & high carbon steels.  Full annealing is used to soften pieces which have been hardened by plastic deformation, and which need to undergo subsequent machining/forming. Process :  Heat the steel above the austenite temperature either 15-40˚C above line A3 [hypo] – to form austenite or line A1 [hyper] – to form austenite and cementite phases.  Cool very slowly in furnace. Microstructure produced :  Coarse pearlite that will give soft and ductility properties. 36 (ii) FULL ANNEAL
  • 342.
    • Similar tofull annealing but performed at a higher • temperature and cooling at faster rate (e.g: in air) to form fine pearlite. • Normalizing is a process that makes the grain size normal. • This process is usually carried out after forging, extrusion, drawing or heavy bending operations. It is also used to avoid softening steel too much. Purpose : • Refine grains (decrease the average grain size). • More uniform & desirable size distribution of pearlite (fine-grain size). • Increase toughness. 37 NORMALIZING
  • 343.
     Process : • Heatthe steel above the austenite temperature (either 55-80˚C above line A3 [hypo] or line ACM [hyper]) . • After sufficient time has been allowed for the alloy to completely transform to austenite - austenitizing • Removed from the furnace and cool it in air (at room temperature). Microstructure produced :  Fine pearlite (due to faster cooling rate) will give toughness properties & acceptable softness to the metal. Properties :  Faster cooling provides higher strength and hardness but lower ductility if compared to full annealing. 38 NORMALIZING UC‐Upper critical temperature  LC‐Lower critical temperature  RT‐Room temperature
  • 344.
    Purpose : • Usedfor high carbon steels (Carbon>0.6%) that will be machined or cold formed. • Applied when more softness is needed. Process : • Heat the part to a temperature just below the eutectoid temperature (line A1 at 727°C) or at about 700°C in the α + Fe3C region for several hours (about 20 hours or more) and followed by slow cooling. Microstructure produced : • Cementite transforms into soft globes/spheroids which dispersed throughout the ferrite matrix. Properties : • Result in a more ductile material. • Improve machining in continuous operations such as lathe and screw machined. These spheroids act as chip-breakers –easy machining. 39 SPHEROIDIZING
  • 345.
     40 Effect of treatment (pearlite vs spherodite)
  • 346.
    41 THERMAL PROCESSING OFMETALS Annealing: Heat to Tanneal, then cool slowly. Types of Annealing • Process Anneal: Negate effect of cold working by (recovery/ recrystallization) • Stress Relief: Reduce stress caused by: -plastic deformation -nonuniform cooling -phase transform. • Normalize (steels): Deform steel with large grains, then normalize to make grains small. • Full Anneal (steels): Make soft steels for good forming by heating to get , then cool in furnace to get coarse P. • Spheroidize (steels): Make very soft steels for good machining. Heat just below TE & hold for 15-25h.
  • 347.
    Quenching : Itis the act of rapidly cooling the hot steel to harden the steel. Hardenability :  The ability of an alloy to be hardened by the formation of martensite as a result of heat treatment.  A qualitative measure of the rate at which hardness drops of with distance Purpose :  To increase strength and wear properties. Process :  Heat the steel above the austenite temperature (either 15-40˚C above line A3 [hypo] or line A1 [hyper]) until the austenite composition is form and cooled very rapidly in the quench media (a.k.a. cooling medium). Microstructure produced :  Martensite (hard but brittle). 42 QUENCHING/HARDENING
  • 348.
     To produce microstructureof martensite throughout the cross section need to consider: 1. Composition alloy, 2. Type & character of quenching medium, 3. Geometry of specimen 43 QUENCHING/HARDENING 
  • 349.
    1. Composition ofalloy – Higher carbon content gives higher hardenability. – Alloying element gives higher hardenability compare to plain carbon steel. 44 QUENCHING/HARDENING 
  • 350.
    Water • Advantages – Mostefficient quenching media in commercial use where maximum hardness is required • Disadvantage: – Liable to cause distortion and cracking the sample – Not suitable for higher carbon steel. – Form soft spot – Corrosion 45 2. Type & character of quenching medium QUENCHING/HARDENING 
  • 351.
    Oil  Lower efficiencyquenching media than water  Oil such as mineral & cotton seed are used  Less cracking and distortion compare to water  Safety factors is required Air  Cooling with air pressure  Less efficiency quenching media 46 2. Type & character of quenching medium QUENCHING/HARDENING  Medium air oil water Severity of Quench small moderate large Hardness small moderate large
  • 352.
     When surface-to-volumeratio increases:  cooling rate increases  hardness increases diameter size hardness value 47 3. Effect of geometry QUENCHING/HARDENING  Position center surface Cooling rate small large Hardness small large
  • 353.
    Tempering : • Itis a process of heating a martensitic steel at a temperature below the eutectoid temperature to make it softer and more ductile. • Used to reduce brittleness on martensite (tempered martensite). • Precipitation of fine carbide particle. • BCT BCC Purpose : • To increase ductility and toughness of martensite. • To relieve the internal stress. Procedure : • Immediately after quenching, sample is heated (normally below A1 line at about 250-650˚C) • Held at that temperature for about 2 hours. • Lastly removed from the bath and cooled in air (at room temperature). 48 TEMPERING
  • 354.
     Microstructure produced : Tempered martensite which is hard but more malleable and ductile is produced.  This microstructure consists of extremely small and uniformly dispersed cementite particle embedded with a matrix of ferrite. 49 TEMPERING
  • 355.
     Steel will oxidize(oxygen in air react with iron to form iron oxide)as it is reheated and begin to show colors. The higher the temperature, the thicker the oxide layer and the darker the colors. These temper colors sometimes used as a guide to temperature. 50 TEMPERING
  • 356.
  • 357.
     1. Describe therequired heat treatment that Tony Stark should do on his mask after he has finished cold forging process. (October 2012) 2. Explain the influence of quenching medium and specimen size on the hardenability of steel. (October 2012) 3. Compare between normalizing process and full annealing process in terms of microstructure, cooling rate, properties, cooling medium and purpose of those heat treatments. (April 2011) 4. Describe the following heat treatment process in terms of the purpose, temperature, cooling medium, microstructure produced and properties for eutectoid steel. (September 2011) a) Normalizing b) Annealing 5. Heat treatment is used to change the microstructure and properties of materials. (October 2010) a) Differentiate between coarse pearlite and fine pearlite in terms of the type of heat treatment and the properties of material that may be obtained from the microstructures. b) Briefly describe the hardening in terms of the purpose, process, microstructure and effect to the properties of materials. 52 EXERCISE
  • 358.
     Hardenability:  A measureof the depth to which the metals of an alloy may be hardened by the formation of martensite as a result of a given heat treatment.  Hardening process (e.g: quenching) for steels consist of heating and rapid cooling form martensite.  The cooling rate depends on the medium used for the quenching, e.g: water gives a faster cooling rate than oil and air cooling.  Generally, the faster steel cools, the harder it will be. The Jominy Test is used to measure the hardenability of a steel. 53 3.3 HARDENABILITY OF STEELS
  • 359.
     Jominy test:  usedto measure the hardenability of steels by heat treatment which shows the effects of cooling rate on steel hardness. Jominy Process:  Heating a standard test piece of the steel to a standard austenite state.  Fixing it in a vertical position and then quenching it with a jet of water at one end only, thus producing a range of cooling rates along the steel bar.  After the quenching, a flat portion is ground along one side of the test piece, 0.38mm deep, and hardness measurements are made along the length of the test piece from the quench end. Jominy distance:  the distance from the quenched end of a Jominy bar which is related to the cooling rate. 54 3.3 HARDENABILITY OF STEELS
  • 360.
     • Hardenability curveis the graph showing the effect of the cooling rate on the hardness of as-quenched steel. • The cooling rate at the quench end is very fast but becomes slower as the distance from the quench end increases. • Therefore, the distance from the quench end is an equivalent measure of the cooling rate, and can be used to give the hardenability of the steel. 55 HARDENABILITY CURVE
  • 361.
     • At quenchedend - cools most rapidly, therefore it contains most martensite. • Cooling rate decrease with distance from quenched end: greater C diffusion- more pearlite/bainite, lower hardness. 56 HARDENABILITY CURVE
  • 362.
  • 363.
    1. Hardenability canbe defined as the ability of an alloy to be hardened by the formation of martensite. (March 2013) a) Explain THREE (3) factors that influence the hardenability of steel. b) Figure Q3 (a) shows a sample that has been preceded to Jominy End- Quench Test. identify the microstructure at point A, B, C and D. 2. Define hardenability of steel. (April 2009) 3. With the aids of neat sketches, describe how hardenability can be determined experimentally. (April 2009) 58 EXERSICE
  • 364.
  • 365.
    CONTENT: 4.1 CLASSIFICATION OFENGINEERING MATERIALS 4.2 PLASTICS AND ELASTOMER: MOLECULAR, STRUCTURES, PROPERTIES AND APPLICATIONS 4.3 CERAMIC: STRUCTURE, PROPERTIES AND APPLICATIONS 4.4 COMPOSITE MATERIALS: TYPES, PROPERTIES AND APPLICATIONS.
  • 366.
  • 367.
  • 368.
  • 369.
    CLASSIFICATION OF ENGINEERINGMATERIALS (METALS) Metals can be further classified as Ferrous & Non-Ferrous, and some examples include: Ferrous Non-Ferrous Steels Aluminium Stainless Steels Copper Cast Irons Titanium
  • 370.
    CLASSIFICATION OF ENGINEERINGMATERIALS (POLYMERS) Polymers can be further classified as Thermoplastics Thermosets Elastomers Acrylics Epoxy resins Rubbers Nylons Phenolic Silicones PVC Polyesters Polyurethanes Polyethylene
  • 371.
    CLASSIFICATION OF ENGINEERINGMATERIALS (CERAMICS) Ceramics are compounds of metallic and non-metallic elements, examples include; • Oxides (alumina – insulation and abrasives, zirconia – dies for metal extrusion and abrasives) • Carbides (tungsten-carbide tools) • Nitrides (cubic boron nitride, 2nd in hardness to diamond)
  • 372.
    Materials in ourlives – electronic & electrical CLASSIFICATION OF ENGINEERING MATERIALS
  • 373.
    CLASSIFICATION OF ENGINEERINGMATERIALS Materials in our lives – Civil & Structural
  • 374.
    METAL AND NON-METALUSE IN AUTOMOBILES Some of the metallic and nonmetallic materials used in a typical automobile
  • 375.
    Materials in ourlives – Aerospace & Mechanical CLASSIFICATION OF ENGINEERING MATERIALS
  • 376.
    4.2 PLASTICS ANDELASTOMERS: Molecular structures, properties and applications
  • 377.
    POLYMER - INTRODUCTION Naturally (those derived from plants, animals) – wood, rubber, cotton, wool, leather, silk.  Other natural polymer – proteins, enzymes, starches, cellulose.  Development of numerous polymer – synthesis from small organic molecules.  Synthetic polymer – plastics, rubbers, fibers (inexpensive & properties managed to degree that many are superior to their natural counterparts.
  • 378.
    POLYMER MOLECULES  Tounderstand the chemistry of the polymer, we need to understand the definition of hydrocarbon,  Hydrocarbon  are composed of hydrogen and carbon.  Has covalent bonds for the intramolecular/interatomic bonds but for intermolecules exist secondary bond, thus these hydrocarbons have relatively low melting and boiling points (p’).  Saturated and unsaturated  May have different atomic arrangements, isomerism CnH2n+2 (Molecular formula)
  • 379.
    POLYMER MOLECULES  Mostpolymer are organic – review concept relating to structure of their molecules.  Each C atom has 4 electron that may participate in covalent bonding, whereas every H atom has only 1 bonding electron.  A single covalent bond exits when each of the bonding atoms contributes 1 electron – saturated (no new atoms may be joined without removal of others that are already bonded.  E.g. paraffin family ethane C2H6, propane C2H8  Covalent bond –strong  Van de waals bonds exit between molecules – low melting & boiling temp. T boil rise with increasing molecular weight
  • 380.
    POLYMER MOLECULES  Saturatedhydrocarbon –all bonds are single  Molecules that have double or triple covalent bonds are termed unsaturated.  Double or triple bonds between 2 C atoms involve sharing of 2 or 3 pairs of electrons, respectively.  Within molecule, atoms are bonded together by covalent interatomic bonds. C C H H H H H H
  • 381.
    POLMER MICROSTRUCTURE Mer • astructural entities or part • a single mer is called a monomer Functionality  no of bonds that a given monomer can form  Bifunctional mer – 2 covalent bonds with other monomer forming 2D chainlike molecular structure  Trifunctional mer – 3 active bonds, form 3D molecular network structure Bifunctional mer OH CH2 CH2CH2 trifunctional mer
  • 382.
    ( )n POLMER MICROSTRUCTURE •Mer – a repeat unit (repeated along the chain) • Monomer – small molecule from which polymer is synthesized. • Polymer – many mer • The repeat units are enclosed in parentheses (), subscript n indicate the number of times it repeats. • R depicits either atoms i.e. H, Cl or an organic group i.e. CH3 (methyl), C2H5 (ethyl), C6H5 (phenyl) • vinyl or ethenyl is the functional group −CH=CH2, namely the ethene molecule (H2C=CH2) minus one hydrogen atom
  • 383.
    ( )n( )n()n ( )n C C C C C C HHHHHH HHHHHH Polyethylene (PE) mer ClCl Cl C C C C C C HHH HHHHHH Polyvinyl chloride (PVC) mer Polypropylene (PP) CH3 C C C C C C HHH HHHHHH CH3 CH3 mer --CH2-CH2 -- -CH2-CHCl-- --CH2-CHCH3-- POLMER MICROSTRUCTURE Polymer = many mers
  • 384.
    CHEMISTRY OF POLYMER Polymers •Consist of many mers • Are gigantic/ macromolecules • Mostly these molecules are long and flexible chain, the backbone of the chain is a string of carbon atoms. • A large molecule (macromolecule) built up by repetitive bonding (covalent) of smaller molecules (monomers) • Generally not a well defined structure, or molecular weight. (A A A A ) n n, degree of polymerization
  • 385.
    POLYMER STRUCTURE Basic structure ofsome polymer molecules: (a) ethylene molecule; (b) polyethylene, a linear chain of many ethylene molecules; (c) molecular structure of various polymers. These molecules are examples of the basic building blocks for plastics.
  • 386.
  • 388.
    Name(s)/Tradename Formula Monomer Poly(vinylidenechloride) (Saran A) –(CH2-CCl2)n– vinylidene chloride CH2=CCl2 Polystyrene (PS) –[CH2-CH(C6H5)]n– styrene CH2=CHC6H5 Polyacrylonitrile (PAN, Orlon, Acrilan) –(CH2-CHCN)n– acrylonitrile CH2=CHCN Polytetrafluoroethylene (PTFE, Teflon) –(CF2-CF2)n– tetrafluoroethylene CF2=CF2 Poly(methyl methacrylate) (PMMA, Lucite, Plexiglas) –[CH2-C(CH3)CO2CH3]n– methyl methacrylate CH2=C(CH3)CO2CH3 Poly(vinyl acetate) (PVAc) –(CH2-CHOCOCH3)n– vinyl acetate CH2=CHOCOCH3 cis-Polyisoprene natural rubber –[CH2-CH=C(CH3)-CH2]n– isoprene CH2=CH-C(CH3)=CH2 Polychloroprene (cis + trans) (Neoprene) –[CH2-CH=CCl-CH2]n– chloroprene CH2=CH-CCl=CH2
  • 389.
    • Physical characteristicsof a polymer depends on its molecular weight, shape, differences in the structure of the molecular chains. • Covalent chain configurations and strength: Direction of increasing strength POLYMER STRUCTURE Branched Cross-Linked NetworkLinear secondary bonding
  • 390.
    MOLECULAR STRUCTURE i. Linearpolymers  the repeat unit are joined together end to end in single chain  May have extensive van der Waals and hydrogen bonding between the chains  uninterrupted straight chain, spegetti  These long chains are flexible  Extensive van de waals and hydrogen bonding between the chains  e.g. Polyethylene, poly(vinyl chloride), nylon Linear secondary bonding
  • 391.
    MOLECULAR STRUCTURE ii. Branchedpolymer  occasional branches off longer chain  which the side-branch chains are connected to the main chain  Lowering of the polymer density  The branches may result from side reactions that occur during the synthesis of polymer  Branches considered to be part of the main chain molecule  e.g. high density polyethylene (HDPE) – primary linear polymer & low density polyethylene (LDPE) – short chain branches B ranched
  • 392.
    MOLECULAR STRUCTURE iii. Crosslinkedpolymer  The adjacent linear chains are joined one to another at various positions by covalent bond  of crosslinking is achieved either during synthesis or by a non-reversible chemical reaction  Many in rubber elastic materials Cross-Linked
  • 393.
    iv. Network polymer Having three active or more covalent bond, form three dimensional network  highly crosslinked  Distinctive mechanical and thermal properties  e.g. epoxies, phenol formaldehyde Network MOLECULAR STRUCTURE
  • 394.
    CLASSIFICATION OF POLYMER Thermoplastics - Linear or branched polymers in which chains of molecules are not interconnected to one another.  Thermosetting polymers - Polymers that are heavily cross-linked to produce a strong three dimensional network structure.  Elastomers - These are polymers (thermoplastics or lightly cross-linked thermosets) that have an elastic deformation > 200%.
  • 395.
  • 396.
    THERMOPLASTIC POLYMERS Characteristic: • Softenwhen heated • Harden when cooled • Reprocessable • Relatively soft • High viscosity at processing temperatures • Difficult to process • Examples: polyethylene, polypropylene, polystyrene Properties: • relatively soft • melt processability • lower thermal resistance, • higher creep, • Higher moisture absorption
  • 397.
    CHARACTERISTICS AND TYPICALAPPLICATIONS FOR COMMON THERMOPLASTIC Polymer Major application characteristic Typical application Polyethelylene (HDPE, LDPE) Chemically resistant and electrically insulating, tough and relatively low coefficient of fraction, low strength and poor resistance to weathering Flexible bottle, toys, tumblers, battery part, ice trays, film wrapping materials Polypropylene Resistant to heat distortion, excellent electrical properties and fatigue strength, chemically inert, relatively inexpensive, poor resistance to uv light Sterilizable bottles, packaging film, tv cabinets, luggage, Tanks, rope Polyvinyl cloride (PVC) Good low cost, general purpose materials, ordinarily rigid, but may be made flexible with plasticizer, susceptible to heat distortion Floor coverings, pipe, electrical wire insulation, garden hose, valve, fitting Polystyrene Excellent electrical properties and optical clarity, good thermal and dimensional stability, relatively inexpensive Packaging, wall tile, battery cases, toys, appliance housing
  • 398.
    THERMOSETTING POLYMERS (THERMOSETS) Characteristic: • donot melt on heating • ease of their processing • low cost • Lose their stiffness properties at the heat distortion temperature • Examples: rubbers, epoxies, polyester, phenolics • NETWORK POLYMERS – have covalent cross links between adjacent molecular chains. • They become permanently hard during their formation and do not soften upon heating. • Only heating to excessive temp will cause severance of these link bonds and polymer degration. Properties: • harder, stronger, better dimensional stability and more brittle than thermoplastics.
  • 399.
    Polymer Major applicationcharacteristic Typical application Epoxies Excellent combination of mechanical properties and corrosion resistance; dimensionally stable; Good adhesion; relatively inexpensive; good electrical properties Electrical moldings, sinks, adhesives, protective coatings, used with fiberglass laminates Polyesters Excellent electrical properties and low cost; can be formulated for room- or high-temperature use; often fiber reinforced Helmets, fiberglass boats, auto body components, chairs, fans Phenolics Excellent thermal stability to over 150C (300F); may be compounded with a large number of resins, fillers, etc.; inexpensive Motor housings, telephones, auto distributors, electrical fixtures Characteristics and typical applications for common thermoset
  • 400.
  • 401.
    ELASTOMER (RUBBER) Characteristic: • Soft •have low elastic modulus values • show great dimensional change when stressed but it will return to its original dimensions immediately after the deforming stress is removed • low glass transition temperature.
  • 402.
    Two type ofrubber: i. natural rubber ii. synthetic rubber (SBR, NBR) Classification of Natural rubber: • R Class,  composed of unsaturated chain polymers (these unsaturated materials can have their properties by modified by cross linking) • M Class  which are saturated chain linear polymers, • U Class or polyerethanes and the Q Class  silicone rubbers ELASTOMER (RUBBER)
  • 403.
    Characteristic and typicalapplication for common Elastomers
  • 404.
  • 405.
  • 406.
    LOAD-ELONGATION CURVE ANDTENSILE-TEST SPECIMEN (a) Load-elongation curve for polycarbonate, a thermoplastic. (b) High-density polyethylene tensile-test specimen, showing uniform elongation (the long, narrow region in the specimen).
  • 407.
  • 408.
    SUMMARY: POLYMER CHAINS Schematicillustration of polymer chains. (a) Linear structure; thermoplastics such as acrylics, nylons, polyethylene, and polyvinyl chloride have linear structures. (b) Branched structure, such as polyethylene. (c) Cross-linked structure; many rubbers and elastomers have this structure. Vulcanization of rubber produces this structure. (d) Network structure, which is basically highly cross-linked; examples include thermosetting plastics such as epoxies and phenolics.
  • 409.
  • 410.
    47  Ceramic (burntstuff)-desirable properties a high temp heat treatment process (firing)  composed of at least two elements or more (e.g.,Al2O3, NaCl, SiC, SiO2)  Crystal structure more complex than metals  Inorganic & non metallic materials  Most ceramics – metallic & nonmetallic element – ionic or predominantly ionic but having some covalent character  Types of ceramic materials:  Oxide  Aluminum oxide/Alumina (Al203),  Zirconium oxide/ Zirconia (ZrO2),  Non-oxide  Carbide, Silicate CERAMICS
  • 411.
    Class of ceramics 48 TraditionalCeramics: primary raw materials is clay Example: porcelain, bricks, tiles, sewer, glasses, pipe, whiteware, high temperature ceramics Engineering Ceramics : Contain more of pure compounds of oxides, carbides, nitrides, etc. Oxygen sensor Example: refractory tubing, crucibal, spark plung insulator, advance ceramic, electroceramic
  • 412.
    CERAMICS 49 Properties : • Generallyhard and brittle • Generally electrical and thermal insulators exceptions: graphite, diamond, Aluminium nitride (AlN) • Can be optically opaque, semi-transparent, or transparent • High chemical stability and high melting temperature • Corrosion resistant • Better compressive strength than tensile (5-10 times) • Tmelt for glass is moderate, but large for other ceramics. • Small toughness, ductility; large moduli & creep resist. Applications: • High T, wear resistant, novel uses from charge neutrality.
  • 413.
    50 TAXONOMY OF CERAMICS - - -- - - -Advanced -valvesreinforce Glasses Clay products Refractories Abrasives Cements ceramics -optical -composite -containers/ household -whiteware -structural: bricks -bricks for high T (furnaces) -sandpaper -cutting -polishing -composites structural -engine -rotors -bearings -sensors Ceramic Materials
  • 414.
  • 415.
    GLASSES • Non crystallinesilicates containing network modifiers; Na2O, CaO, K2O and Al2O3 • Typical example of glass; soda-lime silica glass  70% SiO2 + soda (Na2O) and lime (CaO) • Glass is transparent and easy to be fabricated 52
  • 416.
    CHARACTERISTICS OF COMMONCOMMERCIAL GLASSES 53
  • 417.
    APPLICATIONS : GLASSES 54 96%Silica Laboratory ware Borosilicate, 81% Silica, 3.5% Na2O, 2.5% Al2O3 and 3% B2O3 Pyrex Laboratory ware/oven ware Containers, windows
  • 418.
    GLASS CERAMICS • Mostglass are amorphous (non crystalline) • But can be transformed to crystalline by heat treatment  fine grained polycrystalline material – glass-ceramics • The heat treatment process  devertification process • During the heat treatment process, a nucleating agent is required to initiate crystallization or devertification process • Easy to fabricate; mass production. • Glass ceramic commercially under trade names of Pyroceram, corning ware, cercor, vision • Applications: ovenware, tableware, oven windows, range top – primary coz of their strength & excellent resistant to thermal shock 55
  • 419.
    APPLICATIONS :GLASS CERAMICS 56 Properties/characteristics Highmechanical strength Low coefficient of thermal expansion (to avoid thermal shock) high temperature capabilities Good biological compatibility Some optical transparent; others are opaque Electrical insulator Other Applications Glassware Electrical insulator Substrate for printed circuits board Architectural cladding Heat exchangers Generator
  • 420.
    CLAY PRODUCTS - Structural clayproducts - Whitewares 57
  • 421.
    CLAY PRODUCT - Widelyused as ceramic raw materials - Inexpensive ingredient - Found naturally in great abundance • Adding water to clay -- very amenable to shaping (form a plastic mass) -- enables extrusion -- enables slip casting • The formed piece is dried to remove moisture • Fired at elevated temp to improve its mechanical strength • 2 broad classification 1) structural clay product - structural integrity is important 2) whitewares 58
  • 422.
    CLAY COMPOSITION A mixtureof components used (50%) 1. Clay Clay facilitates the forming operation since, when mixed with water, the mass may be made to become either hydroplastic or form a slip. Also, since clays melt over a range of temperatures, the shape of the piece being fired will be maintained. (25%) 2. Filler – e.g. quartz (finely ground) (25%) 3. Fluxing agent (Feldspar) binds it together The flux facilitates the formation of a glass having a relatively low melting temperature 59 aluminosilicates + K+, Na+, Ca+
  • 423.
    CLAY PRODUCT: STRUCTURAL CLAYPRODUCT used mainly in construction Properties : load-bearing strength, resistance to wear, resistance to chemical attack, attractive appearance, and an ability to take a decorative finish. Products : facing buildings, surfacing highways, making containers for corrosive acids, as aggregate for low-density concrete, as conduits for sewage, as structural arches supporting bridges, as roofs, and as chimney liner 60Tiles bricks sewer pipe
  • 424.
    61 Bricks conduits for sewage roofs chimneyliners Application : structural clay product
  • 425.
    CLAY PRODUCT :WHITEWARES -ceramic products that are white to off-white in appearance - become white after high temp firing - frequently contain a significant vitreous, or glassy, component. Properties : imperviousness to fluids, low conductivity of electricity, chemical inertness, and an ability to be formed into complex shapes. Products : china dinnerware, lavatory sinks and toilets, dental implants, and spark-plug insulators, 62
  • 426.
    63 lavatory sinks andtoilets, plumbing fixture (sanitary ware) china dinnerware (Porcelain, pottery, tableware) dental implants spark-plug insulators Application : Whiteware
  • 427.
  • 428.
    65 Characteristic of RefractoryCeramics  Can withstand high temperature without melting or decomposing  Can remain inert even at sever conditions  Can provide thermal insulations  In a form of bricks (most common)  Use as furnace linings for metal refining, glass manufacturing heat treatment and power generation
  • 429.
    REFRACTORIES CERAMICS Several classification •fireclay-used in furnace construction, to confine hot atm & to thermally insulate structural members from excessive temp (alumina & silica) • Silica (asid refractories) – high temp load bearing capacity (used in arched roofs of steel & glass making furnace), • basic – magnesia(MgO) + Ca, Cr, Fe + silica (used in some steel making furnace) • special refractories – e.g. (SiC) cruciable material & electrical resistance heating elements & internal furnace component Raw ingredients – (both) large & fine particles • Upon firing, fine particles –formation of bonding phase –increased strength of the brick • Control the porosity – porosition reduction incred strength, load bearing capacity, resistance to corrosive materials • However, diminished the thermal insulation characteristic and resistance to thermal shock
  • 430.
    67 APPLICATION: REFRACTORIES CERAMICS •Need a material to use in high temperature furnaces. • Fireclay bricks, crucible material, internal furnace components Fireclay bricks crucible internal furnace components
  • 431.
    • Consider Silica(SiO2) - Alumina (Al2O3) system. • Phase diagram shows: mullite, alumina, and crystobalite (made up of SiO2) tetrahedra as candidate refractories. 3 Composition (wt% alumina) T(°C) 1400 1600 1800 2000 2200 20 40 60 80 1000 alumina + mullite mullite + L mullite Liquid (L) mullite + crystobalite crystobalite + L alumina + L 3Al2O3-2SiO2 APPLICATION: REFRACTORIES
  • 432.
  • 433.
    ABRASIVE CERAMICS • Usedto wear, grind and cut away other material • Hardness and wear resistance important • High degree of toughness – do not want material which deform or facture during cutting! • Diamond is the best but expensive • Other examples; Tungsten carbide (WC) , Alumina (Al2O3) and Silica(SiO2), SiC, silica sand 70
  • 434.
    71 APPLICATION: ABRASIVE CERAMICS •Abrasive are used in several forms-Bonded to grinded wheels - as coating abbrasive – the abrasive particles/powder is coated on some type of paper or cloth material; sand paper, wood, metal ceramics & plasric - loose grains – grinding, lapping & polishing wheels often employ loose abrasive grain that are delivered in some type of oil or water based vehicles (diamods, SiC, iron oxide) grinding wheel, sandpaper grinding wheel
  • 435.
    5 • Tools: --for grindingglass, tungsten, carbide, ceramics --for cutting Si wafers --for oil drilling blades oil drill bits APPLICATION: ABRASIVE CERAMICS
  • 436.
  • 437.
    74 Cements • Inorganic cements: cement, plaster of paris and lime • known as binder, • When mixed with water, forms a paste which harden as a results of complex hydration reactions • substance that sets and hardens independently • can bind other materials together • The role of cement is similar to glassy bonding when clay product & refractory brick are fired. •The different is cementitious bond develop at room temp. •Lime involved in hardening reaction
  • 438.
    APPLICATION : CEMENTS •as an ingredient in the production of mortar in masonry, and concrete 75 Mortar concrete
  • 439.
    • Produced inextremely large quantities. • Portland cement: --mix clay and lime bearing materials --calcinate (heat mixture to 1400°C in rotary kiln) --primary constituents: tri-calcium silicate di-calcium silicate • Adding water --produces a paste which hardens --hardening occurs due to hydration (chemical reactions with the water). • Forming: done usually minutes after hydration begins. 16 CEMENTS
  • 440.
    CEMENTS  Hydration reactionsbegin just as soon as water is added to the cement 1)Setting i.e. stiffening of once plastic phase (several hours) 2)Hardening –water actually participates in a chemical bonding reaction  Porland cement- its hardness develops by chemical reaction with water  Used in mortar & concrete to bind aggregated of inert particles (sand) into cohesive mass (composite materials)
  • 441.
  • 442.
    ADVANCED CERAMIC  Ceramicsthat displays unique electrical, magnetic and optical properties  Utilized in microelectromechanical system (MEMS), Sensors, fuel cells, superconductors, actuators, electronics packaging, semiconductor devices, solar cells, fibre optics, laser production, etc 79 MEMS Ceramic cannula in fibre optics
  • 443.
    80 Applications: Advanced Ceramics Ceramic Armor  Al2O3, B4C, SiC & TiB2  Extremely hard materials  shatter the incoming bullet  energy absorbent material underneath
  • 444.
    81 Applications: Advanced Ceramics ElectronicPackaging  Chosen to securely hold microelectronics & provide heat transfer  Must match the thermal expansion coefficient of the microelectronic chip & the electronic packaging material. Additional requirements include: - good heat transfer coefficient - poor electrical conductivity  Materials currently used include:  Boron nitride (BN)  Silicon Carbide (SiC)  Aluminum nitride (AlN) - thermal conductivity 10x that for Alumina - good expansion match with Si
  • 445.
    CERAMIC TYPES ANDCHARACTERISTICS
  • 446.
    EXERCISE : 1. Describethe main Difference between traditional ceramics and engineering ceramics. 2. List two example of applications for traditional ceramics and engineering ceramics. 3. Some of our modern kitchen cookware is made of ceramic materials. a) List three (3) important characteristics required of a materials to be used for this application. b) Choose the material that most suitable for cookware. 83
  • 447.
    4.4 COMPOSITE MATERIALS: TYPES,PROPERTIES AND APPLICATION
  • 448.
    COMPOSITE MATERIAL • Consistsof two or more physically and/or chemically distinct, suitably arranged or distributed phases with an interface separating them. • Composite – multiphase materials (metal alloys, ceramics & polymers) artificially made • Has characteristics that are not represent by any of the components in isolation. • Material have specific & unusual prop in i.e. aerospace, underwater, bio-engineering & transportation industries. • e.g. low density, strong, stiff, abrasion, impact resistance & do not easily corrode.
  • 449.
    composites Particle-reinforced Fiber-reinforced Structural Large-particle Dispersion- strengthened (0.01 and 0.1 µm) Continuous (aligned) Discontinuous (short) aligned Randomly oriented Laminates Sandwich panel CLASSIFICATION OF COMPOSITE MATERIALS
  • 450.
    PARTICLE REINFORCED COMPOSITES •The particle diameter is typically a few microns (μ) • Particle reinforced composites are much easier and less costly than making fiber reinforced composites. • Particulate phase is harder & stiffer than the matrix. • Particulate –same dimension in all direction 1. Large - Particle Particulate Flake Filler
  • 451.
    PARTICLE REINFORCED COMPOSITES Basedon reinforcement or strengthening mechanism. Example: • concrete composed of cement (matrix) and sand & gravel (particulates). Cerment (ceramic metal composite) matrix “metal” such as Co, Ni, particles “ceramic” such as WC or TiC. 1. Large - Particle (cont.) Concrete is a mixture of cement and aggregate, giving a robust, strong material that is very widely used
  • 452.
    PARTICLE REINFORCED COMPOSITES Basedon reinforcement or strengthening mechanism. Example: • Used as cutting tools for hardened steel – carbide is brittle. toughness is enhanced by inclusion in the ductile metal matrix. Withstand high temp generate during cutting. 1. Large - Particle (cont.)
  • 453.
    PARTICLE REINFORCED COMPOSITES Basedon reinforcement or strengthening mechanism. Example: • automobile tire which has carbon black particles in a matrix of polyisobutylene elastomeric polymer. Carbon black evenly distributed though out the rubber (inexpensive material) – enhanced TS, toughness, tear & abrasion resistance 1. Large - Particle (cont.)
  • 454.
    PARTICLE REINFORCED COMPOSITES •The particle diameter is small particles between 0.01 and 0.1 μm(10–100nm) • An example : metal matrix composite with a fine distribution. Metal & metal alloys + dispersed phases (metallic/ nonmetallic/oxide materials) • The strengthening mechanism involve the interactions between the particles dislocation between the matrix. Particle matrix interaction leads to strengthening 2. Dispersion Strengthen
  • 455.
    FIBER-REINFORCED COMPOSITE •The fiberscan be in the form of long continuous fibers, or discontinuous fibers, particles, whiskers and even weaved sheets, wires. •Fiberglass is likely the best know fiber reinforced composite. (a) Continuous and aligned (b) Discontinuous and aligned (c) discontinuous and randomly oriented
  • 456.
    • Aligned Continuousfibers • Examples: fracture surface matrix: (Mo) (ductile) fibers:’ (Ni3Al) (brittle) 2m --Metal: '(Ni3Al)-(Mo) by eutectic solidification. --Glass w/SiC fibers formed by glass slurry Eglass = 76GPa; ESiC = 400GPa. (a) (b) FIBER-REINFORCED COMPOSITE
  • 457.
    • Discontinuous, random2D fibers • Example: Carbon-Carbon --process: fiber/pitch, then burn out at up to 2500C. --uses: disk brakes, gas turbine exhaust flaps, nose cones. • Other variations: --Discontinuous, random 3D --Discontinuous, 1D fibers lie in plane view onto plane C fibers: very stiff very strong C matrix: less stiff less strong FIBER-REINFORCED COMPOSITE
  • 458.
    Factor that influencecomposites properties 1. Fiber length - short fiber --- less significant improvement in strength - more effective if continuous fiber 2. Fiber orientation - parallel alignment - align direction, reinforcement and strength are max; perpendicular to alignment, they are minimum - random alignment -Able to support multiple direction forces 3. Fiber concentration - Better properties when fiber distribution is uniform FIBER-REINFORCED COMPOSITE
  • 459.
  • 460.
    MATRIX • A bulkphase, which is continuous • Surrounds the reinforcements • Providing uniform load distribution to the reinforcing constituents • General polymer and metal – ductility is desirable • Ceramic matrix to improve fracture toughness • Examples: metal-, polymer- and ceramic- matrix
  • 461.
    Purpose of Matrix: • to bind and hold the reinforcements. • to transfer load to and between reinforcements. • allows the strength of the reinforcements to be used to their full potential by providing effective load transfer from external forces to the reinforcement. • to protect the reinforcements from environments and handling. • provides a solid form to the composite which aids handling during manufacture and is typically required in a finished part. • controls the transverse properties, interlaminar strength and elevated-temperature strength of the composite. MATRIX
  • 462.
    REINFORCEMENT • Fiber reinforcementare classified as follows a) Fibers – normally polymer or ceramics (amorphous or polycrystalline) i.e glass, carbon, boron, aluminum oxide, SiC b) Whiskers – thin single crystals that have very small diameters) i.e. Graphie, SiC, Al2O3 c) Wires – metal/alloys that have relatively large diameters. . i.e. steel, Molybdenum, W • provide superior levels of strength and stiffness to the composite. • provide thermal and electrical conductivity, controlled thermal expansion, and wear resistance in addition to structural properties.
  • 463.
    IMPORTANT CHARACTERISTICS FORREINFORCEMENT • Diameter size  strength decreases with an increases of diameter • A high aspect ratio (l/d)  allows a very large fraction of the applied load to be transferred via the matrix to stiff and strong fiber • High degree of flexibility  it is a characteristic of material having a high modulus and a small diameter.  Permits a variety of techniques for making composites
  • 464.
    INTERFACES • can bedefined as a bounding surface where a discontinuity of some kind occurs (between matrix and reinforcement). • the interface is an essentially two-dimensional region through which material parameters such as  concentration of an element, crystal structure, atomic registry, elastic modulus, density and coefficient of thermal expansion, change from one side to another
  • 465.
    CLASSIFICATION OF COMPOSITES(MATRIX) Ceramic-Matrix Composite (CMC) Metal-Matrix Composite (MMC) Polymer Matrix Composite (PMC) composite
  • 466.
    POLYMER-MATRIX COMPOSITES (PMC) PMCs consist of a polymer resin as the matrix, with fibers as the reinforcement medium  They may be reinforced with glass, carbon and aramid fibers, etc.  Polymer Matrix  The most widely used (least expensive) polymer resins are polyesters and vinyl ester.  Epoxies (more expensive)  PMCs for aerospace applications  Better mechanical properties and resistance to moisture than polyesters and vinyl ester.  Polyimide resins for high temperature applications  aerospace application – polyetheretherketone, polyphenylene sulfide, polyetherimide
  • 467.
    EXAMPLE OF PMC: GlassFiber-Reinforced Polymer (GFRP) Composites • fiberglass consist of glass fibers (continuous or discontinuous) contained within polymer matrix (polyester resin) • widely use due to a. Easily drawn into high strength fiber b. Easily to be processes to composite ( less cost) c. Very high specific strength d. Most type chemical inertness -- variety of corrosion environment • Limitation a. High strength but not very stiff (rigidity) – not suitable for structure application b. Low service temperature ( below 200oC) – improve by adding high temp purity silica and high temp polymer (polymide) – ( 300oC) • Application  plastic pipeline, tanks and vessel for chemical process industry, storage containers, automotive & marine bodies  Transportation industries – decrease vehicle weight & boost fuel efficiency Polymer-Matrix Composites (PMC)
  • 468.
    EXAMPLE OF PMC: CarbonFiber-Reinforced Polymer (CFRP) Composites  Carbon widely use as fiber reinforced due to a. Highest specific modulus and specific strength b. High tensile modulus and high strength retain at elevated temp c. At room temp, carbon fiber are not effected by moisture, most solvent, acids bases d. Low fabrication cost and effective  Limitation a) fabrication of carbon fiber are complex b) at high temp, carbon - high tendency to oxidized  Application sport and recreational equipment ( fishing rod, golf clubs), filament wound rocket motor casing, pressure vessel, aircraft structural, Helicopters (wing, body, stabilizer), crank arms for bicycle Polymer-Matrix Composites (PMC)
  • 469.
    EXAMPLE OF PMC: AramidFiber-Reinforced Polymer Composites  aramid – chemical name : poly paraphenylene (polymer)  high strength, high modulus materials (outstanding strength to weight ratio)  good longitudinal tensile strength, toughness, impact resistant, resistance to creep and fatigue failure  even polymer group but resist to combustion and stable to relatively high temperature ( application range -200oC to 200oC)  degradation to strong acid and base but inert to solvent and other chemical  Trade name-Kevlar, Nomex  Polymer matrix – epoxies, polyesters  Higher fatigue resistant than carbon PMC  Application:  Racing yachts and private boats, helmets, rocket engine cases, gasket, clutch lining, ballistic products (bulletproof vest & armor), tires, ropes, sporting goods Polymer-Matrix Composites (PMC)
  • 470.
    EXAMPLE OF PMC: Boron/epoxiescomposite  Golf clubs, tennis rackets, horizontal stabilizers and tail section of military aircraft, helicopter rotor blade Polymer-Matrix Composites (PMC)
  • 471.
    CROSS-SECTIONS OF FIBER-REINFORCED MATERIALS (a)Cross-section of a tennis racket, showing graphite and aramid (Kevlar) reinforcing fibers. (b) Cross-section of boron fiber-reinforced composite material
  • 472.
  • 473.
    POLYMER-MATRIX COMPOSITES (PMC) Advantages: found widespread applications.  can be easily fabricated into any large complex shape, do not involve high pressures and temp. (less degradation of reinforcement)  Equipment required may be simpler; (hand lay- up)
  • 474.
    Disadvantages: • low maximumworking temperatures. • high coefficients of thermal expansion and hence dimensional instability (except: carbon fibre- reinforced polymers ) • sensitivity to radiation (except: epoxies) and moisture. • The absorption of water from the environment may have many harmful effects which degrade mechanical performance, including swelling. • formation of internal stresses and lowering of the glass transition temperature. Polymer-Matrix Composites (PMC)
  • 475.
    Properties • improve strengthsand stiffnesses, • Ease of molding for complex shapes, • high environmental resistance all coupled with low densities • Make the resultant composite superior for many applications Polymer-Matrix Composites (PMC) Fibre Reinforced Polymer
  • 476.
    Application in general: •Aramid and carbon fibers have strengths and low densities and are used in many applications, particularly aerospace, in spite of their higher cost. • In electronic applications, glass fiber from E-glass type is used as reinforcement in substrate application because the fibers have very desirable and stable electrical properties. Polymer-Matrix Composites (PMC)
  • 477.
    BOEING 757-200 Application ofadvanced composite materials in Boeing 757-200 commercial aircraft.
  • 478.
    METAL-MATRIX COMPOSITE (MMC) Examplesof metal-matrix composite parts.
  • 479.
    METAL-MATRIX COMPOSITES (MMC) The matrix is a ductile metal  The most common metals employed in MMC are aluminum, copper, titanium and magnesium.  Typical fibers used in the composite systems are carbon and silicon carbide  Metals are mainly reinforced to increase or decrease their properties to suit the needs of the design.  Reinforcement - may improve sp stiffness, sp strength, abrasion resistance, creep resistance, thermal conductivity, dimensional stability - Particulate, fibers (continuous & discontinuous), wiskers - E.g. Boron aluminum oxide, refractory metals
  • 480.
    Advantages : • higherapplication temperature ranges, • higher transverse stiffness and strengths, • high electric and thermal conductivities and can be fabricated with conventional metal working equipment • high toughness values. higher strength-to-density, stiffness-to-density ratios as well as better fatigue resistances, lower coefficients of thermal expansion (CTE) and better wear resistances as compared with monolithic metals Disadvantages:  most metals are heavy  Susceptible to interfacial degradation at the reinforcement and matrix interface  susceptible to corrosion  high material and fabrication costs  exhibit degradation of properties at very high temperatures METAL-MATRIX COMPOSITES (MMC)
  • 481.
    EXAMPLE MMC • Automotive •Al alloy MMC; reinforced with aluminum oxide and carbon fibers • drive shaft ( higher vibration rotational speed) • Extruded stabilizer bars • Forged suspension and transition components • Aerospace (MMC is light in weight) • Al alloys MMC; • boron fibers – space shuttle orbiter • Continuous graphite fibers – Hubble Space telescope METAL-MATRIX COMPOSITES (MMC)
  • 482.
    METAL MATRIX AUTOMOTIVEBRAKE CALIPER Aluminum-matrix composite brake caliper using nanocrystallyne alumina fiber reinforcement
  • 483.
  • 484.
    CERAMIC-MATRIX COMPOSITES (CMC) •Contains a ceramic matrix such as alumina and calcium alumino silicate reinforced by fibers such as carbon or silicon carbide. • The main objective is to increase the toughness, strength and stiffness of the material. • High temp & severe stresses applications – automobile & aircraft gas turbine engines • Fracture toughness value for ceramic materials are low. • Reinforced – particulates, fibers, whiskers of one ceramics • Matrix- another ceramics
  • 485.
    Advantages: • a veryhigh application temperature range (>2000ºC). • provide advanced heat engine applications • low density and usually have very high elastic modulus values • chemical inertness. Disadvantages:  brittleness which makes them easily susceptible to flaw  Only employed high temperature reinforcement  High temperature for processing (High production costs)  lack uniformity in properties and have low thermal and mechanical shock resistances as well as low tensile strengths CERAMIC-MATRIX COMPOSITES (CMC)
  • 486.
    EXAMPLE OF CMC •SiC wiskers reinforced Al2O3  cutting tool material replacing the metallic carbide cutting tool  Cutting tool insert for machining hard metal alloys  Resistance to thermal shock  Improve strength, fracture toughness • C/C composite  Disc brake, hot pressing mold CERAMIC-MATRIX COMPOSITES (CMC)
  • 487.
  • 488.
    • CMCs: Increasedtoughness • PMCs: Increased E/ • MMCs: Increased creep resistance 20 30 50 100 200 10-10 10-8 10-6 10-4 6061 Al 6061 Al w/SiC whiskers (MPa) ss (s-1) E(GPa) G=3E/8 K=E Density,  [Mg/m3] .1 .3 1 3 10 30 .01 .1 1 10 102 103 metal/ metal alloys polymers PMCs ceramics fiber-reinf un-reinf particle-reinf Force Bend displacement COMPOSITE BENEFITS
  • 489.
    STRUCTURAL COMPOSITES Laminate composite 1.Laminar Composites • Composed of 2D sheets or panels. • Sheets (panels) with different orientation of high strength directions are stacked and glued together • Examples : plywood and modern ski, application more in aircraft The layers are stacked & cemented together such that the orientation of high strength direction varies with each successive layer
  • 490.
    STRUCTURAL COMPOSITES 1. LaminarComposites (cont.) • # of laminated – varies • joined by plastic adhesive ( for glass, effect from adhesive more importance) • improve corrosion resistance with low cost , high strength & light weight • improve thermal expansion characteristic • improve fatigue failure • Stacked and bonded fiber-reinforced sheets -- stacking sequence: e.g., 0/90 -- benefit: balanced, in-plane stiffness A small sample of Aerospace grade Carbon-fibre/Epoxy laminate Plywood is used widely in construction
  • 491.
    STRUCTURAL COMPOSITES 2. SandwichPanels • Consist of two strong and stiff sheet (faces) separated by a layer of less- dense material (core materials) or structure for instance honeycomb which provides strength to shear. • Benefit: These structure combine relatively high strength and stiffness with low density. • Application  roofs, walls, and aircraft structures (wings, fuselage, tailplane skin).
  • 492.
    STRUCTURAL COMPOSITES 2. SandwichPanels (cont.) Diagram of an assembled composite sandwich (A), and its constituent face sheets or skins (B) and honeycomb core (C) (alternately: foam core) • Faces – support all load (relatively stiff & strong materials) - example : Al alloy, fiber reinforce plastic, titanium, steel, plywood - thick enough to withstand tensile & compressive stresses from loading • Core –lightweight, low modulus of Elasticity. -Rigid polymeric foams (phenolics, epoxy, polyurethanes), synthetic rubber  Wood (balsa wood)  Honeycomb ( thin foils that have been formed into interlocking hexagonal cells) - Function: 1) provide continuous support for faces 2) have sufficient shear strength to withstand transverse shear stresses 3) thick enough to provide high shear stiffness(to resist buckling of the panel) shear rigidity
  • 493.
    COMPOSITE SAILBOARD CROSS-SECTION Cross-sectionof a composite sailboard, an example of advanced materials construction.
  • 494.
    SUMMARY: METHODS OF REINFORCINGPLASTICS Schematic illustration of methods of reinforcing plastics (matrix) with (a) particles, (b) short or long fibers or flakes, and (c) continuous fibers. The laminate structures shown in (d) can be produced from layers of continuous fibers or sandwich structures using a foam or honeycomb core.
  • 495.
    • Composites areclassified according to: -- the matrix material (CMC, MMC, PMC) -- the reinforcement geometry (particles, fibers, layers). • Composites enhance matrix properties: -- MMC: enhance y, TS, creep performance -- CMC: enhance Kc -- PMC: enhance E, y, TS, creep performance • Particulate-reinforced: -- Elastic modulus can be estimated. -- Properties are isotropic. • Fiber-reinforced: -- Elastic modulus and TS can be estimated along fiber dir. -- Properties can be isotropic or anisotropic. • Structural: -- Based on build-up of sandwiches in layered form. SUMMARY: COMPOSITE
  • 496.