SlideShare a Scribd company logo
1 of 1
Download to read offline
RESEARCH POSTER PRESENTATION DESIGN © 2011
www.PosterPresentations.com
	
   	
  INTRODUCTION	
  
Plan	
  of	
  Ac<on	
  
RESULTS	
  
CONCLUSIONS	
  
REFERENCES	
  
Differential Binding of Heat Shock Factor 1 by Heat Shock
Protein 90 ATPase Mutants
Urologic	
  Oncology	
  Branch,	
  Na.onal	
  Cancer	
  Ins.tute	
  
Kofi Khamit-Kush, Thomas Prince, Manabu Tatokoro, Kristin Beebe and Len Neckers
METHODS	
  
•  HSP90A and HSP90B each interact with HSF1 in a unique pattern.
•  HSP90 ATPase state determines HSF1 interaction strength.
•  HSP90 interaction strength correlates with HSF1-driven hsp70-luciferase interaction
•  Both ATPase null mutants E42A and E47A cause an increase in HSF1 interaction. This
interaction correlates with an increase in HSF1 driven hsp70b-luciferase expression.
•  Both non-ATP-binding mutants D88A and D93A cause a decrease in HSF1 interaction
(although effect of D88A is not statistically significant). This correlates with a decrease
in hsp70b-luciferase expression.
•  HSP90 b8A mutations disrupt HSF1 interaction, however for HSP90A this leads to an
increase in hsp70b-luciferase expression.
•  ATPase-defective mutants R400A and R392A differ greatly between the two HSP90
paralogs in their ability to both bind HSF1 and to promote hsp70b-luciferase expression.
•  These results challenge the current dogma of HSF1 regulation by HSP90.
Clinical development of HSP90 inhibitors
Hsp90inhibitorsinclinicaltrial
1994
PNAS
ID Target
1999
17-AAG
2004
17-DMAG
2005
IPI-504
2006
BIIB021
2007
SNX-5422
AUY922
KW-2478
2008
IPI-493
BIIB028
STA-9090
XL888
2009
AT13387
HSP990
MPC-3100
ABI-01
2010
Debio 0932
PU-H71
DS-2248
0
6
8
12
18
16
2
4
10
14
1970
Deboer
J. Antibiot.
Geldanamycin
RESULTS	
  (con<nued)	
  
HSP90	
  Dimer	
  Model	
  with	
  
ATPase	
  Mutants	
  Shown	
  
Immunoprecipita.on	
  analysis	
  of	
  HSP90-­‐HSF1	
  interac.on	
  
HSP90A	
  
E47A	
   Binds	
  ATP	
  but	
  null	
  ATPase	
  ac.vity	
  
D93A	
   Cannot	
  bind	
  ATP	
  
b8A	
   Defec.ve	
  HSP90	
  intra-­‐domain	
  interac.on	
  
R400A	
   Defec.ve	
  ATPase	
  ac.vity	
  
HSP90B	
  
E42A	
   Binds	
  ATP	
  but	
  null	
  ATPase	
  ac.vity	
  
D88A	
   Cannot	
  bind	
  ATP	
  
b8A	
   Defec.ve	
  HSP90	
  intra-­‐domain	
  interac.on	
  
R392A	
   Defec.ve	
  ATPase	
  ac.vity	
  
HSP90 is a molecular chaperone that utilizes ATPase activity to fold, maintain and regulate
the activity of numerous signal transduction components throughout the cell.
Comprised of two paralogs (HSP90A (stress inducible) and HSP90B (constitutively
expressed), HSP90 is a critical contributor to each of the hallmarks of cancer. Hence,
HSP90 is recognized as a major drug target and a subject of more than 80 clinical trials.
HSF1 is the primary transcription factor that initiates gene expression of heat shock
proteins (HSP), including HSP90A, in response to proteotoxic stress. Referred to as the
guardian of the proteome, appropriate HSF1 activity is required to maintain proper
cellular proteostasis and prevent protein aggregation, a hallmark of many
neurodegenerative disorders. However, when overexpressed or hyperactive, HSF1 can
enable the onset of tumorigenesis and malignancy. Therefore, many cancers are
addicted to HSF1 activity. HSP90 negatively regulates HSF1.
During normal cellular growth conditions HSP90 binds HSF1 and retains it as an inactive
monomer. When the cell experiences proteotoxic stress, however, HSF1 is released from
HSP90 and subsequently forms homo-trimers, translocates into the nucleus, and binds
the promoters of its target genes.
Hsp90 chaperone activity requires its ATPase function, and we have examined whether
mutations that alter HSP90 ATPase activity in turn affect HSF1 interaction and activity.
Step	
  1:	
  Design	
  Flag-­‐HSP90	
  A	
  and	
  B	
  mutants.	
  
	
  
Step	
  2:	
  Test	
  ability	
  of	
  Flag-­‐HSP90	
  A	
  and	
  B	
  mutants	
  to	
  bind	
  
Luciferase-­‐tagged	
  HSF1	
  (HSF1-­‐NL)	
  using	
  LUMIER	
  assay.	
  
	
  
Step	
  3:	
  Confirm	
  LUMIER	
  findings	
  with	
  classical	
  	
  
immunoprecipita.on	
  assay.	
  
	
  
Step	
  4:	
  Determine	
  effect	
  of	
  Flag-­‐HSP90	
  A	
  and	
  B	
  interac.on	
  	
  
on	
  HSF1	
  ac.vity	
  by	
  measuring	
  induc.on	
  of	
  the	
  	
  
hsp70b	
  promoter	
  fused	
  to	
  a	
  luciferase	
  reporter.	
  	
  
FUTURE	
  EXPERIMENTS	
  
•  Determine the ability of clinical HSP90 inhibitors to disrupt HSF1 interaction and affect
hsp70b-luciferase expression.
•  Determine the affinity of each HSP90 mutant for clinically relevant inhibitors in order to
better understand the inhibitors’ mode of action.
Evade	
  Immune	
  
Response	
  
Limitless	
  
Replica.on	
  
Angiogenesis	
  
Metastasis	
  
Insensi.ve	
  to	
  
An.-­‐growth	
  
Signals	
  
Evade	
  
Apoptosis	
  
Self-­‐sufficient	
  
Growth	
  
Reprogram	
  
Energy	
  
Metabolism	
  
HSP90	
  
Hallmarks	
  of	
  Cancer	
  
1)  Tsutsumi	
  S,	
  Beebe	
  K,	
  Neckers	
  L.	
  (2009)	
  Impact	
  of	
  heat-­‐shock	
  protein	
  90	
  on	
  metastasis.	
  Future	
  Oncol.	
  679-­‐688.	
  
2)  Cunningham	
  C,	
  Southworth	
  D,	
  Krukenberg	
  K,	
  Agard	
  D.	
  (2012)	
  The	
  conserved	
  arginine	
  380	
  of	
  Hsp90	
  is	
  not	
  
cataly.c	
  residue,	
  stabilizes	
  the	
  closed	
  conforma.on	
  required	
  for	
  ATP	
  hydrolysis.	
  Protein	
  Sci.	
  1161-­‐1171.	
  
3)	
  Panaretou	
  B,	
  Prodromou	
  C,	
  Roe	
  S.M,	
  O'Brien	
  R,	
  Ladbury	
  J,	
  Piper	
  P,	
  Pearl	
  L.	
  (1998)	
  ATP	
  binding	
  and	
  hydrolysis	
  
are	
  essen.al	
  to	
  the	
  func.on	
  of	
  the	
  Hsp90	
  molecular	
  chaperone	
  in	
  vivo.	
  The	
  EMBO	
  Journal	
  4829-­‐4836.	
  
4)  Pullen	
  L,	
  Bolon	
  D.	
  (2011)	
  Enforced	
  N-­‐domain	
  proximity	
  s.mulates	
  Hsp90	
  ATPase	
  ac.vity	
  and	
  is	
  compa.ble	
  
with	
  func.on.	
  J.	
  Biol.	
  Chem	
  11091-­‐11098.	
  
5)  Tsutsumi	
  S,	
  Mollapour	
  M,	
  Graf	
  C,	
  Lee	
  C,	
  Scroggins	
  B,	
  Xu	
  W,	
  Haslerova	
  L,	
  Hessling	
  M,	
  Konstan.nova	
  A,	
  Trepel	
  J,	
  
Panaretou	
  B,	
  Buchner	
  J,	
  Mayer	
  M,	
  Prodromou	
  C,	
  Neckers	
  L.	
  (2009)	
  Hsp90	
  charged-­‐linker	
  trunca.on	
  reverses	
  
the	
  func.on	
  of	
  weakened	
  hydrophobic	
  contacts	
  in	
  N	
  domain.	
  Nature	
  Structural	
  and	
  Mol.	
  Biology	
  1141-­‐1147.	
  
6)	
  Trepel	
  J,	
  Mollapour	
  M,	
  Giaccone	
  G,	
  Neckers	
  L.	
  (2010)	
  Targe.ng	
  HSP90	
  complex	
  in	
  cancer.	
  Nature	
  Review:	
  
Cancer	
  537-­‐549.	
  

More Related Content

Similar to kofiCRIposter2013

Molecular chaperones in plant stress management
Molecular chaperones in plant stress managementMolecular chaperones in plant stress management
Molecular chaperones in plant stress managementPragati Randive
 
Article: Quantitative analysis of the interplay between hsc70 and its co-chap...
Article: Quantitative analysis of the interplay between hsc70 and its co-chap...Article: Quantitative analysis of the interplay between hsc70 and its co-chap...
Article: Quantitative analysis of the interplay between hsc70 and its co-chap...Hicham Mahboubi
 
HLTF promotes hepatocellular carcinoma progression Juan David Ballut 00048379...
HLTF promotes hepatocellular carcinoma progression Juan David Ballut 00048379...HLTF promotes hepatocellular carcinoma progression Juan David Ballut 00048379...
HLTF promotes hepatocellular carcinoma progression Juan David Ballut 00048379...JuanDavidBallutRodri
 
Characterization of the human HCN1 channel and its inhibition by capsazepine
Characterization of the human HCN1 channel and its inhibition by capsazepineCharacterization of the human HCN1 channel and its inhibition by capsazepine
Characterization of the human HCN1 channel and its inhibition by capsazepineShahnaz Yusaf
 
Hsp70 and Hsp90
Hsp70 and Hsp90 Hsp70 and Hsp90
Hsp70 and Hsp90 Avin Snyder
 
Wang b et al 2007
Wang b et al 2007Wang b et al 2007
Wang b et al 2007asrpm
 
Molecular Mechanisms of Acute Radiation Disease - Histamine & Serotonin.
 Molecular Mechanisms of Acute Radiation Disease - Histamine & Serotonin. Molecular Mechanisms of Acute Radiation Disease - Histamine & Serotonin.
Molecular Mechanisms of Acute Radiation Disease - Histamine & Serotonin.Dmitri Popov
 
Tauopathy and its therapeutic targets
Tauopathy and its therapeutic targetsTauopathy and its therapeutic targets
Tauopathy and its therapeutic targetsPranav Sopory
 
HSP AND PERIODONTIUM in health and disease
HSP AND PERIODONTIUM  in health and diseaseHSP AND PERIODONTIUM  in health and disease
HSP AND PERIODONTIUM in health and diseasePriyanka Pai
 
Neurosciences Papers
Neurosciences PapersNeurosciences Papers
Neurosciences Paperskarine Martin
 

Similar to kofiCRIposter2013 (20)

centoni (2).ppt
centoni (2).pptcentoni (2).ppt
centoni (2).ppt
 
Molecular chaperones in plant stress management
Molecular chaperones in plant stress managementMolecular chaperones in plant stress management
Molecular chaperones in plant stress management
 
Heat shock proteins
Heat shock proteinsHeat shock proteins
Heat shock proteins
 
brown2007
brown2007brown2007
brown2007
 
Article: Quantitative analysis of the interplay between hsc70 and its co-chap...
Article: Quantitative analysis of the interplay between hsc70 and its co-chap...Article: Quantitative analysis of the interplay between hsc70 and its co-chap...
Article: Quantitative analysis of the interplay between hsc70 and its co-chap...
 
Heat shock proteins final presentation
Heat shock proteins final presentationHeat shock proteins final presentation
Heat shock proteins final presentation
 
1
11
1
 
HLTF promotes hepatocellular carcinoma progression Juan David Ballut 00048379...
HLTF promotes hepatocellular carcinoma progression Juan David Ballut 00048379...HLTF promotes hepatocellular carcinoma progression Juan David Ballut 00048379...
HLTF promotes hepatocellular carcinoma progression Juan David Ballut 00048379...
 
Characterization of the human HCN1 channel and its inhibition by capsazepine
Characterization of the human HCN1 channel and its inhibition by capsazepineCharacterization of the human HCN1 channel and its inhibition by capsazepine
Characterization of the human HCN1 channel and its inhibition by capsazepine
 
HSPs.ppt
HSPs.pptHSPs.ppt
HSPs.ppt
 
Hsp70 and Hsp90
Hsp70 and Hsp90 Hsp70 and Hsp90
Hsp70 and Hsp90
 
Shp and liver fibrosis ddw 2016
Shp and liver fibrosis  ddw 2016Shp and liver fibrosis  ddw 2016
Shp and liver fibrosis ddw 2016
 
HEAT SHOCK PROTEINS
HEAT SHOCK PROTEINSHEAT SHOCK PROTEINS
HEAT SHOCK PROTEINS
 
1017.full
1017.full1017.full
1017.full
 
Final poster (002)
Final poster (002)Final poster (002)
Final poster (002)
 
Wang b et al 2007
Wang b et al 2007Wang b et al 2007
Wang b et al 2007
 
Molecular Mechanisms of Acute Radiation Disease - Histamine & Serotonin.
 Molecular Mechanisms of Acute Radiation Disease - Histamine & Serotonin. Molecular Mechanisms of Acute Radiation Disease - Histamine & Serotonin.
Molecular Mechanisms of Acute Radiation Disease - Histamine & Serotonin.
 
Tauopathy and its therapeutic targets
Tauopathy and its therapeutic targetsTauopathy and its therapeutic targets
Tauopathy and its therapeutic targets
 
HSP AND PERIODONTIUM in health and disease
HSP AND PERIODONTIUM  in health and diseaseHSP AND PERIODONTIUM  in health and disease
HSP AND PERIODONTIUM in health and disease
 
Neurosciences Papers
Neurosciences PapersNeurosciences Papers
Neurosciences Papers
 

kofiCRIposter2013

  • 1. RESEARCH POSTER PRESENTATION DESIGN © 2011 www.PosterPresentations.com    INTRODUCTION   Plan  of  Ac<on   RESULTS   CONCLUSIONS   REFERENCES   Differential Binding of Heat Shock Factor 1 by Heat Shock Protein 90 ATPase Mutants Urologic  Oncology  Branch,  Na.onal  Cancer  Ins.tute   Kofi Khamit-Kush, Thomas Prince, Manabu Tatokoro, Kristin Beebe and Len Neckers METHODS   •  HSP90A and HSP90B each interact with HSF1 in a unique pattern. •  HSP90 ATPase state determines HSF1 interaction strength. •  HSP90 interaction strength correlates with HSF1-driven hsp70-luciferase interaction •  Both ATPase null mutants E42A and E47A cause an increase in HSF1 interaction. This interaction correlates with an increase in HSF1 driven hsp70b-luciferase expression. •  Both non-ATP-binding mutants D88A and D93A cause a decrease in HSF1 interaction (although effect of D88A is not statistically significant). This correlates with a decrease in hsp70b-luciferase expression. •  HSP90 b8A mutations disrupt HSF1 interaction, however for HSP90A this leads to an increase in hsp70b-luciferase expression. •  ATPase-defective mutants R400A and R392A differ greatly between the two HSP90 paralogs in their ability to both bind HSF1 and to promote hsp70b-luciferase expression. •  These results challenge the current dogma of HSF1 regulation by HSP90. Clinical development of HSP90 inhibitors Hsp90inhibitorsinclinicaltrial 1994 PNAS ID Target 1999 17-AAG 2004 17-DMAG 2005 IPI-504 2006 BIIB021 2007 SNX-5422 AUY922 KW-2478 2008 IPI-493 BIIB028 STA-9090 XL888 2009 AT13387 HSP990 MPC-3100 ABI-01 2010 Debio 0932 PU-H71 DS-2248 0 6 8 12 18 16 2 4 10 14 1970 Deboer J. Antibiot. Geldanamycin RESULTS  (con<nued)   HSP90  Dimer  Model  with   ATPase  Mutants  Shown   Immunoprecipita.on  analysis  of  HSP90-­‐HSF1  interac.on   HSP90A   E47A   Binds  ATP  but  null  ATPase  ac.vity   D93A   Cannot  bind  ATP   b8A   Defec.ve  HSP90  intra-­‐domain  interac.on   R400A   Defec.ve  ATPase  ac.vity   HSP90B   E42A   Binds  ATP  but  null  ATPase  ac.vity   D88A   Cannot  bind  ATP   b8A   Defec.ve  HSP90  intra-­‐domain  interac.on   R392A   Defec.ve  ATPase  ac.vity   HSP90 is a molecular chaperone that utilizes ATPase activity to fold, maintain and regulate the activity of numerous signal transduction components throughout the cell. Comprised of two paralogs (HSP90A (stress inducible) and HSP90B (constitutively expressed), HSP90 is a critical contributor to each of the hallmarks of cancer. Hence, HSP90 is recognized as a major drug target and a subject of more than 80 clinical trials. HSF1 is the primary transcription factor that initiates gene expression of heat shock proteins (HSP), including HSP90A, in response to proteotoxic stress. Referred to as the guardian of the proteome, appropriate HSF1 activity is required to maintain proper cellular proteostasis and prevent protein aggregation, a hallmark of many neurodegenerative disorders. However, when overexpressed or hyperactive, HSF1 can enable the onset of tumorigenesis and malignancy. Therefore, many cancers are addicted to HSF1 activity. HSP90 negatively regulates HSF1. During normal cellular growth conditions HSP90 binds HSF1 and retains it as an inactive monomer. When the cell experiences proteotoxic stress, however, HSF1 is released from HSP90 and subsequently forms homo-trimers, translocates into the nucleus, and binds the promoters of its target genes. Hsp90 chaperone activity requires its ATPase function, and we have examined whether mutations that alter HSP90 ATPase activity in turn affect HSF1 interaction and activity. Step  1:  Design  Flag-­‐HSP90  A  and  B  mutants.     Step  2:  Test  ability  of  Flag-­‐HSP90  A  and  B  mutants  to  bind   Luciferase-­‐tagged  HSF1  (HSF1-­‐NL)  using  LUMIER  assay.     Step  3:  Confirm  LUMIER  findings  with  classical     immunoprecipita.on  assay.     Step  4:  Determine  effect  of  Flag-­‐HSP90  A  and  B  interac.on     on  HSF1  ac.vity  by  measuring  induc.on  of  the     hsp70b  promoter  fused  to  a  luciferase  reporter.     FUTURE  EXPERIMENTS   •  Determine the ability of clinical HSP90 inhibitors to disrupt HSF1 interaction and affect hsp70b-luciferase expression. •  Determine the affinity of each HSP90 mutant for clinically relevant inhibitors in order to better understand the inhibitors’ mode of action. Evade  Immune   Response   Limitless   Replica.on   Angiogenesis   Metastasis   Insensi.ve  to   An.-­‐growth   Signals   Evade   Apoptosis   Self-­‐sufficient   Growth   Reprogram   Energy   Metabolism   HSP90   Hallmarks  of  Cancer   1)  Tsutsumi  S,  Beebe  K,  Neckers  L.  (2009)  Impact  of  heat-­‐shock  protein  90  on  metastasis.  Future  Oncol.  679-­‐688.   2)  Cunningham  C,  Southworth  D,  Krukenberg  K,  Agard  D.  (2012)  The  conserved  arginine  380  of  Hsp90  is  not   cataly.c  residue,  stabilizes  the  closed  conforma.on  required  for  ATP  hydrolysis.  Protein  Sci.  1161-­‐1171.   3)  Panaretou  B,  Prodromou  C,  Roe  S.M,  O'Brien  R,  Ladbury  J,  Piper  P,  Pearl  L.  (1998)  ATP  binding  and  hydrolysis   are  essen.al  to  the  func.on  of  the  Hsp90  molecular  chaperone  in  vivo.  The  EMBO  Journal  4829-­‐4836.   4)  Pullen  L,  Bolon  D.  (2011)  Enforced  N-­‐domain  proximity  s.mulates  Hsp90  ATPase  ac.vity  and  is  compa.ble   with  func.on.  J.  Biol.  Chem  11091-­‐11098.   5)  Tsutsumi  S,  Mollapour  M,  Graf  C,  Lee  C,  Scroggins  B,  Xu  W,  Haslerova  L,  Hessling  M,  Konstan.nova  A,  Trepel  J,   Panaretou  B,  Buchner  J,  Mayer  M,  Prodromou  C,  Neckers  L.  (2009)  Hsp90  charged-­‐linker  trunca.on  reverses   the  func.on  of  weakened  hydrophobic  contacts  in  N  domain.  Nature  Structural  and  Mol.  Biology  1141-­‐1147.   6)  Trepel  J,  Mollapour  M,  Giaccone  G,  Neckers  L.  (2010)  Targe.ng  HSP90  complex  in  cancer.  Nature  Review:   Cancer  537-­‐549.