SlideShare a Scribd company logo
1 of 17
Download to read offline
Interprocesses Communication
Processes
• Cooperating Processes
• Independent processes
Interprocess Communication
• Processes within a system may be independent or
cooperating
• Independent process cannot affect or be affected by the
execution of another process
• Cooperating process can affect or be affected by the
execution of another process
• Advantages of process cooperation
– Information sharing
– Computation speed-up
– Modularity
– Convenience
Cooperating Processes
• Cooperating processes need inter process communication
(IPC)
• Two models of IPC
– Shared memory: A shared buffer is used by co-operating
processes
– Message passing: A message is passed by one process to
another via kernel
Communications Models
Producer-Consumer Problem
• Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process
– unbounded-buffer places no practical limit on the size of
the buffer
• Producer produces one by one and keeps producing
• Consumer consumes one by one
– bounded-buffer assumes that there is a fixed buffer size
• Producer must wait if buffer is full
• Consumer must wait if buffer is empty
Bounded-Buffer –
Shared-Memory Solution
 Shared data
#define BUFFER_SIZE 10
typedef struct {
. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
Bounded-Buffer – Producer
while (true) {
/* Produce an item */
while (((in = (in + 1) % BUFFER SIZE) == out)
; /* do nothing -- no free buffers */
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;
}
Bounded Buffer – Consumer
while (true) {
while (in == out)
; // do nothing -- nothing to consume
// remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER SIZE;
return item;
}
Interprocess Communication – Message Passing
• Mechanism for processes to communicate and to synchronize
their actions
• Message system – processes communicate with each other
without resorting to shared variables
• IPC facility provides two operations:
– send(message) – message size fixed or variable
– receive(message)
• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive
Interprocess Communication – Message Passing
• Implementation of communication link
– Physical:
• Shared memory
• Hardware bus
• Network
– Logical:
• Direct or indirect
• Synchronous or asynchronous
• Automatic or explicit buffering
Direct Communication
• Processes must name each other explicitly:
– send (P, message) – send a message to process P
– receive(Q, message) – receive a message from
process Q
• Properties of communication link
– Links are established automatically
– A link is associated with exactly one pair of
communicating processes
– Between each pair there exists exactly one link
– The link may be unidirectional, but is usually bi-
directional
Indirect Communication
• Messages are directed and received from mailboxes
(also referred to as ports)
– Each mailbox has a unique id
– Processes can communicate only if they share a
mailbox
• Properties of communication link
– Link established only if processes share a common
mailbox
– A link may be associated with many processes
– Each pair of processes may share several
communication links
– Link may be unidirectional or bi-directional
Indirect Communication
• Operations
– create a new mailbox (port)
– send and receive messages through mailbox
– destroy a mailbox
• Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from
mailbox A
Implementation Questions
1. How are links established?
2. Can a link be associated with more than two processes?
3. How many links can there be between every pair of
communicating processes?
4. What is the capacity of a link?
5. Is the size of a message that the link can accommodate fixed
or variable?
6. Is a link unidirectional or bi-directional?
Synchronization
• Message passing may be either blocking or non-blocking
• Blocking is considered synchronous
– Blocking send -- the sender is blocked until the message is
received
– Blocking receive -- the receiver is blocked until a message
is available
• Non-blocking is considered asynchronous
– Non-blocking send -- the sender sends the message and
continue
– Non-blocking receive -- the receiver receives:
• A valid message, or
• Null message
Buffering
• Queue of messages attached to the link; implemented in
one of three ways
1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages
Sender must wait if link full
3. Unbounded capacity – infinite length
Sender never waits

More Related Content

Similar to interprocess-communication.pdf

Chapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptxayeshabaig2004
 
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.pptModule-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.pptKAnurag2
 
Process Management.ppt
Process Management.pptProcess Management.ppt
Process Management.pptJeelBhanderi4
 
Multiprocessing -Interprocessing communication and process sunchronization,se...
Multiprocessing -Interprocessing communication and process sunchronization,se...Multiprocessing -Interprocessing communication and process sunchronization,se...
Multiprocessing -Interprocessing communication and process sunchronization,se...Neena R Krishna
 
Inter Process Communication Presentation[1]
Inter Process Communication Presentation[1]Inter Process Communication Presentation[1]
Inter Process Communication Presentation[1]Ravindra Raju Kolahalam
 
INTER PROCESS COMMUNICATION (IPC).pptx
INTER PROCESS COMMUNICATION (IPC).pptxINTER PROCESS COMMUNICATION (IPC).pptx
INTER PROCESS COMMUNICATION (IPC).pptxSKUP1
 
INTER PROCESS COMMUNICATION (IPC).pptx
INTER PROCESS COMMUNICATION (IPC).pptxINTER PROCESS COMMUNICATION (IPC).pptx
INTER PROCESS COMMUNICATION (IPC).pptxLECO9
 
Fault tolerance in distributed systems
Fault tolerance in distributed systemsFault tolerance in distributed systems
Fault tolerance in distributed systemssumitjain2013
 
Inter Process Communication
Inter Process CommunicationInter Process Communication
Inter Process CommunicationAdeel Rasheed
 

Similar to interprocess-communication.pdf (20)

OS_Ch4
OS_Ch4OS_Ch4
OS_Ch4
 
Process
ProcessProcess
Process
 
OSCh4
OSCh4OSCh4
OSCh4
 
Ch4
Ch4Ch4
Ch4
 
Lecture 5 inter process communication
Lecture 5 inter process communicationLecture 5 inter process communication
Lecture 5 inter process communication
 
Ch3
Ch3Ch3
Ch3
 
Message passing in Distributed Computing Systems
Message passing in Distributed Computing SystemsMessage passing in Distributed Computing Systems
Message passing in Distributed Computing Systems
 
Ch03
Ch03Ch03
Ch03
 
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
 
Chapter 3 - Processes
Chapter 3 - ProcessesChapter 3 - Processes
Chapter 3 - Processes
 
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.pptModule-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
 
Process Management.ppt
Process Management.pptProcess Management.ppt
Process Management.ppt
 
3 processes
3 processes3 processes
3 processes
 
Multiprocessing -Interprocessing communication and process sunchronization,se...
Multiprocessing -Interprocessing communication and process sunchronization,se...Multiprocessing -Interprocessing communication and process sunchronization,se...
Multiprocessing -Interprocessing communication and process sunchronization,se...
 
Inter Process Communication Presentation[1]
Inter Process Communication Presentation[1]Inter Process Communication Presentation[1]
Inter Process Communication Presentation[1]
 
INTER PROCESS COMMUNICATION (IPC).pptx
INTER PROCESS COMMUNICATION (IPC).pptxINTER PROCESS COMMUNICATION (IPC).pptx
INTER PROCESS COMMUNICATION (IPC).pptx
 
INTER PROCESS COMMUNICATION (IPC).pptx
INTER PROCESS COMMUNICATION (IPC).pptxINTER PROCESS COMMUNICATION (IPC).pptx
INTER PROCESS COMMUNICATION (IPC).pptx
 
Fault tolerance in distributed systems
Fault tolerance in distributed systemsFault tolerance in distributed systems
Fault tolerance in distributed systems
 
IPC
IPCIPC
IPC
 
Inter Process Communication
Inter Process CommunicationInter Process Communication
Inter Process Communication
 

Recently uploaded

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksMagic Marks
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...Health
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfsmsksolar
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projectssmsksolar
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 

Recently uploaded (20)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 

interprocess-communication.pdf

  • 3. Interprocess Communication • Processes within a system may be independent or cooperating • Independent process cannot affect or be affected by the execution of another process • Cooperating process can affect or be affected by the execution of another process • Advantages of process cooperation – Information sharing – Computation speed-up – Modularity – Convenience
  • 4. Cooperating Processes • Cooperating processes need inter process communication (IPC) • Two models of IPC – Shared memory: A shared buffer is used by co-operating processes – Message passing: A message is passed by one process to another via kernel
  • 6. Producer-Consumer Problem • Paradigm for cooperating processes, producer process produces information that is consumed by a consumer process – unbounded-buffer places no practical limit on the size of the buffer • Producer produces one by one and keeps producing • Consumer consumes one by one – bounded-buffer assumes that there is a fixed buffer size • Producer must wait if buffer is full • Consumer must wait if buffer is empty
  • 7. Bounded-Buffer – Shared-Memory Solution  Shared data #define BUFFER_SIZE 10 typedef struct { . . . } item; item buffer[BUFFER_SIZE]; int in = 0; int out = 0;
  • 8. Bounded-Buffer – Producer while (true) { /* Produce an item */ while (((in = (in + 1) % BUFFER SIZE) == out) ; /* do nothing -- no free buffers */ buffer[in] = item; in = (in + 1) % BUFFER SIZE; }
  • 9. Bounded Buffer – Consumer while (true) { while (in == out) ; // do nothing -- nothing to consume // remove an item from the buffer item = buffer[out]; out = (out + 1) % BUFFER SIZE; return item; }
  • 10. Interprocess Communication – Message Passing • Mechanism for processes to communicate and to synchronize their actions • Message system – processes communicate with each other without resorting to shared variables • IPC facility provides two operations: – send(message) – message size fixed or variable – receive(message) • If P and Q wish to communicate, they need to: – establish a communication link between them – exchange messages via send/receive
  • 11. Interprocess Communication – Message Passing • Implementation of communication link – Physical: • Shared memory • Hardware bus • Network – Logical: • Direct or indirect • Synchronous or asynchronous • Automatic or explicit buffering
  • 12. Direct Communication • Processes must name each other explicitly: – send (P, message) – send a message to process P – receive(Q, message) – receive a message from process Q • Properties of communication link – Links are established automatically – A link is associated with exactly one pair of communicating processes – Between each pair there exists exactly one link – The link may be unidirectional, but is usually bi- directional
  • 13. Indirect Communication • Messages are directed and received from mailboxes (also referred to as ports) – Each mailbox has a unique id – Processes can communicate only if they share a mailbox • Properties of communication link – Link established only if processes share a common mailbox – A link may be associated with many processes – Each pair of processes may share several communication links – Link may be unidirectional or bi-directional
  • 14. Indirect Communication • Operations – create a new mailbox (port) – send and receive messages through mailbox – destroy a mailbox • Primitives are defined as: send(A, message) – send a message to mailbox A receive(A, message) – receive a message from mailbox A
  • 15. Implementation Questions 1. How are links established? 2. Can a link be associated with more than two processes? 3. How many links can there be between every pair of communicating processes? 4. What is the capacity of a link? 5. Is the size of a message that the link can accommodate fixed or variable? 6. Is a link unidirectional or bi-directional?
  • 16. Synchronization • Message passing may be either blocking or non-blocking • Blocking is considered synchronous – Blocking send -- the sender is blocked until the message is received – Blocking receive -- the receiver is blocked until a message is available • Non-blocking is considered asynchronous – Non-blocking send -- the sender sends the message and continue – Non-blocking receive -- the receiver receives: • A valid message, or • Null message
  • 17. Buffering • Queue of messages attached to the link; implemented in one of three ways 1. Zero capacity – 0 messages Sender must wait for receiver (rendezvous) 2. Bounded capacity – finite length of n messages Sender must wait if link full 3. Unbounded capacity – infinite length Sender never waits