SlideShare a Scribd company logo
The equations which describe the flow of fluid are derived from
three fundamental laws of physics (r/ship of fluid motion):
Conservation of matter (or mass)
Conservation of energy
Conservation of momentum
Assumptions have been done with in the control volume in each
principles.
1.4. Energy & Momentum Principles in Open Channel Flow
A. Continuity equation
For any control volume during the small time interval dt the principle of
conservation of mass implies that the mass of flow entering the control
volume minus the mass of flow leaving the control volume equals the
change of mass within the control volume.
If the flow is steady and the fluid incompressible the mass entering is
equal to the mass leaving, so there is no change of mass within the
control volume.
B. Energy Equation
oConsider the forms of energy available for the above control volume. If the
fluid moves from the upstream face 1, to the downstream face 2 in time dt
over the length L.
Similarly the total energy per unit weight of section two also computed and consider no energy
is supplied between the inlet and outlet of the control volume, energy leaving equal to energy
entering.
Bernoulli's Equation
C. Momentum Equation
The law of conservation of momentum says that a moving body cannot gain or
lose momentum unless acted upon by an external force.
The resultant force acting on a free body of fluid in any direction is equal to the
time rate of change of momentum in that direction
The flow may be compressible or incompressible, real (with friction) or ideal
(frictionless), steady or unsteady moreover, the equation is not only valid along a
streamline
Energy Equation Momentum Equation
 Relates the change in energy within the
control volume
 Relates the overall forces on the boundary
of the control volume
 Applicable to only steady flows in which
the energy changes are negligible
 Applicable to steady and unsteady flows
 The fluid is ideal, incompressible, one
dimensional
 Conditions within the control volume is not
taken in to consideration.
 The theorem is useful when energy
changes are known and velocity and
pressure distribution are required
 The theorem is useful when energy
changes are unknown and only overall
knowledge of the flow is required
 Used to determine velocity distribution or
pressure distribution
 Useful to determine the resultant force
acting on the boundary of flow passage
 To determine the characteristics of flow
when there is abrupt change of flow
section ( sudden enlargement in pipe,
hydraulic jump..)
 Useful when detailed information of the
flow condition inside the control volume is
not known
Application of Bernoulli's Equation for Uniform Flow interrupted by raised
humbs
velocity and depth of flow over the raised hump.
Specific Energy Equation
We have to understand
the flow condition
In order to adjust the water level in open channel “Channel Transitions” are
incorporated
 Rise in bed elevation
 Drop in bed elevation
 Sudden enlargement in width
 Sudden Contraction in width
The objective here in designing is to minimize the energy loss due to such
channel transitions
Concept of momentum , continuity and specific energy is used to solve such
flow problems
Specific Energy
Considering the energy correction factor= 1 and slope is insignificant
The head attained by a fluid element per unit weight wrt channel bed
as a datum:-
The two alternate depths represent two totally different flow regimes: slow & deep on the upper limb of the
curve (sub- critical flow) & fast & shallow on the lower limb of the curve, (Super critical flow)
Check this
Salient feature of critical flow
Specific energy for a given discharge is minimum.
The discharge for a given specific energy is maximum.
The Froude number is equal to unity
The velocity head is equal to one half of the hydraulic depth
Example
A channel of a rectangular section, 7 m wide, discharges water at a rate of 18 m3/s with
an average velocity of 3 m/s. Find: (10 points)
A. Specific-energy head of the flowing water,
B. Depth of water, when specific energy is minimum,
C. Velocity of water, when specific energy is minimum,
D. Minimum specific-energy head of the flowing water,
E. Type of flow.
Home Study & Assignment Work
Case 2…….When Specific energy is constant Y= f (Q)
 Critical depth in rectangular channels
 Critical depth for Non rectangular channels
 Computation of critical flow
1.5. Hydraulic Jump
Topics
• Definition
• Impulse momentum equation
• Advantage of Hydraulic jump
• Assumptions made for analysis of hydraulic jump
The hydraulic jump is an important feature in open channel flow and is an example of
rapidly varied flow.
A hydraulic jump occurs when a super-critical flow and a sub-critical flow meet. The jump
is the mechanism for the two surfaces to join.
They join in an extremely turbulent manner which causes large energy losses. Because of
the large energy losses the energy or specific energy equation cannot be use in analysis, the
momentum equation is used instead.
If energy actually leaks from the system via frictional head loss the Bernoulli equation will
overstate the energy available to the flow and the related predictions of velocity and
depth will proportionately be in error. To recall our earlier strategy, we minimize this error
by considering only short reaches of channel and only gradual transitions.
In certain flow phenomena, however, we simply can no longer ignore the energy losses
and we must look to alternative ways of describing the flow.
When subcritical flow accelerates into the supercritical state the transition often is
smooth with gradually increasing velocity and decreasing depth bringing about a
smooth drop in the water surface until the alternate depth is achieved. Any disturbance
to the water surface is smoothed out by the surface or gravity wave propagation
mechanism discussed earlier.
In these circumstances energy losses are not great and the Bernoulli equation does a
credible job of describing the changes to the flow. When supercritical flow changes to
subcritical flow, however, there is no smoothing of the water surface upstream of the
transition because the high downstream velocity prevents upstream diffusion of the
water-surface deformation.
As a result the transition to subcritical flow is sudden and marked by an abrupt
discontinuity, or hydraulic jump, in the water.
Flow over weir ( Look The Linked Video)
Purposes of hydraulic jump
To increase the water level on the d/s of the hydraulic structures
To reduce the net up lift force by increasing the downward force due to the
increased depth of water,
To increase the discharge from a sluice gate by increasing the effective head
causing flow
For removing air pockets in a pipe line.
Analysis of Hydraulic Jump
Assumptions
The length of the hydraulic jump is small, consequently, the loss of head due to
friction is negligible,
The channel is horizontal as it has a very small longitudinal slope. The weight
component in the direction of flow is negligible.
The portion of channel in which the hydraulic jump occurs is taken as a control
volume & it is assumed the just before & after the control volume, the flow is
uniform & pressure distribution is hydrostatic.
Objective: To describe (drive) geometry of channel undertaking
hydraulic jump
Let us consider a small reach of a channel in which the hydraulic jump occurs.
The momentum of water passing through section (1) per unit time is
given as:
The momentum of water passing through section (1) per unit time is given as:
Lecture 3 (1).pptx
Lecture 3 (1).pptx
Lecture 3 (1).pptx
Lecture 3 (1).pptx
Lecture 3 (1).pptx

More Related Content

Similar to Lecture 3 (1).pptx

Two Phase Flow Research
Two Phase Flow ResearchTwo Phase Flow Research
Two Phase Flow ResearchRex Liu
 
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmiFluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
University of Gujrat, Pakistan
 
Unit41.pptx
Unit41.pptxUnit41.pptx
Unit41.pptx
MichaPremkumarT
 
Lecture 3 bernoulli_s_theorm_it_s_applications
Lecture 3 bernoulli_s_theorm_it_s_applicationsLecture 3 bernoulli_s_theorm_it_s_applications
Lecture 3 bernoulli_s_theorm_it_s_applications
Raghubir Singh
 
Chapter 1..ppt
Chapter 1..pptChapter 1..ppt
Chapter 1..ppt
gemadogelgalu
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
Keith Vaugh
 
E04653033
E04653033E04653033
E04653033
IOSR-JEN
 
UNIT 4 Unsteady Flow.pptx
UNIT 4 Unsteady Flow.pptxUNIT 4 Unsteady Flow.pptx
UNIT 4 Unsteady Flow.pptx
reenarana28
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
Mohsin Siddique
 
Fluid mechanics(2130602)
Fluid mechanics(2130602)Fluid mechanics(2130602)
Fluid mechanics(2130602)
Sujith Velloor Sudarsanakumar Nair
 
FLUID-MECHANICS-AND-MASS-TRANSFAR-FM7.pdf
FLUID-MECHANICS-AND-MASS-TRANSFAR-FM7.pdfFLUID-MECHANICS-AND-MASS-TRANSFAR-FM7.pdf
FLUID-MECHANICS-AND-MASS-TRANSFAR-FM7.pdf
rohitkumar00486
 
Fluid mechanics-ppt
Fluid mechanics-pptFluid mechanics-ppt
Fluid mechanics-ppt
Anil Rout
 
Comparison of flow analysis of a sudden and gradual change
Comparison of flow analysis of a sudden and gradual changeComparison of flow analysis of a sudden and gradual change
Comparison of flow analysis of a sudden and gradual change
eSAT Publishing House
 
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
eSAT Journals
 
Fluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipeFluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipe
Amin394100
 
9-Viscous flow in ducts.pptx
9-Viscous flow in ducts.pptx9-Viscous flow in ducts.pptx
9-Viscous flow in ducts.pptx
Daniel678511
 
Chapter 4. diffrential
Chapter 4. diffrentialChapter 4. diffrential
Chapter 4. diffrential
kidanemariam tesera
 

Similar to Lecture 3 (1).pptx (20)

Two Phase Flow Research
Two Phase Flow ResearchTwo Phase Flow Research
Two Phase Flow Research
 
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmiFluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
 
Unit41.pptx
Unit41.pptxUnit41.pptx
Unit41.pptx
 
Lecture 3 bernoulli_s_theorm_it_s_applications
Lecture 3 bernoulli_s_theorm_it_s_applicationsLecture 3 bernoulli_s_theorm_it_s_applications
Lecture 3 bernoulli_s_theorm_it_s_applications
 
Chapter 1..ppt
Chapter 1..pptChapter 1..ppt
Chapter 1..ppt
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
 
E04653033
E04653033E04653033
E04653033
 
UNIT 4 Unsteady Flow.pptx
UNIT 4 Unsteady Flow.pptxUNIT 4 Unsteady Flow.pptx
UNIT 4 Unsteady Flow.pptx
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 
Fluid mechanics(2130602)
Fluid mechanics(2130602)Fluid mechanics(2130602)
Fluid mechanics(2130602)
 
FLUID-MECHANICS-AND-MASS-TRANSFAR-FM7.pdf
FLUID-MECHANICS-AND-MASS-TRANSFAR-FM7.pdfFLUID-MECHANICS-AND-MASS-TRANSFAR-FM7.pdf
FLUID-MECHANICS-AND-MASS-TRANSFAR-FM7.pdf
 
Fluid mechanics-ppt
Fluid mechanics-pptFluid mechanics-ppt
Fluid mechanics-ppt
 
Comparison of flow analysis of a sudden and gradual change
Comparison of flow analysis of a sudden and gradual changeComparison of flow analysis of a sudden and gradual change
Comparison of flow analysis of a sudden and gradual change
 
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
 
Flow Measurement
Flow MeasurementFlow Measurement
Flow Measurement
 
Lesson 4 bernoulli's theorem
Lesson 4  bernoulli's theoremLesson 4  bernoulli's theorem
Lesson 4 bernoulli's theorem
 
Poster_phd_symp_A0size
Poster_phd_symp_A0sizePoster_phd_symp_A0size
Poster_phd_symp_A0size
 
Fluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipeFluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipe
 
9-Viscous flow in ducts.pptx
9-Viscous flow in ducts.pptx9-Viscous flow in ducts.pptx
9-Viscous flow in ducts.pptx
 
Chapter 4. diffrential
Chapter 4. diffrentialChapter 4. diffrential
Chapter 4. diffrential
 

Recently uploaded

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
ssuser7dcef0
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 

Recently uploaded (20)

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 

Lecture 3 (1).pptx

  • 1. The equations which describe the flow of fluid are derived from three fundamental laws of physics (r/ship of fluid motion): Conservation of matter (or mass) Conservation of energy Conservation of momentum Assumptions have been done with in the control volume in each principles. 1.4. Energy & Momentum Principles in Open Channel Flow
  • 2. A. Continuity equation For any control volume during the small time interval dt the principle of conservation of mass implies that the mass of flow entering the control volume minus the mass of flow leaving the control volume equals the change of mass within the control volume. If the flow is steady and the fluid incompressible the mass entering is equal to the mass leaving, so there is no change of mass within the control volume.
  • 3. B. Energy Equation oConsider the forms of energy available for the above control volume. If the fluid moves from the upstream face 1, to the downstream face 2 in time dt over the length L. Similarly the total energy per unit weight of section two also computed and consider no energy is supplied between the inlet and outlet of the control volume, energy leaving equal to energy entering.
  • 5. C. Momentum Equation The law of conservation of momentum says that a moving body cannot gain or lose momentum unless acted upon by an external force. The resultant force acting on a free body of fluid in any direction is equal to the time rate of change of momentum in that direction The flow may be compressible or incompressible, real (with friction) or ideal (frictionless), steady or unsteady moreover, the equation is not only valid along a streamline
  • 6. Energy Equation Momentum Equation  Relates the change in energy within the control volume  Relates the overall forces on the boundary of the control volume  Applicable to only steady flows in which the energy changes are negligible  Applicable to steady and unsteady flows  The fluid is ideal, incompressible, one dimensional  Conditions within the control volume is not taken in to consideration.  The theorem is useful when energy changes are known and velocity and pressure distribution are required  The theorem is useful when energy changes are unknown and only overall knowledge of the flow is required  Used to determine velocity distribution or pressure distribution  Useful to determine the resultant force acting on the boundary of flow passage  To determine the characteristics of flow when there is abrupt change of flow section ( sudden enlargement in pipe, hydraulic jump..)  Useful when detailed information of the flow condition inside the control volume is not known
  • 7. Application of Bernoulli's Equation for Uniform Flow interrupted by raised humbs velocity and depth of flow over the raised hump.
  • 8. Specific Energy Equation We have to understand the flow condition
  • 9. In order to adjust the water level in open channel “Channel Transitions” are incorporated  Rise in bed elevation  Drop in bed elevation  Sudden enlargement in width  Sudden Contraction in width The objective here in designing is to minimize the energy loss due to such channel transitions Concept of momentum , continuity and specific energy is used to solve such flow problems
  • 10. Specific Energy Considering the energy correction factor= 1 and slope is insignificant The head attained by a fluid element per unit weight wrt channel bed as a datum:-
  • 11. The two alternate depths represent two totally different flow regimes: slow & deep on the upper limb of the curve (sub- critical flow) & fast & shallow on the lower limb of the curve, (Super critical flow) Check this
  • 12.
  • 13. Salient feature of critical flow Specific energy for a given discharge is minimum. The discharge for a given specific energy is maximum. The Froude number is equal to unity The velocity head is equal to one half of the hydraulic depth
  • 14. Example A channel of a rectangular section, 7 m wide, discharges water at a rate of 18 m3/s with an average velocity of 3 m/s. Find: (10 points) A. Specific-energy head of the flowing water, B. Depth of water, when specific energy is minimum, C. Velocity of water, when specific energy is minimum, D. Minimum specific-energy head of the flowing water, E. Type of flow.
  • 15.
  • 16.
  • 17. Home Study & Assignment Work Case 2…….When Specific energy is constant Y= f (Q)  Critical depth in rectangular channels  Critical depth for Non rectangular channels  Computation of critical flow
  • 18. 1.5. Hydraulic Jump Topics • Definition • Impulse momentum equation • Advantage of Hydraulic jump • Assumptions made for analysis of hydraulic jump
  • 19. The hydraulic jump is an important feature in open channel flow and is an example of rapidly varied flow. A hydraulic jump occurs when a super-critical flow and a sub-critical flow meet. The jump is the mechanism for the two surfaces to join. They join in an extremely turbulent manner which causes large energy losses. Because of the large energy losses the energy or specific energy equation cannot be use in analysis, the momentum equation is used instead. If energy actually leaks from the system via frictional head loss the Bernoulli equation will overstate the energy available to the flow and the related predictions of velocity and depth will proportionately be in error. To recall our earlier strategy, we minimize this error by considering only short reaches of channel and only gradual transitions. In certain flow phenomena, however, we simply can no longer ignore the energy losses and we must look to alternative ways of describing the flow.
  • 20. When subcritical flow accelerates into the supercritical state the transition often is smooth with gradually increasing velocity and decreasing depth bringing about a smooth drop in the water surface until the alternate depth is achieved. Any disturbance to the water surface is smoothed out by the surface or gravity wave propagation mechanism discussed earlier. In these circumstances energy losses are not great and the Bernoulli equation does a credible job of describing the changes to the flow. When supercritical flow changes to subcritical flow, however, there is no smoothing of the water surface upstream of the transition because the high downstream velocity prevents upstream diffusion of the water-surface deformation. As a result the transition to subcritical flow is sudden and marked by an abrupt discontinuity, or hydraulic jump, in the water.
  • 21.
  • 22. Flow over weir ( Look The Linked Video)
  • 23. Purposes of hydraulic jump To increase the water level on the d/s of the hydraulic structures To reduce the net up lift force by increasing the downward force due to the increased depth of water, To increase the discharge from a sluice gate by increasing the effective head causing flow For removing air pockets in a pipe line.
  • 24. Analysis of Hydraulic Jump Assumptions The length of the hydraulic jump is small, consequently, the loss of head due to friction is negligible, The channel is horizontal as it has a very small longitudinal slope. The weight component in the direction of flow is negligible. The portion of channel in which the hydraulic jump occurs is taken as a control volume & it is assumed the just before & after the control volume, the flow is uniform & pressure distribution is hydrostatic. Objective: To describe (drive) geometry of channel undertaking hydraulic jump Let us consider a small reach of a channel in which the hydraulic jump occurs. The momentum of water passing through section (1) per unit time is given as:
  • 25. The momentum of water passing through section (1) per unit time is given as: