SlideShare a Scribd company logo
1 of 69
BASICS
• What is Instrumentation?
• Basic Terminologies
• Process & its Control
• Field Instruments & its principles
• Valves & its working
What is Instrumentation?
• Instrumentation is about measurement and
control.
• Instrumentation engineering is the
engineering specialization focused on the
design and configuration of process systems.
• Instruments are devices which are used in
measuring attributes of process systems.
Basic Terminologies
• Process:
Series of continuous or regularly recurring steps or actions
intended to achieve a predetermined result, as in heat treating
metal, or manufacturing acid.
• Transducer(sensor):
Element which converts one form of Energy to Other form.
• Primary Transducer:
Transducer which converts the Process parameter to a form
readable by Secondary Transducer.
Eg: Orifice plate
• Secondary Transducer:
Transducer or transmitter which responds to a measured
variable and converts it to a standardized transmission signal which
is a function only of the measurement.
Eg: DP Transmitter
• Signal:
The signal is the event or phenomenon that conveys data from one
point to another.
• Loop:
A Loop is a combination of one or more interconnected instruments
arranged to measure a process variable. It shall comprises the whole chain
from Primary element to Correcting Element.
• Controller:
A device that operates automatically by use of some established
algorithm to regulate process variable(PV) according to the set point(SV).
The controller input receives information about the status of the process
variable and then provides an appropriate output signal(MV-manipulated
variable) to the final control element(eg-valves etc.,).
•Interlock:
It refers to the set of plant conditions(eg. Level of a tank, temp of furnace,
position of furnace or a valve, flow of a fluid, etc) which are to be satisfied before
operating(starting, stopping, opening ,closing ,etc)of any instrument or equipment.
ANALYSER:
•Monitor pollutant gas emissions from industrial processes.
•Gas analyzer is a gas comparator providing high linearity of signal
transformation function.
WEIGHFEEDER:
•Controller multiplies the signal from the load cell(belt load,kg/m) with that
from the speed transducer(belt speed,m/s) to get the feed rate.
•The controller then either changes the belt speed or belt load to get the set
feed rate.
CONVEYOR:
Conveyors are used as components in automated distribution and
warehousing. A belt conveyor consists of two or more pulleys, with a
continuous loop of material - the conveyor belt - that rotates about them.
One or both of the pulleys are powered, moving the belt and the material on
the belt forward. The powered pulley is called the drive pulley while the
unpowered pulley is called the idler.
BELTWEIGHER:
•Material flowing over the belt may be weighed in transit using a beltweigher.A
belweigher or belt weigher is a piece of industrial control equipment used to
gauge the mass or flow rate of material travelling over a conveyor belt.
Process & its Control
• Process Parameters:
– Pressure
– Level
– Temperature
– Flow
Pressure Measurement
• PRESSURE
A force applied to or distributed over a surface. The
pressure (P) of a force (F) distributed over an area(A) is
defined as :
P = F / A
Standard Unit of Pressure is Pascal
Other units of pressure are psi
kg/cm2
bar
atmosphere
torr
1 Pa = 1 N/m2
Pressure Measurement
• Primary Pressure Measuring Devices:
– Diaphragm
– Bellows
– Manometer
• Pressure measurements can be divided into three
different categories:
– absolute pressure
– gauge pressure and
– differential pressure
GAUGE PRESSURE
•Gauge pressure is the pressure relative to the local atmospheric or ambient
pressure.
In measurements a gauge is used to record the pressure difference between the
system and the atmospheric pressure. This is called gauge pressure and can be stated
by the following equation:
Pg=Pa+Po
where
Pg= gauge pressure
Po = atmospheric pressure
• If the pressure of a system is below atmospheric, it is called vacuum pressure.
•When pressure is measured by a gauge, the quantity obtained usually excludes
the
ambient atmospheric pressure and is therefore called overpressure,
Poverpressure = Pgauge
ABSOLUTE PRESSURE
If atmospheric pressure is included, then the resulting pressure is called
absolute pressure
Pabsolute = Patmospheric + Pgauge
The absolute pressure is measured relative to the absolute zero pressure ‐ the pressure
that would occur at absolute vacuum.
P=Pg+Po
P=absolute pressure,
Pg=gauge pressure,
Po=atmospheric pressure.
DIFFERENTIAL PRESSURE
Differential pressure is the difference in pressure between two points.
ATMOSPHERIC PRESSURE
•The atmospheric pressure is the pressure in the surrounding air at or "close" to the surface of
the earth.
•The atmospheric pressure varies with temperature and altitude above sea level.
• Atmospheric pressure is the pressure exerted at the surface of a body by a
column of air in an atmosphere.
1 atmosphere on Earth = 760 millimeters of mercury (760 Torr) and 101,325
Pascals.
STANDARD ATMOSPHERIC PRESSURE :
The Standard Atmospheric Pressure (atm) is used as a reference for gas densities
and volumes.
The Standard Atmospheric Pressure is defined at sea-level at 273oK (0oC) and is
1.01325 bar or 101325 Pa (absolute). The temperature of 293oK (20oC) is also used.
Types of Pressure Measuring Devices
Manometer Bourdan Gauge
Contd..
Strain Gage Types
Capacitive
Peizo Electric
LVDT
Level Measurement
• Some of the most commonly used liquid‐level
measurement methods are:
• RF capacitance
• Conductance (conductivity)
• Hydrostatic head/tank gauging
• Radar
• Ultrasonic
Level Measurement
Level Measurement using Pressure Transmitter
P = ρgh
Open Tank Closed Tank
RF Capacitance
Conductive Type
Hydrostatic Head
RADAR Type
Ultrasonic Type
Flow Measurement
• Principle:
– Flow is measured by measuring velocity through a known
area.with this indirect method,the flow measured is the
volume flow rate Q .
Q = A x V
Where A is the cross sectional area of the pipe
V is the fluid velocity
Unit of low is m3/hr or litres/hr
Flow Measurements
• Types:
– Head Type Flowmeters
– Mechanical Flowmeters
– Electronic Flowmeters
– Mass Flowmeters
Different Type of Head Type
Flowmeters
• Orifice Plate
• Venturi
• Flow Nozzle
• Pitot Tube
• Elbow
Orifice
• Service: Clean Liquids, Gases Steam,(no slurries or corrosive)
• Scale: Square Root
• Accuracy: 1% Full Scale
• Permanent Pressure Loss: High
• Cost: Low
Basic Equation :V=k*(h/D)0.5
Venturi
• Service: Clean Liquids, Gases Steam Slurries and Dirty Fluids
• Scale: Square Root
• Accuracy: 1% Full Scale
• Rangability: 3:1
• Permanent Pressure Loss: Low
• Cost: High
Variable Area Meters
Mechanical Flowmeters
Electronic Flowmeters
Vortex Flowmeters
Ultrasonic Flowmeters
Temperature Measurement
• Temperature:
– Webster’s defines temperature as “the degree of hotness
or coldness measured on a definite scale.
Various units of temperature are related as
C = 5/9 (F – 32)
F = 9/5 (C ) + 32
K = 273 + C
R = 460 + F
Temperature Measurement
• Types of Temp Measurement:
– RTD
– Thermocouple
– Thermistor
– Thermopile
– Pyrometer
35
Steam
Cold
Water
Hot
Water
TT
TIC
I/
P
Temperature terminology
Temperature Control Loop
• Temperature Loop Issues:
– Fluid response slowly to change in input heat
– Requires advanced control strategies
• Feedforward Control
Load
Disturbance
36
• Example: Thermistors
RTD (discussed later)
•
•
• Thermistors
• Semi‐conductors made from specific mixtures of pure oxides of
nickel, manganese, copper, cobalt, and other metals sintered at very
high temperature.
Used with Wheatstone Bridge which amplifies small change in
resistance ‐ in a simple circuit with a battery and a micro‐ammeter.
• Stability
• Linearity
• Slope of Output
‐
‐
‐
Temperature Measurement
Technology
Change in RESISTANCE with response to change in
TEMPERATURE
Moderate
Poor (Logarithmic)
Negative
37
Temperature Sensors
RTDs
• What is an RTD ?
– Resistance Temperature Detector
resistance changes
with temperature
Rosemount’s
Series 78, 88
Two common types of RTD elements:
Series 65
Series 68, 58
Wire-wound sensing element
Thin-film sensing element
Rosemount’s
Operation depends on inherent characteristic of metal
(Platinum usually): electrical resistance to current flow
changes when a metal undergoes a change in
temperature.
If we can measure the resistance in the metal, we know
the temperature!
Platinum
»
»
38
Temperature Sensors
RTDs
• How does a RTD works?
– Resistance changes are Repeatable
– The resistance changes of the platinum wiring can be
approximated by an ideal curve ‐‐ the IEC 751
0
50
100
150
200
250
300
350
-400 -200 0 200 400 600
Temperature (oC)
800
Resistance
(Ohms)
oC Ohms
0
10
20
30
100.00
103.90
107.79
111.67
International Resistance
vs. Temperature Chart:
IEC 751
IEC
751
IEC 751 Constants are :‐ A = 0.0039083, B = ‐ 5.775 x 10 ‐7,
If t>=0°C, C=0, If t<0, C = ‐ 4.183 x 10 ‐12
Example: RT = R0 [1 + At + Bt2 + C(t-100)t3]
= 103.90
39
Process
Temperature
Hot junction Cold junction
+
-
MV
difference between the two ends.
DT
“40 millivolts!,” Tommy
Seebeck yelled in a heated
debate.
The junction of two dissimilar metals creates a
small voltage output proportional to
temperature!
Temperature Sensors
Thermocouples
What is a Thermocouple ?
– Two dissimilar metals joined at a “Hot” junction
– The wires are connected to an instrument (voltmeter) that
measures the potential created by the temperature
40
Heat
Hot junction Cold junction
+
T MV
‐
oC Millivolts
0 0.000
10 0.591
20 1.192
30 1.801
Thermoelectric Voltage
vs. Temperature Chart:
TYPE E THERMOCOUPLE -20
20
0
40
60
80
-500 0 500 1000
Voltage
(mV)
Temperature (oC)
IEC
584
Measurement
Junction
T2
Reference
Junction
T1
Temperature Sensors
Thermocouples
• How does a Thermocouple work ?
– The measured voltage is proportional to the temperature difference
between the hot and cold junction! (T2 ‐ T1) =T.
41
• White, Red
• 0 to 760 °C
• Least Expensive
□ Type K
– Chromel / Alumel
» Yellow, Red
» 0 to 1150 °C
» Most Linear
□ Type T
– Copper /
Constantan
» Blue, Red
» ‐180 to 371 °C
» Highly resistant to
corrosion from
moisture
+ -
+ -
+ -
Temperature Sensors
Thermocouples
Types of Thermocouple
□
Type J
– Iron / Constantan
42
Temperature Sensors
Comparison
Why choose RTD over Thermocouple ?
• Better Accuracy & Repeatability
– RTD signal less susceptible to noise
– Better linearity
– RTD can be “matched” to transmitter
(Interchangeability error eliminated)
– CJC error inherent with T/C’s; RTD’s lead wire
resistance errors can be eliminated
Better Stability
– T/C drift is erratic and unpredictable; RTD’s drift
predictably
– T/C’s cannot be re‐calibrated
Greater Flexibility
– Special extension wires not needed
– Don’t need to be careful with cold junctions
43
Temperature Sensors
Comparison
Why choose thermocouple over RTD ?
• Applications for Higher Temperatures
• Above 1100°F
• Lower Element Cost
• Cost is the same when considering temperature point
performance requirements
• Faster response time
• Insignificant compared to response time for T‐Well and
process
• Perceived as more rugged
• Rosemount construction techniques produce extremely
rugged RTD
44
RANGE OFFER
‐200 to 500º C
500 to 1100º C
>1100º C
RTD
Thermocouple Type K
Special Thermocouple R, S or B
Temperature Sensors
Comparison
45
• What is a thermowell (T‐well) ?
– A unit that protects a sensor from process
flow, pressure, vibrations, and corrosion
– Allows for sensor removal without process
shutdown
– Slows response time (by 5 times)
Why are there different material types ?
– To handle different corrosive environments
– To handle different temperature and pressure limits
Sensor accessories
Thermowells
46
– Converts a noise susceptible signal to a standard, more robust 4‐20 mA signal
– Provides local indication of temperature measurement
– Smart transmitter provides  remote communication & diagnostics
 improved accuracy & stability
 reduced plant inventory
Temperature transmitter
What does a Transmitter do & Why use Transmitter?
Transmitter converts temperature sensor’s signal from resistance or voltage
into a common digital or analog 4‐20 mA control signal
Control
System
Copper Wire
(RTD only)
“Smart” Transmitters
also relay a digital signal
100 °C
100 °C
IEC 751
Ranged: 0 ‐ 200°C
Resistance Signal
= 138.5 
4‐20 mA Signal
=12 mA
(Range: 0‐200°C)
47
Process
Transmitter
Sensor
□ Sensor
□ Thermowell
□ Transmitter
□ Process
75.4 °C
Factors Affecting Response Time
Thermowell
Temperature transmitter
Control Valves
• The control valve manipulates a flowing fluid, such as gas, steam, water, or
chemical compounds, to compensate for the load disturbance and keep
the regulated process variable as close as possible to the desired set point.
• The control valve regulates the rate of fluid flow as the position of the
valve plug or disk is changed by force from the actuator.
• Control valves are valves used within industrial plants and elsewhere to
control operating conditions such as temperature, pressure ,flow, and
liquid level by fully or partially opening or closing in response to signals
received from controllers that compare a "set point" to a "process
variable" whose value is provided by sensors that monitor changes in such
conditions.
• The opening or closing of control valves is done by means of electrical,
hydraulic or pneumatic systems.
CONTROL VALVES:
They are basically pneumatically operated valves which require around 4
to 5 kg/cm2 of air pressure to operate the valve.
I / P Converter POSITIONER CONTROL VALVE
SUPPLY AIR
Pneumatic signal
CURRENT
SUPPLY AIR
Control Valve Types
Valve Body Types
• Diff. types of Valve Body:
• Butterfly Valve
• Globe Valve
• Ball Valve
• Plug type Valve
• Needle Valve
Positioner & its accessories
• Pneumatically operated valves depend on a positioner to take
an input signal from a process controller and convert it to
valve travel.
• A pneumatic signal (usually 3‐15 psig) is supplied to the
positioner. The positioner translates this to a required valve
position and supplies the valve actuator with the required air
pressure to move the valve to the correct position.
• Analog I/P Positioner—This positioner performs the same
function as the one above, but uses electrical current (usually
4‐20 mA) instead of air as the input signal.
Automation (ancient Greek: = self dictated), roboticization or industrial automation
or numerical control is the use of control systems such as computers to control
industrial machinery and processes, replacing human operators.
The most commonly used automation systems are :
• DCS - Distributed Control System
• PLC - Programmable Logic Controller
• SCADA– Supervisory Control And Data Acquisition System
DCS
• Distributed control system (DCS) refers to a control system usually of a
manufacturing system, process or any kind of dynamic system, in which the
controller elements are not central in location (like the brain) but are distributed
throughout the system with each component sub‐system controlled by one or
more controllers. The entire system of controllers are connected by a network for
communication and monitoring.
• DCS is a very broad term used in a variety of industries, to monitor and control
distributed equipment.
• A DCS typically uses computers (usually custom designed processors) as controllers
and uses both proprietary interconnections and protocols for communication.
Input & output modules form component parts of the DCS. The processor receives
information from input modules and sends information to output modules. The
input modules receive information from input instruments in the process (a.k.a.
field) and output modules transmit instructions to the output instruments in the
field. Computer buses or electrical buses connect the processor and modules
through multiplexers/demultiplexers. Buses also connect the distributed
controllers with the central controller and finally to the Human‐Machine Interface
(HMI) or control consoles.
ARCHITECTURE OF DCS
Operator
Workstation 1
Operator
Workstation 2
Operator
Workstation 3
Controller 1 Controller 2 Controller 3 Controller 4
Sensor 1 Actuator 1 Actuator 2 Sensor 3 Actuator 3 Sensor 4 Actuator 4
Database
Input Output Input Output Input Output Input Output
Module Module Module Module Module Module Module Module
Sensor 2
HIS HIS ENG
STATION
FCS
NIU NIU
BCV
MFCD
RL BUS
V NET
ETHERNET
FIELD
INSTRUMENTS
RIO BUS
V NET
FCS
MOPL
JB 1
JB 2
FIELD
INSTRUMENTS
MAR MAR
DCS : BASIC CONFIGURATION
MAR
V NET
JB 3
BASIC TERMINOLOGIES OF DCS
HIS: Human Interface Station
The HIS is mainly used for operation and monitoring-it displays process variables,control parameters and
alarms necessary for users to quickly grasp the operating status of the plant.
NIU: Node Interface Unit
These are remote I/O units which all the Instruments are connected.these units in turn are connected to FCS
through RIO bus.
FCS: Field Control Station
It is the main control unit which controls the plant.there can be more than one FCS which then communicate
with each other and also communicate with the HIS from where the Operator is operating.
Vnet:
The Vnet real time control system BUS links station such as FCS,HIS,BCV andCGW.
ETHERNET:
Ethernet is used to link HIS,ENG and supervisory systems.it is also used for transferring data files to
supervisory computers and for HIS data equalization.
RL Bus: This a control system BUS(communication link) which connects Field control units,operators
stations.
CGW: Communication Gateway
This unit links the Vnet control system BUS to an ETHERNET BUS
BCV: Bus Converter
The communication bus of one version of DCS may not communicate with the newer versions so BUS
CONVERTER is used to convert the BUS to suitable mode.
In our plant our existing RL BUS is converted to newer system bus Vnet by the Bus Converter kept in
Engineering room near central control room.
Programmable Logic
Controller (PLC)
•Programmable Logic Controller (PLC) is a microprocessor based system that uses programmable
memory to store instructions and implement functions such as logic, sequencing, timing, counting and
arithmetic in order to control machines and processes.
•Unlike Personal Computer, PLC does not contain peripherals, such as display or keyboard, that allow
user to directly interact with PLC. In order to facilitate interaction, separate computer is provided, normally
taking form of a standard PC. Through this external computer, operator can re-program PLC, provide set-
points and view trends of process variables that are controlled and manipulated by PLC.
PLC Actuator Process
Sensor
External
Computer
Power Supply
Microprocessor + Memory
Communication Module
Discrete Input (DI) Module
Analogue Input (AI) Module
Discrete Output (DO) Module
Analogue Output (AO) Module
Analogue Sensor
Discrete Sensor
Analogue Actuator
DiscreteActuator
Operator
Workstation
Programmable Logic Controller Architecture
PLC
Communication
Module
Microprocessor
Input Module
External
Computer
Programmable Logic Controller Architecture
PLC
Output Module Actuator Process
Sensor
PLC consists of the following components:
• Microprocessor – This is the brain of PLC. It reads input signals, executes control program
and communicates results (decisions) of control program as action signals to the outputs.
• Memory – It stores control program that is to be executed at a prescribed rate.
• Power Supply – This component is used to convert the mains AC voltage to the low DC
voltage (e.g. from 240V AC to 5V DC). This unit powers the processor and the circuits in the
input and output modules.
• Input Module – This component receives information from external devices (sensors). It
contains circuitry that provides electrical isolation and signal conditioning functionalities.
Input module can be analogue input (AI) or discrete input (DI) module. AI module receives
continuously changing signal whose amplitude is proportional to the current value of the
measured process variable. DI module receives discrete/digital (ON/OFF) information from
discrete sensors, for example push button (ON if button is pressed, OFF if button is not
pressed). Note that DI is much more frequently used than AI.
• Output Module – This module communicates control actions to external devices (actuators).
It contains circuitry required to interface PLC with actuators (e.g. digital-to-analogue
converter and power amplifier). Like input module, output module can be analogue output
(AO) or discrete output (DO) module depending on the type of actuator used.
• Communication Module – This component allows PLC to communicate with external
devices using sophisticated multiple-bit digital communication protocols (e.g. Ethernet).
Programmable Logic Controller (PLC)
PLC Programming
• Ladder Diagram - most common
• Structure Text Programming (ST)
• Functional Block Programming (FB)
• Instruction List (IL)
• Sequential Function Chart (SFC)
• SCADAsystem performs the following tasks
• Collection of data from field devices, which can be sensors, actuators and
controllers.
• Transfer of field devices’ information via communication link to the central
site (master station)
• Execution of any necessary analysis and supervisory control calculations,
all of which are taking place at the master stations.
• Display process information on a number of operator screens.
• Convey any required supervisory control actions back to the field devices.
Supervisory Control and Data
Acquisition (SCADA)
instrumentation measurement actvitvities

More Related Content

Similar to instrumentation measurement actvitvities

Pressure Measurement Instruments 1.pptx
Pressure Measurement Instruments 1.pptxPressure Measurement Instruments 1.pptx
Pressure Measurement Instruments 1.pptxHanif61
 
ROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANT
ROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANTROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANT
ROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANTGaurav Rai
 
Basic concepts of instrumentation
Basic concepts of instrumentationBasic concepts of instrumentation
Basic concepts of instrumentationG. Udhaya Sankar
 
Introduction to measurements
Introduction to measurementsIntroduction to measurements
Introduction to measurementsnkmsajid
 
Meeting w13 chapter 4 part 3
Meeting w13   chapter 4 part 3Meeting w13   chapter 4 part 3
Meeting w13 chapter 4 part 3Hattori Sidek
 
Components of Control Loops and ISA.pptx
Components of Control Loops and ISA.pptxComponents of Control Loops and ISA.pptx
Components of Control Loops and ISA.pptxsarkmank1
 
Measurements lecture 1
Measurements lecture 1Measurements lecture 1
Measurements lecture 1Rosanna Thomas
 
Thermal plant instrumentation and control
Thermal plant instrumentation and controlThermal plant instrumentation and control
Thermal plant instrumentation and controlShilpa Shukla
 
Power plant instrumentation
Power plant instrumentationPower plant instrumentation
Power plant instrumentationT.SWAROOP KUMAR
 
fanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdffanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdfBlentBulut5
 

Similar to instrumentation measurement actvitvities (20)

Lab manual.pptx
Lab manual.pptxLab manual.pptx
Lab manual.pptx
 
Pressure Measurement Instruments 1.pptx
Pressure Measurement Instruments 1.pptxPressure Measurement Instruments 1.pptx
Pressure Measurement Instruments 1.pptx
 
Instrumentation
Instrumentation Instrumentation
Instrumentation
 
ROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANT
ROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANTROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANT
ROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANT
 
Basic concepts of instrumentation
Basic concepts of instrumentationBasic concepts of instrumentation
Basic concepts of instrumentation
 
Basic instrumentation
Basic instrumentationBasic instrumentation
Basic instrumentation
 
Introduction to measurements
Introduction to measurementsIntroduction to measurements
Introduction to measurements
 
Meeting w13 chapter 4 part 3
Meeting w13   chapter 4 part 3Meeting w13   chapter 4 part 3
Meeting w13 chapter 4 part 3
 
Iocl
IoclIocl
Iocl
 
Instrumentation i
Instrumentation iInstrumentation i
Instrumentation i
 
Components of Control Loops and ISA.pptx
Components of Control Loops and ISA.pptxComponents of Control Loops and ISA.pptx
Components of Control Loops and ISA.pptx
 
5661874.ppt
5661874.ppt5661874.ppt
5661874.ppt
 
CTM PROVING
CTM PROVINGCTM PROVING
CTM PROVING
 
Transducers
TransducersTransducers
Transducers
 
Measurements lecture 1
Measurements lecture 1Measurements lecture 1
Measurements lecture 1
 
1.2
1.21.2
1.2
 
Thermal plant instrumentation and control
Thermal plant instrumentation and controlThermal plant instrumentation and control
Thermal plant instrumentation and control
 
Power plant instrumentation
Power plant instrumentationPower plant instrumentation
Power plant instrumentation
 
fanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdffanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdf
 
FAN MODULE.pdf
FAN MODULE.pdfFAN MODULE.pdf
FAN MODULE.pdf
 

Recently uploaded

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 

Recently uploaded (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 

instrumentation measurement actvitvities

  • 1.
  • 2. BASICS • What is Instrumentation? • Basic Terminologies • Process & its Control • Field Instruments & its principles • Valves & its working
  • 3. What is Instrumentation? • Instrumentation is about measurement and control. • Instrumentation engineering is the engineering specialization focused on the design and configuration of process systems. • Instruments are devices which are used in measuring attributes of process systems.
  • 4. Basic Terminologies • Process: Series of continuous or regularly recurring steps or actions intended to achieve a predetermined result, as in heat treating metal, or manufacturing acid. • Transducer(sensor): Element which converts one form of Energy to Other form. • Primary Transducer: Transducer which converts the Process parameter to a form readable by Secondary Transducer. Eg: Orifice plate • Secondary Transducer: Transducer or transmitter which responds to a measured variable and converts it to a standardized transmission signal which is a function only of the measurement. Eg: DP Transmitter
  • 5. • Signal: The signal is the event or phenomenon that conveys data from one point to another. • Loop: A Loop is a combination of one or more interconnected instruments arranged to measure a process variable. It shall comprises the whole chain from Primary element to Correcting Element. • Controller: A device that operates automatically by use of some established algorithm to regulate process variable(PV) according to the set point(SV). The controller input receives information about the status of the process variable and then provides an appropriate output signal(MV-manipulated variable) to the final control element(eg-valves etc.,).
  • 6. •Interlock: It refers to the set of plant conditions(eg. Level of a tank, temp of furnace, position of furnace or a valve, flow of a fluid, etc) which are to be satisfied before operating(starting, stopping, opening ,closing ,etc)of any instrument or equipment. ANALYSER: •Monitor pollutant gas emissions from industrial processes. •Gas analyzer is a gas comparator providing high linearity of signal transformation function. WEIGHFEEDER: •Controller multiplies the signal from the load cell(belt load,kg/m) with that from the speed transducer(belt speed,m/s) to get the feed rate. •The controller then either changes the belt speed or belt load to get the set feed rate.
  • 7. CONVEYOR: Conveyors are used as components in automated distribution and warehousing. A belt conveyor consists of two or more pulleys, with a continuous loop of material - the conveyor belt - that rotates about them. One or both of the pulleys are powered, moving the belt and the material on the belt forward. The powered pulley is called the drive pulley while the unpowered pulley is called the idler. BELTWEIGHER: •Material flowing over the belt may be weighed in transit using a beltweigher.A belweigher or belt weigher is a piece of industrial control equipment used to gauge the mass or flow rate of material travelling over a conveyor belt.
  • 8. Process & its Control • Process Parameters: – Pressure – Level – Temperature – Flow
  • 9. Pressure Measurement • PRESSURE A force applied to or distributed over a surface. The pressure (P) of a force (F) distributed over an area(A) is defined as : P = F / A Standard Unit of Pressure is Pascal Other units of pressure are psi kg/cm2 bar atmosphere torr 1 Pa = 1 N/m2
  • 10. Pressure Measurement • Primary Pressure Measuring Devices: – Diaphragm – Bellows – Manometer • Pressure measurements can be divided into three different categories: – absolute pressure – gauge pressure and – differential pressure
  • 11. GAUGE PRESSURE •Gauge pressure is the pressure relative to the local atmospheric or ambient pressure. In measurements a gauge is used to record the pressure difference between the system and the atmospheric pressure. This is called gauge pressure and can be stated by the following equation: Pg=Pa+Po where Pg= gauge pressure Po = atmospheric pressure • If the pressure of a system is below atmospheric, it is called vacuum pressure. •When pressure is measured by a gauge, the quantity obtained usually excludes the ambient atmospheric pressure and is therefore called overpressure, Poverpressure = Pgauge
  • 12. ABSOLUTE PRESSURE If atmospheric pressure is included, then the resulting pressure is called absolute pressure Pabsolute = Patmospheric + Pgauge The absolute pressure is measured relative to the absolute zero pressure ‐ the pressure that would occur at absolute vacuum. P=Pg+Po P=absolute pressure, Pg=gauge pressure, Po=atmospheric pressure. DIFFERENTIAL PRESSURE Differential pressure is the difference in pressure between two points.
  • 13. ATMOSPHERIC PRESSURE •The atmospheric pressure is the pressure in the surrounding air at or "close" to the surface of the earth. •The atmospheric pressure varies with temperature and altitude above sea level. • Atmospheric pressure is the pressure exerted at the surface of a body by a column of air in an atmosphere. 1 atmosphere on Earth = 760 millimeters of mercury (760 Torr) and 101,325 Pascals. STANDARD ATMOSPHERIC PRESSURE : The Standard Atmospheric Pressure (atm) is used as a reference for gas densities and volumes. The Standard Atmospheric Pressure is defined at sea-level at 273oK (0oC) and is 1.01325 bar or 101325 Pa (absolute). The temperature of 293oK (20oC) is also used.
  • 14. Types of Pressure Measuring Devices Manometer Bourdan Gauge
  • 16. Level Measurement • Some of the most commonly used liquid‐level measurement methods are: • RF capacitance • Conductance (conductivity) • Hydrostatic head/tank gauging • Radar • Ultrasonic
  • 17. Level Measurement Level Measurement using Pressure Transmitter P = ρgh
  • 22. Flow Measurement • Principle: – Flow is measured by measuring velocity through a known area.with this indirect method,the flow measured is the volume flow rate Q . Q = A x V Where A is the cross sectional area of the pipe V is the fluid velocity Unit of low is m3/hr or litres/hr
  • 23. Flow Measurements • Types: – Head Type Flowmeters – Mechanical Flowmeters – Electronic Flowmeters – Mass Flowmeters
  • 24. Different Type of Head Type Flowmeters • Orifice Plate • Venturi • Flow Nozzle • Pitot Tube • Elbow
  • 25. Orifice • Service: Clean Liquids, Gases Steam,(no slurries or corrosive) • Scale: Square Root • Accuracy: 1% Full Scale • Permanent Pressure Loss: High • Cost: Low Basic Equation :V=k*(h/D)0.5
  • 26. Venturi • Service: Clean Liquids, Gases Steam Slurries and Dirty Fluids • Scale: Square Root • Accuracy: 1% Full Scale • Rangability: 3:1 • Permanent Pressure Loss: Low • Cost: High
  • 31.
  • 33. Temperature Measurement • Temperature: – Webster’s defines temperature as “the degree of hotness or coldness measured on a definite scale. Various units of temperature are related as C = 5/9 (F – 32) F = 9/5 (C ) + 32 K = 273 + C R = 460 + F
  • 34. Temperature Measurement • Types of Temp Measurement: – RTD – Thermocouple – Thermistor – Thermopile – Pyrometer
  • 35. 35 Steam Cold Water Hot Water TT TIC I/ P Temperature terminology Temperature Control Loop • Temperature Loop Issues: – Fluid response slowly to change in input heat – Requires advanced control strategies • Feedforward Control Load Disturbance
  • 36. 36 • Example: Thermistors RTD (discussed later) • • • Thermistors • Semi‐conductors made from specific mixtures of pure oxides of nickel, manganese, copper, cobalt, and other metals sintered at very high temperature. Used with Wheatstone Bridge which amplifies small change in resistance ‐ in a simple circuit with a battery and a micro‐ammeter. • Stability • Linearity • Slope of Output ‐ ‐ ‐ Temperature Measurement Technology Change in RESISTANCE with response to change in TEMPERATURE Moderate Poor (Logarithmic) Negative
  • 37. 37 Temperature Sensors RTDs • What is an RTD ? – Resistance Temperature Detector resistance changes with temperature Rosemount’s Series 78, 88 Two common types of RTD elements: Series 65 Series 68, 58 Wire-wound sensing element Thin-film sensing element Rosemount’s Operation depends on inherent characteristic of metal (Platinum usually): electrical resistance to current flow changes when a metal undergoes a change in temperature. If we can measure the resistance in the metal, we know the temperature! Platinum » »
  • 38. 38 Temperature Sensors RTDs • How does a RTD works? – Resistance changes are Repeatable – The resistance changes of the platinum wiring can be approximated by an ideal curve ‐‐ the IEC 751 0 50 100 150 200 250 300 350 -400 -200 0 200 400 600 Temperature (oC) 800 Resistance (Ohms) oC Ohms 0 10 20 30 100.00 103.90 107.79 111.67 International Resistance vs. Temperature Chart: IEC 751 IEC 751 IEC 751 Constants are :‐ A = 0.0039083, B = ‐ 5.775 x 10 ‐7, If t>=0°C, C=0, If t<0, C = ‐ 4.183 x 10 ‐12 Example: RT = R0 [1 + At + Bt2 + C(t-100)t3] = 103.90
  • 39. 39 Process Temperature Hot junction Cold junction + - MV difference between the two ends. DT “40 millivolts!,” Tommy Seebeck yelled in a heated debate. The junction of two dissimilar metals creates a small voltage output proportional to temperature! Temperature Sensors Thermocouples What is a Thermocouple ? – Two dissimilar metals joined at a “Hot” junction – The wires are connected to an instrument (voltmeter) that measures the potential created by the temperature
  • 40. 40 Heat Hot junction Cold junction + T MV ‐ oC Millivolts 0 0.000 10 0.591 20 1.192 30 1.801 Thermoelectric Voltage vs. Temperature Chart: TYPE E THERMOCOUPLE -20 20 0 40 60 80 -500 0 500 1000 Voltage (mV) Temperature (oC) IEC 584 Measurement Junction T2 Reference Junction T1 Temperature Sensors Thermocouples • How does a Thermocouple work ? – The measured voltage is proportional to the temperature difference between the hot and cold junction! (T2 ‐ T1) =T.
  • 41. 41 • White, Red • 0 to 760 °C • Least Expensive □ Type K – Chromel / Alumel » Yellow, Red » 0 to 1150 °C » Most Linear □ Type T – Copper / Constantan » Blue, Red » ‐180 to 371 °C » Highly resistant to corrosion from moisture + - + - + - Temperature Sensors Thermocouples Types of Thermocouple □ Type J – Iron / Constantan
  • 42. 42 Temperature Sensors Comparison Why choose RTD over Thermocouple ? • Better Accuracy & Repeatability – RTD signal less susceptible to noise – Better linearity – RTD can be “matched” to transmitter (Interchangeability error eliminated) – CJC error inherent with T/C’s; RTD’s lead wire resistance errors can be eliminated Better Stability – T/C drift is erratic and unpredictable; RTD’s drift predictably – T/C’s cannot be re‐calibrated Greater Flexibility – Special extension wires not needed – Don’t need to be careful with cold junctions
  • 43. 43 Temperature Sensors Comparison Why choose thermocouple over RTD ? • Applications for Higher Temperatures • Above 1100°F • Lower Element Cost • Cost is the same when considering temperature point performance requirements • Faster response time • Insignificant compared to response time for T‐Well and process • Perceived as more rugged • Rosemount construction techniques produce extremely rugged RTD
  • 44. 44 RANGE OFFER ‐200 to 500º C 500 to 1100º C >1100º C RTD Thermocouple Type K Special Thermocouple R, S or B Temperature Sensors Comparison
  • 45. 45 • What is a thermowell (T‐well) ? – A unit that protects a sensor from process flow, pressure, vibrations, and corrosion – Allows for sensor removal without process shutdown – Slows response time (by 5 times) Why are there different material types ? – To handle different corrosive environments – To handle different temperature and pressure limits Sensor accessories Thermowells
  • 46. 46 – Converts a noise susceptible signal to a standard, more robust 4‐20 mA signal – Provides local indication of temperature measurement – Smart transmitter provides  remote communication & diagnostics  improved accuracy & stability  reduced plant inventory Temperature transmitter What does a Transmitter do & Why use Transmitter? Transmitter converts temperature sensor’s signal from resistance or voltage into a common digital or analog 4‐20 mA control signal Control System Copper Wire (RTD only) “Smart” Transmitters also relay a digital signal 100 °C 100 °C IEC 751 Ranged: 0 ‐ 200°C Resistance Signal = 138.5  4‐20 mA Signal =12 mA (Range: 0‐200°C)
  • 47. 47 Process Transmitter Sensor □ Sensor □ Thermowell □ Transmitter □ Process 75.4 °C Factors Affecting Response Time Thermowell Temperature transmitter
  • 48. Control Valves • The control valve manipulates a flowing fluid, such as gas, steam, water, or chemical compounds, to compensate for the load disturbance and keep the regulated process variable as close as possible to the desired set point. • The control valve regulates the rate of fluid flow as the position of the valve plug or disk is changed by force from the actuator. • Control valves are valves used within industrial plants and elsewhere to control operating conditions such as temperature, pressure ,flow, and liquid level by fully or partially opening or closing in response to signals received from controllers that compare a "set point" to a "process variable" whose value is provided by sensors that monitor changes in such conditions. • The opening or closing of control valves is done by means of electrical, hydraulic or pneumatic systems.
  • 49. CONTROL VALVES: They are basically pneumatically operated valves which require around 4 to 5 kg/cm2 of air pressure to operate the valve. I / P Converter POSITIONER CONTROL VALVE SUPPLY AIR Pneumatic signal CURRENT SUPPLY AIR
  • 51.
  • 52.
  • 53.
  • 54. Valve Body Types • Diff. types of Valve Body: • Butterfly Valve • Globe Valve • Ball Valve • Plug type Valve • Needle Valve
  • 55. Positioner & its accessories • Pneumatically operated valves depend on a positioner to take an input signal from a process controller and convert it to valve travel. • A pneumatic signal (usually 3‐15 psig) is supplied to the positioner. The positioner translates this to a required valve position and supplies the valve actuator with the required air pressure to move the valve to the correct position. • Analog I/P Positioner—This positioner performs the same function as the one above, but uses electrical current (usually 4‐20 mA) instead of air as the input signal.
  • 56.
  • 57. Automation (ancient Greek: = self dictated), roboticization or industrial automation or numerical control is the use of control systems such as computers to control industrial machinery and processes, replacing human operators. The most commonly used automation systems are : • DCS - Distributed Control System • PLC - Programmable Logic Controller • SCADA– Supervisory Control And Data Acquisition System
  • 58. DCS • Distributed control system (DCS) refers to a control system usually of a manufacturing system, process or any kind of dynamic system, in which the controller elements are not central in location (like the brain) but are distributed throughout the system with each component sub‐system controlled by one or more controllers. The entire system of controllers are connected by a network for communication and monitoring. • DCS is a very broad term used in a variety of industries, to monitor and control distributed equipment. • A DCS typically uses computers (usually custom designed processors) as controllers and uses both proprietary interconnections and protocols for communication. Input & output modules form component parts of the DCS. The processor receives information from input modules and sends information to output modules. The input modules receive information from input instruments in the process (a.k.a. field) and output modules transmit instructions to the output instruments in the field. Computer buses or electrical buses connect the processor and modules through multiplexers/demultiplexers. Buses also connect the distributed controllers with the central controller and finally to the Human‐Machine Interface (HMI) or control consoles.
  • 59. ARCHITECTURE OF DCS Operator Workstation 1 Operator Workstation 2 Operator Workstation 3 Controller 1 Controller 2 Controller 3 Controller 4 Sensor 1 Actuator 1 Actuator 2 Sensor 3 Actuator 3 Sensor 4 Actuator 4 Database Input Output Input Output Input Output Input Output Module Module Module Module Module Module Module Module Sensor 2
  • 60. HIS HIS ENG STATION FCS NIU NIU BCV MFCD RL BUS V NET ETHERNET FIELD INSTRUMENTS RIO BUS V NET FCS MOPL JB 1 JB 2 FIELD INSTRUMENTS MAR MAR DCS : BASIC CONFIGURATION MAR V NET JB 3
  • 61. BASIC TERMINOLOGIES OF DCS HIS: Human Interface Station The HIS is mainly used for operation and monitoring-it displays process variables,control parameters and alarms necessary for users to quickly grasp the operating status of the plant. NIU: Node Interface Unit These are remote I/O units which all the Instruments are connected.these units in turn are connected to FCS through RIO bus. FCS: Field Control Station It is the main control unit which controls the plant.there can be more than one FCS which then communicate with each other and also communicate with the HIS from where the Operator is operating. Vnet: The Vnet real time control system BUS links station such as FCS,HIS,BCV andCGW. ETHERNET: Ethernet is used to link HIS,ENG and supervisory systems.it is also used for transferring data files to supervisory computers and for HIS data equalization. RL Bus: This a control system BUS(communication link) which connects Field control units,operators stations. CGW: Communication Gateway This unit links the Vnet control system BUS to an ETHERNET BUS BCV: Bus Converter The communication bus of one version of DCS may not communicate with the newer versions so BUS CONVERTER is used to convert the BUS to suitable mode. In our plant our existing RL BUS is converted to newer system bus Vnet by the Bus Converter kept in Engineering room near central control room.
  • 62. Programmable Logic Controller (PLC) •Programmable Logic Controller (PLC) is a microprocessor based system that uses programmable memory to store instructions and implement functions such as logic, sequencing, timing, counting and arithmetic in order to control machines and processes. •Unlike Personal Computer, PLC does not contain peripherals, such as display or keyboard, that allow user to directly interact with PLC. In order to facilitate interaction, separate computer is provided, normally taking form of a standard PC. Through this external computer, operator can re-program PLC, provide set- points and view trends of process variables that are controlled and manipulated by PLC. PLC Actuator Process Sensor External Computer
  • 63. Power Supply Microprocessor + Memory Communication Module Discrete Input (DI) Module Analogue Input (AI) Module Discrete Output (DO) Module Analogue Output (AO) Module Analogue Sensor Discrete Sensor Analogue Actuator DiscreteActuator Operator Workstation Programmable Logic Controller Architecture PLC
  • 64. Communication Module Microprocessor Input Module External Computer Programmable Logic Controller Architecture PLC Output Module Actuator Process Sensor
  • 65. PLC consists of the following components: • Microprocessor – This is the brain of PLC. It reads input signals, executes control program and communicates results (decisions) of control program as action signals to the outputs. • Memory – It stores control program that is to be executed at a prescribed rate. • Power Supply – This component is used to convert the mains AC voltage to the low DC voltage (e.g. from 240V AC to 5V DC). This unit powers the processor and the circuits in the input and output modules. • Input Module – This component receives information from external devices (sensors). It contains circuitry that provides electrical isolation and signal conditioning functionalities. Input module can be analogue input (AI) or discrete input (DI) module. AI module receives continuously changing signal whose amplitude is proportional to the current value of the measured process variable. DI module receives discrete/digital (ON/OFF) information from discrete sensors, for example push button (ON if button is pressed, OFF if button is not pressed). Note that DI is much more frequently used than AI. • Output Module – This module communicates control actions to external devices (actuators). It contains circuitry required to interface PLC with actuators (e.g. digital-to-analogue converter and power amplifier). Like input module, output module can be analogue output (AO) or discrete output (DO) module depending on the type of actuator used. • Communication Module – This component allows PLC to communicate with external devices using sophisticated multiple-bit digital communication protocols (e.g. Ethernet).
  • 67. PLC Programming • Ladder Diagram - most common • Structure Text Programming (ST) • Functional Block Programming (FB) • Instruction List (IL) • Sequential Function Chart (SFC)
  • 68. • SCADAsystem performs the following tasks • Collection of data from field devices, which can be sensors, actuators and controllers. • Transfer of field devices’ information via communication link to the central site (master station) • Execution of any necessary analysis and supervisory control calculations, all of which are taking place at the master stations. • Display process information on a number of operator screens. • Convey any required supervisory control actions back to the field devices. Supervisory Control and Data Acquisition (SCADA)