অসীম ধারার সূত্রাবলী (Infinite Series Formulae)
1) a+(a+d) +(a+2d) +……………+{a+(n-1) d} = n/2{2a+(n-1) d}
2) a+ar+ar2
+ar3
+………………. +arn-1
= a(rn
-1/r-1), when r>1;
a(1-rn
/1-r), when r<1;
3) 1+2+3+…………………………. +n = n(n+1)/2
4) 12
+22
+32
+………………………+n2
= 1/6{n(n+1) (2n+1)}
5) 13
+23
+33
+………………………. +n3
= {n(n+1)/2}2
6) a + a +a+……………………………+na = na.
7) 1+a+a2
+a3
+………………………+an-1
= an-1
/a-1
8) A+a2
+a3
+…………………………. +an
= a{an-1
/a-1}
9) 1+3+5+7+………………………. +(2n-1) = n2
As n goes to infinity, the absolute value of r must be less than one for the series to converge. The
sum then becomes
When a = 1, this simplifies to:
➢ অসীমতক সমষ্টি =a/1-r

অসীম ধারার সূত্রাবলী (Infinite Series Formula)

  • 1.
    অসীম ধারার সূত্রাবলী(Infinite Series Formulae) 1) a+(a+d) +(a+2d) +……………+{a+(n-1) d} = n/2{2a+(n-1) d} 2) a+ar+ar2 +ar3 +………………. +arn-1 = a(rn -1/r-1), when r>1; a(1-rn /1-r), when r<1; 3) 1+2+3+…………………………. +n = n(n+1)/2 4) 12 +22 +32 +………………………+n2 = 1/6{n(n+1) (2n+1)} 5) 13 +23 +33 +………………………. +n3 = {n(n+1)/2}2 6) a + a +a+……………………………+na = na. 7) 1+a+a2 +a3 +………………………+an-1 = an-1 /a-1 8) A+a2 +a3 +…………………………. +an = a{an-1 /a-1} 9) 1+3+5+7+………………………. +(2n-1) = n2 As n goes to infinity, the absolute value of r must be less than one for the series to converge. The sum then becomes When a = 1, this simplifies to: ➢ অসীমতক সমষ্টি =a/1-r