INVERSMATRIKSPERSERGI BERORDO 3
A. MINOR
Minor dituliskanMij besarnya | 𝑀𝑖𝑗| dimanai = banyakbaris + J = banyakkolom
Contohtentukanminorminordari matriks
𝐴 = [
6 βˆ’1 1
βˆ’2 βˆ’3 1
3 2 βˆ’2
]
π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž11 β†’ 𝑀11 = |
βˆ’3 1
2 βˆ’1
| = 3 βˆ’ 2 = 1
π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž12 β†’ 𝑀12 = |
βˆ’2 1
3 βˆ’1
| = 2 βˆ’ 3 = βˆ’1
π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž13 β†’ 𝑀13 = |
βˆ’2 βˆ’3
3 2
| = βˆ’4 + 9 = 5
𝐴 = [
π‘Ž11 π‘Ž12 π‘Ž13
π‘Ž21 π‘Ž22 π‘Ž23
π‘Ž31 π‘Ž32 π‘Ž33
]
π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž21 β†’ 𝑀21 = |
βˆ’1 1
2 βˆ’1
| = 1 βˆ’ 2 = βˆ’1
π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž22 β†’ 𝑀22 = |
6 1
3 βˆ’1
| = βˆ’6 βˆ’ 3 = βˆ’9
π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž23 β†’ 𝑀23 = |
6 βˆ’1
3 2
| = 12 + 3 = 15
π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž31 β†’ 𝑀31 = |
βˆ’1 1
βˆ’3 1
| = βˆ’1 + 3 = 2
π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž32 β†’ 𝑀32 = |
6 1
βˆ’2 1
| = 6 + 2 = 8
π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž33 β†’ 𝑀33 = |
6 βˆ’1
βˆ’2 βˆ’3
| = βˆ’18 βˆ’ 2 = βˆ’20
B. KOFAKTOR
KofaktordituliskanΞ±ij besarnya∝ 𝑖𝑗= (βˆ’1) 𝑖+𝑗.| 𝑀𝑖𝑗|
I = banyaknyabarisdanj = banyakkolom
Contohtentukankofaktorkofaktordari matriks
𝐴 = [
6 βˆ’1 1
βˆ’2 βˆ’3 1
3 2 βˆ’2
]
Kofaktor ∝11β†’ (βˆ’1)1+1.| 𝑀11| = (βˆ’1)2.1 = 1
∝12β†’ (βˆ’1)1+2.| 𝑀12| = (βˆ’1)3.βˆ’1 = 1
∝13β†’ (βˆ’1)1+3.| 𝑀13| = (βˆ’1)4.5 = 5
∝21β†’ (βˆ’1)2+1.| 𝑀21| = (βˆ’1)3.βˆ’1 = 1
∝22β†’ (βˆ’1)2+2.| 𝑀22| = (βˆ’1)4.βˆ’9 = βˆ’9
∝23β†’ (βˆ’1)2+3.| 𝑀23| = (βˆ’1)5.15 = βˆ’15
∝31β†’ (βˆ’1)3+1.| 𝑀31| = (βˆ’1)4.2 = 2
∝32β†’ (βˆ’1)3+2.| 𝑀32| = (βˆ’1)5.8 = βˆ’8
∝33β†’ (βˆ’1)3+3.| 𝑀33| = (βˆ’1)6.βˆ’20 = βˆ’20
C. ADJOINT
π‘Žπ‘‘π‘— ( 𝐴) = [
∝11 ∝12 ∝13
∝21 ∝22 ∝23
∝31 ∝32 ∝33
]
ContohtentukanAdjointdari matriks
𝐴 = [
6 βˆ’1 1
βˆ’2 βˆ’3 1
3 2 βˆ’2
]
π‘Žπ‘‘π‘— ( 𝐴) = [
∝11 ∝21 ∝31
∝12 ∝22 ∝32
∝13 ∝23 ∝33
] = [
1 1 2
1 βˆ’9 βˆ’8
5 βˆ’15 βˆ’20
]
D. DeterminanMatriksordo3x3
Penjabaranmenjadi determinanordo2x2
det( 𝐴) = | 𝐴| = π‘Ž11 |
π‘Ž22 π‘Ž23
π‘Ž32 π‘Ž33
|βˆ’ π‘Ž12 |
π‘Ž21 π‘Ž23
π‘Ž31 π‘Ž33
|+ π‘Ž13 |
π‘Ž21 π‘Ž22
π‘Ž31 π‘Ž32
|
Contohhitunglahnilai determinandari matriks
𝐴 = [
6 βˆ’1 1
βˆ’2 βˆ’3 1
3 2 βˆ’2
]
det( 𝐴) = 6 |
βˆ’3 1
2 βˆ’1
| βˆ’ (βˆ’1) |
βˆ’2 1
3 βˆ’1
| + 1|
βˆ’2 βˆ’3
3 2
|
= 6(3 βˆ’ 2) + 1(2 βˆ’ 3) + 1(βˆ’4 + 9)
= 6(1) + 1(βˆ’1) + 1(5)
= 10
E. InversMatriksOrdo 3x3
InversMatriksA ordo 3x3 ditentukan
π΄βˆ’1 =
1
det( 𝐴)
. π‘Žπ‘‘π‘— ( 𝐴)
Contohtentukaninvers matriksdari matriksberikut
𝐴 = [
6 βˆ’1 1
βˆ’2 βˆ’3 1
3 2 βˆ’2
]
det( 𝐴) = 10
π‘Žπ‘‘π‘— ( 𝐴) = [
1 1 2
1 βˆ’9 βˆ’8
5 βˆ’15 βˆ’20
]
π΄βˆ’1 =
1
10
. [
1 1 2
1 βˆ’9 βˆ’8
5 βˆ’15 βˆ’20
] =
[
1
10
1
10
2
10
1
10
βˆ’9
10
βˆ’8
10
5
10
βˆ’15
10
βˆ’20
10 ]
=
[
1
10
1
10
1
5
1
10
βˆ’9
10
βˆ’4
5
1
2
βˆ’3
2
βˆ’2]

Matriks kelas 3

  • 1.
    INVERSMATRIKSPERSERGI BERORDO 3 A.MINOR Minor dituliskanMij besarnya | 𝑀𝑖𝑗| dimanai = banyakbaris + J = banyakkolom Contohtentukanminorminordari matriks 𝐴 = [ 6 βˆ’1 1 βˆ’2 βˆ’3 1 3 2 βˆ’2 ] π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž11 β†’ 𝑀11 = | βˆ’3 1 2 βˆ’1 | = 3 βˆ’ 2 = 1 π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž12 β†’ 𝑀12 = | βˆ’2 1 3 βˆ’1 | = 2 βˆ’ 3 = βˆ’1 π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž13 β†’ 𝑀13 = | βˆ’2 βˆ’3 3 2 | = βˆ’4 + 9 = 5 𝐴 = [ π‘Ž11 π‘Ž12 π‘Ž13 π‘Ž21 π‘Ž22 π‘Ž23 π‘Ž31 π‘Ž32 π‘Ž33 ] π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž21 β†’ 𝑀21 = | βˆ’1 1 2 βˆ’1 | = 1 βˆ’ 2 = βˆ’1 π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž22 β†’ 𝑀22 = | 6 1 3 βˆ’1 | = βˆ’6 βˆ’ 3 = βˆ’9 π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž23 β†’ 𝑀23 = | 6 βˆ’1 3 2 | = 12 + 3 = 15 π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž31 β†’ 𝑀31 = | βˆ’1 1 βˆ’3 1 | = βˆ’1 + 3 = 2 π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž32 β†’ 𝑀32 = | 6 1 βˆ’2 1 | = 6 + 2 = 8 π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Ž33 β†’ 𝑀33 = | 6 βˆ’1 βˆ’2 βˆ’3 | = βˆ’18 βˆ’ 2 = βˆ’20 B. KOFAKTOR KofaktordituliskanΞ±ij besarnya∝ 𝑖𝑗= (βˆ’1) 𝑖+𝑗.| 𝑀𝑖𝑗| I = banyaknyabarisdanj = banyakkolom Contohtentukankofaktorkofaktordari matriks 𝐴 = [ 6 βˆ’1 1 βˆ’2 βˆ’3 1 3 2 βˆ’2 ] Kofaktor ∝11β†’ (βˆ’1)1+1.| 𝑀11| = (βˆ’1)2.1 = 1 ∝12β†’ (βˆ’1)1+2.| 𝑀12| = (βˆ’1)3.βˆ’1 = 1 ∝13β†’ (βˆ’1)1+3.| 𝑀13| = (βˆ’1)4.5 = 5 ∝21β†’ (βˆ’1)2+1.| 𝑀21| = (βˆ’1)3.βˆ’1 = 1 ∝22β†’ (βˆ’1)2+2.| 𝑀22| = (βˆ’1)4.βˆ’9 = βˆ’9 ∝23β†’ (βˆ’1)2+3.| 𝑀23| = (βˆ’1)5.15 = βˆ’15 ∝31β†’ (βˆ’1)3+1.| 𝑀31| = (βˆ’1)4.2 = 2 ∝32β†’ (βˆ’1)3+2.| 𝑀32| = (βˆ’1)5.8 = βˆ’8 ∝33β†’ (βˆ’1)3+3.| 𝑀33| = (βˆ’1)6.βˆ’20 = βˆ’20 C. ADJOINT
  • 2.
    π‘Žπ‘‘π‘— ( 𝐴)= [ ∝11 ∝12 ∝13 ∝21 ∝22 ∝23 ∝31 ∝32 ∝33 ] ContohtentukanAdjointdari matriks 𝐴 = [ 6 βˆ’1 1 βˆ’2 βˆ’3 1 3 2 βˆ’2 ] π‘Žπ‘‘π‘— ( 𝐴) = [ ∝11 ∝21 ∝31 ∝12 ∝22 ∝32 ∝13 ∝23 ∝33 ] = [ 1 1 2 1 βˆ’9 βˆ’8 5 βˆ’15 βˆ’20 ] D. DeterminanMatriksordo3x3 Penjabaranmenjadi determinanordo2x2 det( 𝐴) = | 𝐴| = π‘Ž11 | π‘Ž22 π‘Ž23 π‘Ž32 π‘Ž33 |βˆ’ π‘Ž12 | π‘Ž21 π‘Ž23 π‘Ž31 π‘Ž33 |+ π‘Ž13 | π‘Ž21 π‘Ž22 π‘Ž31 π‘Ž32 | Contohhitunglahnilai determinandari matriks 𝐴 = [ 6 βˆ’1 1 βˆ’2 βˆ’3 1 3 2 βˆ’2 ] det( 𝐴) = 6 | βˆ’3 1 2 βˆ’1 | βˆ’ (βˆ’1) | βˆ’2 1 3 βˆ’1 | + 1| βˆ’2 βˆ’3 3 2 | = 6(3 βˆ’ 2) + 1(2 βˆ’ 3) + 1(βˆ’4 + 9) = 6(1) + 1(βˆ’1) + 1(5) = 10 E. InversMatriksOrdo 3x3 InversMatriksA ordo 3x3 ditentukan π΄βˆ’1 = 1 det( 𝐴) . π‘Žπ‘‘π‘— ( 𝐴) Contohtentukaninvers matriksdari matriksberikut 𝐴 = [ 6 βˆ’1 1 βˆ’2 βˆ’3 1 3 2 βˆ’2 ] det( 𝐴) = 10 π‘Žπ‘‘π‘— ( 𝐴) = [ 1 1 2 1 βˆ’9 βˆ’8 5 βˆ’15 βˆ’20 ] π΄βˆ’1 = 1 10 . [ 1 1 2 1 βˆ’9 βˆ’8 5 βˆ’15 βˆ’20 ] = [ 1 10 1 10 2 10 1 10 βˆ’9 10 βˆ’8 10 5 10 βˆ’15 10 βˆ’20 10 ] = [ 1 10 1 10 1 5 1 10 βˆ’9 10 βˆ’4 5 1 2 βˆ’3 2 βˆ’2]