Asst. Prof. MRUNALINI K (Statistics)
Statistics / Mathematics / R / Python / Trainer
Email : mrunalini0107@gmail.com
Machine Learning in Python
CONTENTS
Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
Day 1 – Why Machine Learning
Day 2 – Python
Day 3 – Data Structures
Day 4 – Pandas
Day 5 – NumPy
Day 6 – Visualization
Day 7 – Linear Algebra
Day 8– Probability & Statistics
Day 9 – Introduction to Regression
Day 10 – Introduction to Classification
Day 11 – Machine Learning Lifecycle
Day 12 – Logistic Regression
Day 13 –Naive Bayes
Day 14 – Support Vector Machine–SVM
Day 15 – Decision Trees
Day 16 – Ensemble Methods
Day 17 – Clustering
Day 18 – Association Rule Learning
Day 19 – Dimensionality Reduction
Day 20 – Just enough SQL
Week 1 – Python
Day 1 – Why Machine Learning
• Join the revolution
• R vs Python
• Machine Learning Demo
• Traditional Programming vs ML
• Machine Learning Path
Day 2 – Python
• Environment Setup
• Python Setup
• Hello world in Python
• Python IDE setup
• Python Basics
• Number guessing game
• Average grade Program
• Prime number Program
• Reverse string program
• Date and time
• Where are Python libraries
• Number guessing game – Random
•Challenges
Day 3 – Data Structures
• Python Lists
• Python Dictionary
• Python Sets
• Python Tuples
• Challenges
Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
Day 5 – NumPy
• NumPy
• n-dimensional Array
• Array Operations
• Array Indexing and Slicing
• Challenges
• Additional Reading
• meshgrid
Day 4 – Pandas
• Pandas
• What is Pandas
• Dataframe
• Create Dataframe
• Display Dataframe
• Select data from Dataframe
• Add/delete Rows
• Add/delete Columns
• Grouping data
• Merging Dataframes
Day 6 – Visualization
• Matplotlib
• What is Matplotlib
• Plot Object
• Lifecycle of a Plot
• More Plots
Week 1 – Python
Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
Week 2 – Mathematics
Day 7 – Linear Algebra
• Linear Algebra
• Linear Algebra Basics
• Dot Product
• Miscellaneous Topics
Day 9 – Introduction to Regression
• Linear Regression
• Multi-linear Regression
• Correlation
• Hypothesis Tests ( p-value )
• Key Parameters
• r-squared
• r-squared adjusted
• RMSE
• Feature Selection
• Polynomial Regression
• Over fitting
• Assumptions
Day 8 – Probability & Statistics
• Probability & Statistics
• Key Terms
• What is a Distribution
• Central Limit Theorem
• Correlation
Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
Day 11 – Machine Learning Lifecycle
• What is ML Lifecycle
• Data Ingestion
• Data Import
• Data Preprocessing
• Imputation of Missing Values
• Data Modeling
• Model Accuracy
• Validation
Day 10 – Introduction to Classification
• What is Classification
• K – Nearest Neighbors
• KNN in Python
• Confusion Matrix
• KNN Regression
• Feature Scaling
• Effect of Outliers
• Parameter Tuning
• Key features of KNN
• Assumptions
Week 2 – Mathematics
Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
Week 3 – Supervised Machine Learning Algorithms
Day 12 – Logistic Regression
• What is Logistic Regression
• Math behind Logistic Regression
• Implementation
• Optimization
• Evaluation
• ROC Curve
• Area under ROC Curve
Day 14 – Support Vector Machine–SVM
• What is SVM
• Support Vectors
• Kernels
• Hyperplane
• Performance Tuning
• cost
• kernel
• gamma
• SVM for Regression
Day 13 –Naive Bayes
• What is Naive Bayes
• Bayes Theorem & Conditional Probability
• Naive Bayes Theorem
• Naive Bayes by hand
• Classify fruits
• Classify Messages as Spam or Ham
• Naive Bayes on Continuous Variables
Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
Week 3 – Supervised Machine Learning Algorithms
Day 15 – Decision Trees
• What are Decision Trees
• Implementation
• Visualization
• Gini Index
• Decision Trees for Regression
• Overfitting
• Pruning
• Tree Depth
• Impurity
Day 16 – Ensemble Methods
• What is an Ensemble
• Types of Ensemble Methods
• Bagging Implementation
• Bagging
• Random Forest
• Boosting Implementation
• AdaBoost
• Gradient Boost
Day 17 – Clustering
• What is Clustering
• K-means Clustering
• Optimum k value
Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
Week 4 – Unsupervised Machine Learning Algorithms
Day 18 – Association Rule Learning
• What is Associative Rule Learning
• Key Terms
• Support
• Confidence
• Lift
• Apriori Algorithm
Day 20 – Just enough SQL
• SQL
• What is a database
• What is SQL
• SQL Connectors
• Load data
• Selecting data
• SELECT Statement
• Aggregate Functions
• Table JOINs
Day 19 – Dimensionality Reduction
• What is Dimensionality Reduction
• Hughes Phenomonon
• Curse of Dimensionality
• The Solution
• Principal Component Analysis
• Mean & Variance
• Eigen Vectors & Eigen Values
Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
LEARN SOMETHING…
NEW EVERYDAY…. !!!
Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com

Machine learning in python course contents

  • 1.
    Asst. Prof. MRUNALINIK (Statistics) Statistics / Mathematics / R / Python / Trainer Email : mrunalini0107@gmail.com Machine Learning in Python CONTENTS Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
  • 2.
    Day 1 –Why Machine Learning Day 2 – Python Day 3 – Data Structures Day 4 – Pandas Day 5 – NumPy Day 6 – Visualization Day 7 – Linear Algebra Day 8– Probability & Statistics Day 9 – Introduction to Regression Day 10 – Introduction to Classification Day 11 – Machine Learning Lifecycle Day 12 – Logistic Regression Day 13 –Naive Bayes Day 14 – Support Vector Machine–SVM Day 15 – Decision Trees Day 16 – Ensemble Methods Day 17 – Clustering Day 18 – Association Rule Learning Day 19 – Dimensionality Reduction Day 20 – Just enough SQL
  • 3.
    Week 1 –Python Day 1 – Why Machine Learning • Join the revolution • R vs Python • Machine Learning Demo • Traditional Programming vs ML • Machine Learning Path Day 2 – Python • Environment Setup • Python Setup • Hello world in Python • Python IDE setup • Python Basics • Number guessing game • Average grade Program • Prime number Program • Reverse string program • Date and time • Where are Python libraries • Number guessing game – Random •Challenges Day 3 – Data Structures • Python Lists • Python Dictionary • Python Sets • Python Tuples • Challenges Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
  • 4.
    Day 5 –NumPy • NumPy • n-dimensional Array • Array Operations • Array Indexing and Slicing • Challenges • Additional Reading • meshgrid Day 4 – Pandas • Pandas • What is Pandas • Dataframe • Create Dataframe • Display Dataframe • Select data from Dataframe • Add/delete Rows • Add/delete Columns • Grouping data • Merging Dataframes Day 6 – Visualization • Matplotlib • What is Matplotlib • Plot Object • Lifecycle of a Plot • More Plots Week 1 – Python Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
  • 5.
    Week 2 –Mathematics Day 7 – Linear Algebra • Linear Algebra • Linear Algebra Basics • Dot Product • Miscellaneous Topics Day 9 – Introduction to Regression • Linear Regression • Multi-linear Regression • Correlation • Hypothesis Tests ( p-value ) • Key Parameters • r-squared • r-squared adjusted • RMSE • Feature Selection • Polynomial Regression • Over fitting • Assumptions Day 8 – Probability & Statistics • Probability & Statistics • Key Terms • What is a Distribution • Central Limit Theorem • Correlation Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
  • 6.
    Day 11 –Machine Learning Lifecycle • What is ML Lifecycle • Data Ingestion • Data Import • Data Preprocessing • Imputation of Missing Values • Data Modeling • Model Accuracy • Validation Day 10 – Introduction to Classification • What is Classification • K – Nearest Neighbors • KNN in Python • Confusion Matrix • KNN Regression • Feature Scaling • Effect of Outliers • Parameter Tuning • Key features of KNN • Assumptions Week 2 – Mathematics Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
  • 7.
    Week 3 –Supervised Machine Learning Algorithms Day 12 – Logistic Regression • What is Logistic Regression • Math behind Logistic Regression • Implementation • Optimization • Evaluation • ROC Curve • Area under ROC Curve Day 14 – Support Vector Machine–SVM • What is SVM • Support Vectors • Kernels • Hyperplane • Performance Tuning • cost • kernel • gamma • SVM for Regression Day 13 –Naive Bayes • What is Naive Bayes • Bayes Theorem & Conditional Probability • Naive Bayes Theorem • Naive Bayes by hand • Classify fruits • Classify Messages as Spam or Ham • Naive Bayes on Continuous Variables Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
  • 8.
    Week 3 –Supervised Machine Learning Algorithms Day 15 – Decision Trees • What are Decision Trees • Implementation • Visualization • Gini Index • Decision Trees for Regression • Overfitting • Pruning • Tree Depth • Impurity Day 16 – Ensemble Methods • What is an Ensemble • Types of Ensemble Methods • Bagging Implementation • Bagging • Random Forest • Boosting Implementation • AdaBoost • Gradient Boost Day 17 – Clustering • What is Clustering • K-means Clustering • Optimum k value Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
  • 9.
    Week 4 –Unsupervised Machine Learning Algorithms Day 18 – Association Rule Learning • What is Associative Rule Learning • Key Terms • Support • Confidence • Lift • Apriori Algorithm Day 20 – Just enough SQL • SQL • What is a database • What is SQL • SQL Connectors • Load data • Selecting data • SELECT Statement • Aggregate Functions • Table JOINs Day 19 – Dimensionality Reduction • What is Dimensionality Reduction • Hughes Phenomonon • Curse of Dimensionality • The Solution • Principal Component Analysis • Mean & Variance • Eigen Vectors & Eigen Values Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com
  • 10.
    LEARN SOMETHING… NEW EVERYDAY….!!! Asst. Prof. MRUNALINI K (Statistics) Email: mrunalini0107@gmail.com