A




2008




       A
“   "


            Georg Cantor:
             1845-1918



        A
Cantor




             2




         A
Cantor                  ( )



     (1777-1855)



     I protest above all against the use of an infinite quantity as
     a completed one which in mathematics is never allowed.
     The infinite is only a manner of speaking in which one
     properly speaks of limits.




                                        A
Cantor




             (1873)
             (1873)




         A
1873
              1874
       1891




          A
CBS Theorem



Outline



  1


      CBS Theorem



  2




                          A
CBS Theorem




      A
CBS Theorem



        ( )




(   )
        A B   A ≈ B,        A   B




                    A
CBS Theorem



            ( )




    (                )
A          (     )       |A|,   A                 |A| = |B|
        A ≈ B.




                                          A
CBS Theorem




(       )
    A         |A| = |N|. A
A




                  A
CBS Theorem



Outline



  1


      CBS Theorem



  2




                          A
CBS Theorem



Cantor-Bernstein-Shröder Theorem




     (C ANTOR -B ERNSTEIN -S CHRÖDER T HEOREM)
   A, B           f :A→B     g:B→A
   f g                 h : A → B.




                                    A
CBS Theorem



CBS




 Proof.
   C = g[B], h = g ◦ f .         Ai , Ci , Di
      A0 = A, C0 = C, D0 = A0  C0 ;
      An+1 = h[An ], Cn+1 = h[Cn ], Dn+1 = An+1  Cn+1 .




                                          A
CBS Theorem



CBS



 Proof.
                   ∞
   D∗ = A         i=0 Di .    f,g
                i ≥ 0, Ai+1 ⊂ Ci ⊂ Ai ;
      D0 , D1 , · · · , ...                h(Di ) = Di+1 .
               ∞          ∗
      A=       i=0 Di ∪ D ;
                ∞         ∗
      C=        i=1 Di ∪ D .




                                                A
CBS Theorem



CBS



 Proof.
          k :A→C

                        h(a), a ∈ ∞ Di
                                   i=0
              f (a) =
                        a,    otherwise.

   k          A C           C      B          A   B




                                       A
CBS Theorem



Outline



  1


      CBS Theorem



  2




                          A
CBS Theorem




(1891)


         A   A
 A




                   A
CBS Theorem




           A = {♣, ♦, ♥, ♠}
                                          A


  ♣        ♦         ♥                ♠

{♦, ♥}   {♦, ♠}   {♣, ♦, ♥}        {♣, ♥, ♠}




                           A
CBS Theorem




                                                     +
−.

     ♣   ♦   ♥   ♠
 ♣       −   +   +     ♣         ♦          ♥            ♠
 ♦   +   ⊕   +   −
 ♥   +   −   ⊕   +   {♦, ♥}   {♦, ♠}     {♣, ♦, ♥}   {♣, ♥, ♠}

 ♠   −   +   −   ⊕




                                 A
CBS Theorem




4

            T:
    T

                  T = {♣}.
        A




                  A
CBS Theorem




f                N

                 1        2   3        4        ···
                                                ···
                 M1    M2     M3       M4       ···

             f            f                                i   Mj
    (i, j)                         −                  +.


                      M = {i : i ∈ Mi }.

       M = Mn         n                     f


                                            A
P       P        n
 P(n)                      P


(i) (     ) P(0)
(ii) (    )        n   P(n)            P(n + 1)   1




  1
         P(n)
                                   A
(ii)
(ii )           n   P(0), P(1), · · · , P(n)          P(n + 1)

(1)+(ii )


            P                           P
(ii )           n   P(m)          m<n          P(n)




                                         A
“             n, n2 + 5n + 1         "
  P       “n2 + 5n + 1       "       P(n)
  P(n + 1)
Proof.
    P(n)          n2 + 5n + 1
(n + 1)2 + 5(n + 1) + 1 = (n2 + 5n + 1) + 2(n + 3)

  (n + 1)2 + 5(n + 1) + 1              P(n + 1)




                                     A
P,




A

Lect2 230708501

  • 1.
  • 2.
    " Georg Cantor: 1845-1918 A
  • 3.
  • 4.
    Cantor ( ) (1777-1855) I protest above all against the use of an infinite quantity as a completed one which in mathematics is never allowed. The infinite is only a manner of speaking in which one properly speaks of limits. A
  • 5.
    Cantor (1873) (1873) A
  • 6.
    1873 1874 1891 A
  • 7.
    CBS Theorem Outline 1 CBS Theorem 2 A
  • 8.
  • 9.
    CBS Theorem ( ) ( ) A B A ≈ B, A B A
  • 10.
    CBS Theorem ( ) ( ) A ( ) |A|, A |A| = |B| A ≈ B. A
  • 11.
    CBS Theorem ( ) A |A| = |N|. A A A
  • 12.
    CBS Theorem Outline 1 CBS Theorem 2 A
  • 13.
    CBS Theorem Cantor-Bernstein-Shröder Theorem (C ANTOR -B ERNSTEIN -S CHRÖDER T HEOREM) A, B f :A→B g:B→A f g h : A → B. A
  • 14.
    CBS Theorem CBS Proof. C = g[B], h = g ◦ f . Ai , Ci , Di A0 = A, C0 = C, D0 = A0 C0 ; An+1 = h[An ], Cn+1 = h[Cn ], Dn+1 = An+1 Cn+1 . A
  • 15.
    CBS Theorem CBS Proof. ∞ D∗ = A i=0 Di . f,g i ≥ 0, Ai+1 ⊂ Ci ⊂ Ai ; D0 , D1 , · · · , ... h(Di ) = Di+1 . ∞ ∗ A= i=0 Di ∪ D ; ∞ ∗ C= i=1 Di ∪ D . A
  • 16.
    CBS Theorem CBS Proof. k :A→C h(a), a ∈ ∞ Di i=0 f (a) = a, otherwise. k A C C B A B A
  • 17.
    CBS Theorem Outline 1 CBS Theorem 2 A
  • 18.
  • 19.
    CBS Theorem A = {♣, ♦, ♥, ♠} A ♣ ♦ ♥ ♠ {♦, ♥} {♦, ♠} {♣, ♦, ♥} {♣, ♥, ♠} A
  • 20.
    CBS Theorem + −. ♣ ♦ ♥ ♠ ♣ − + + ♣ ♦ ♥ ♠ ♦ + ⊕ + − ♥ + − ⊕ + {♦, ♥} {♦, ♠} {♣, ♦, ♥} {♣, ♥, ♠} ♠ − + − ⊕ A
  • 21.
    CBS Theorem 4 T: T T = {♣}. A A
  • 22.
    CBS Theorem f N 1 2 3 4 ··· ··· M1 M2 M3 M4 ··· f f i Mj (i, j) − +. M = {i : i ∈ Mi }. M = Mn n f A
  • 23.
    P P n P(n) P (i) ( ) P(0) (ii) ( ) n P(n) P(n + 1) 1 1 P(n) A
  • 24.
    (ii) (ii ) n P(0), P(1), · · · , P(n) P(n + 1) (1)+(ii ) P P (ii ) n P(m) m<n P(n) A
  • 25.
    n, n2 + 5n + 1 " P “n2 + 5n + 1 " P(n) P(n + 1) Proof. P(n) n2 + 5n + 1 (n + 1)2 + 5(n + 1) + 1 = (n2 + 5n + 1) + 2(n + 3) (n + 1)2 + 5(n + 1) + 1 P(n + 1) A
  • 26.