Sistema de ecuación lineal
ALUMNA: ALEXANDRA GUTIERREZ DENOS
ESPECIALIDAD: MATEMATUCA III
 SISTEMA DE ECUACIONES CON DOS
INCOGNITAS
 METODO DE IGUALACION
2𝑥 + 𝑦 = 8
3𝑥 − 2𝑦 = 5
a
b
a) 2𝑥 + 𝑦 = 8
2𝑥 = 8 − 𝑦
𝑥 =
8 − 𝑦
2
b) 3𝑥 − 2𝑦 = 5
3𝑥 = 5 + 2𝑦
𝑥 =
5 + 2𝑦
3
8 − 𝑦
2
=
5 + 2𝑦
3
24 − 3𝑦
= 10 + 4𝑦
24 − 10 = 7𝑦
14
7
= 𝑦
𝟐 = 𝒚
𝑥 =
8 − 𝑦
2
𝑥 =
8 − 2
2
𝒙 = 𝟑
METODO DE SUSTITUCION
3𝑥 + 5𝑦 = 3
2𝑥 + 3𝑦 = 1
a
b
a) 3𝑥 + 5𝑦 = 3
3𝑥 = 3 − 5𝑦
𝑥 =
𝟑 − 𝟓𝒚
𝟑
b) 2𝒙 + 3𝑦 = 1
2
𝟑−𝟓𝐲
𝟑
+ 3𝑦 = 1
2 3 − 5𝑦 + 9𝑦 = 3
6 − 10𝑦 + 9𝑦 = 3
6 − 𝑦 = 3
−𝑦 = 3 − 6
𝑦 = 𝟑
𝑥 =
3−5𝑦
3
=
3−5(3)
3
= −4
METODO DE REDUCCION
5𝑥 − 𝑦 = 6
𝑥 + 3𝑦 = 10
(3)
15𝑥 − 3𝑦 = 18
𝑥 + 3𝑦 = 10
16𝑥 = 18
𝑥 =
18
16
𝑥 =
7
4
𝑥 + 3𝑦 = 10
7
4
+ 3𝑦 = 10
7
4
− 10 = −3𝑦
33
4
/3 = 𝑦
11
4
= 𝑦
EJERCICIOS
𝟑𝑿 + 𝟐𝒀 = 𝟔

𝑿 + 𝒀 = 𝟗
𝟓𝒀 − 𝒀 = 𝟒

Material Didactico

  • 1.
    Sistema de ecuaciónlineal ALUMNA: ALEXANDRA GUTIERREZ DENOS ESPECIALIDAD: MATEMATUCA III
  • 2.
     SISTEMA DEECUACIONES CON DOS INCOGNITAS  METODO DE IGUALACION 2𝑥 + 𝑦 = 8 3𝑥 − 2𝑦 = 5 a b a) 2𝑥 + 𝑦 = 8 2𝑥 = 8 − 𝑦 𝑥 = 8 − 𝑦 2 b) 3𝑥 − 2𝑦 = 5 3𝑥 = 5 + 2𝑦 𝑥 = 5 + 2𝑦 3 8 − 𝑦 2 = 5 + 2𝑦 3 24 − 3𝑦 = 10 + 4𝑦 24 − 10 = 7𝑦 14 7 = 𝑦 𝟐 = 𝒚 𝑥 = 8 − 𝑦 2 𝑥 = 8 − 2 2 𝒙 = 𝟑
  • 3.
    METODO DE SUSTITUCION 3𝑥+ 5𝑦 = 3 2𝑥 + 3𝑦 = 1 a b a) 3𝑥 + 5𝑦 = 3 3𝑥 = 3 − 5𝑦 𝑥 = 𝟑 − 𝟓𝒚 𝟑 b) 2𝒙 + 3𝑦 = 1 2 𝟑−𝟓𝐲 𝟑 + 3𝑦 = 1 2 3 − 5𝑦 + 9𝑦 = 3 6 − 10𝑦 + 9𝑦 = 3 6 − 𝑦 = 3 −𝑦 = 3 − 6 𝑦 = 𝟑 𝑥 = 3−5𝑦 3 = 3−5(3) 3 = −4
  • 4.
    METODO DE REDUCCION 5𝑥− 𝑦 = 6 𝑥 + 3𝑦 = 10 (3) 15𝑥 − 3𝑦 = 18 𝑥 + 3𝑦 = 10 16𝑥 = 18 𝑥 = 18 16 𝑥 = 7 4 𝑥 + 3𝑦 = 10 7 4 + 3𝑦 = 10 7 4 − 10 = −3𝑦 33 4 /3 = 𝑦 11 4 = 𝑦
  • 5.
    EJERCICIOS 𝟑𝑿 + 𝟐𝒀= 𝟔  𝑿 + 𝒀 = 𝟗 𝟓𝒀 − 𝒀 = 𝟒