SlideShare a Scribd company logo
1 of 19
INTRODUCTION TO
Machine Learning
ETHEM ALPAYDIN
© The MIT Press, 2004
alpaydin@boun.edu.tr
http://www.cmpe.boun.edu.tr/~ethem/i2ml
Lecture Slides for
CHAPTER 1:
Introduction
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
3
Why “Learn” ?
 Machine learning is programming computers to optimize
a performance criterion using example data or past
experience.
 There is no need to “learn” to calculate payroll
 Learning is used when:
 Human expertise does not exist (navigating on Mars),
 Humans are unable to explain their expertise (speech
recognition)
 Solution changes in time (routing on a computer network)
 Solution needs to be adapted to particular cases (user
biometrics)
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
4
What We Talk About When We
Talk About“Learning”
 Learning general models from a data of particular
examples
 Data is cheap and abundant (data warehouses, data
marts); knowledge is expensive and scarce.
 Example in retail: Customer transactions to consumer
behavior:
People who bought “Da Vinci Code” also bought “The Five
People You Meet in Heaven” (www.amazon.com)
 Build a model that is a good and useful approximation to
the data.
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
5
Data Mining
 Retail: Market basket analysis, Customer relationship
management (CRM)
 Finance: Credit scoring, fraud detection
 Manufacturing: Optimization, troubleshooting
 Medicine: Medical diagnosis
 Telecommunications: Quality of service optimization
 Bioinformatics: Motifs, alignment
 Web mining: Search engines
 ...
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
6
What is Machine Learning?
 Optimize a performance criterion using example data or
past experience.
 Role of Statistics: Inference from a sample
 Role of Computer science: Efficient algorithms to
 Solve the optimization problem
 Representing and evaluating the model for inference
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
7
Applications
 Association
 Supervised Learning
 Classification
 Regression
 Unsupervised Learning
 Reinforcement Learning
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
8
Learning Associations
 Basket analysis:
P (Y | X ) probability that somebody who buys X also
buys Y where X and Y are products/services.
Example: P ( chips | beer ) = 0.7
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
9
Classification
 Example: Credit
scoring
 Differentiating
between low-risk
and high-risk
customers from their
income and savings
Discriminant: IF income > θ1 AND savings > θ2
THEN low-risk ELSE high-risk
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
10
Classification: Applications
 Aka Pattern recognition
 Face recognition: Pose, lighting, occlusion (glasses,
beard), make-up, hair style
 Character recognition: Different handwriting styles.
 Speech recognition: Temporal dependency.
 Use of a dictionary or the syntax of the language.
 Sensor fusion: Combine multiple modalities; eg, visual (lip
image) and acoustic for speech
 Medical diagnosis: From symptoms to illnesses
 ...
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
11
Face Recognition
Training examples of a person
Test images
AT&T Laboratories, Cambridge UK
http://www.uk.research.att.com/facedatabase.html
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
12
Regression
 Example: Price of a used
car
 x : car attributes
y : price
y = g (x | θ )
g ( ) model,
θ parameters
y = wx+w0
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
13
Regression Applications
 Navigating a car: Angle of the steering wheel (CMU
NavLab)
 Kinematics of a robot arm
α1= g1(x,y)
α2= g2(x,y)
α1
α2
(x,y)
 Response surface design
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
14
Supervised Learning: Uses
 Prediction of future cases: Use the rule to predict the
output for future inputs
 Knowledge extraction: The rule is easy to understand
 Compression: The rule is simpler than the data it
explains
 Outlier detection: Exceptions that are not covered by the
rule, e.g., fraud
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
15
Unsupervised Learning
 Learning “what normally happens”
 No output
 Clustering: Grouping similar instances
 Example applications
 Customer segmentation in CRM
 Image compression: Color quantization
 Bioinformatics: Learning motifs
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
16
Reinforcement Learning
 Learning a policy: A sequence of outputs
 No supervised output but delayed reward
 Credit assignment problem
 Game playing
 Robot in a maze
 Multiple agents, partial observability, ...
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
17
Resources: Datasets
 UCI Repository:
http://www.ics.uci.edu/~mlearn/MLRepository.html
 UCI KDD Archive:
http://kdd.ics.uci.edu/summary.data.application.html
 Statlib: http://lib.stat.cmu.edu/
 Delve: http://www.cs.utoronto.ca/~delve/
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
18
Resources: Journals
 Journal of Machine Learning Research www.jmlr.org
 Machine Learning
 Neural Computation
 Neural Networks
 IEEE Transactions on Neural Networks
 IEEE Transactions on Pattern Analysis and Machine
Intelligence
 Annals of Statistics
 Journal of the American Statistical Association
 ...
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
19
Resources: Conferences
 International Conference on Machine Learning (ICML)
 ICML05: http://icml.ais.fraunhofer.de/
 European Conference on Machine Learning (ECML)
 ECML05: http://ecmlpkdd05.liacc.up.pt/
 Neural Information Processing Systems (NIPS)
 NIPS05: http://nips.cc/
 Uncertainty in Artificial Intelligence (UAI)
 UAI05: http://www.cs.toronto.edu/uai2005/
 Computational Learning Theory (COLT)
 COLT05: http://learningtheory.org/colt2005/
 International Joint Conference on Artificial Intelligence (IJCAI)
 IJCAI05: http://ijcai05.csd.abdn.ac.uk/
 International Conference on Neural Networks (Europe)
 ICANN05: http://www.ibspan.waw.pl/ICANN-2005/
 ...

More Related Content

Similar to i2ml-chap1-v1-1.ppt

课堂讲义(最后更新:2009-9-25)
课堂讲义(最后更新:2009-9-25)课堂讲义(最后更新:2009-9-25)
课堂讲义(最后更新:2009-9-25)
butest
 
Lec 01
Lec 01Lec 01
Elearning and Sustainability
Elearning and SustainabilityElearning and Sustainability
Elearning and Sustainability
Craig Chalmers
 
Teaching and practicing the students‘ knowledge using games
Teaching and practicing the students‘ knowledge using gamesTeaching and practicing the students‘ knowledge using games
Teaching and practicing the students‘ knowledge using games
Förderverein Technische Fakultät
 
CS8082_MachineLearnigTechniques _Unit-1.ppt
CS8082_MachineLearnigTechniques _Unit-1.pptCS8082_MachineLearnigTechniques _Unit-1.ppt
CS8082_MachineLearnigTechniques _Unit-1.ppt
pushpait
 

Similar to i2ml-chap1-v1-1.ppt (20)

i2ml3e-chap1.pptx
i2ml3e-chap1.pptxi2ml3e-chap1.pptx
i2ml3e-chap1.pptx
 
Basics of machine learning
Basics of machine learningBasics of machine learning
Basics of machine learning
 
Introduction AI ML& Mathematicals of ML.pdf
Introduction AI ML& Mathematicals of ML.pdfIntroduction AI ML& Mathematicals of ML.pdf
Introduction AI ML& Mathematicals of ML.pdf
 
Introduction to Machine Learning and different types of Learning
Introduction to Machine Learning and different types of LearningIntroduction to Machine Learning and different types of Learning
Introduction to Machine Learning and different types of Learning
 
Software Engineering Challenges in building AI-based complex systems
Software Engineering Challenges in building AI-based complex systemsSoftware Engineering Challenges in building AI-based complex systems
Software Engineering Challenges in building AI-based complex systems
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
 
Using Language Modeling to Verify User Identities
Using Language Modeling to Verify User IdentitiesUsing Language Modeling to Verify User Identities
Using Language Modeling to Verify User Identities
 
Ml topic1 a
Ml topic1 aMl topic1 a
Ml topic1 a
 
课堂讲义(最后更新:2009-9-25)
课堂讲义(最后更新:2009-9-25)课堂讲义(最后更新:2009-9-25)
课堂讲义(最后更新:2009-9-25)
 
Lec 01
Lec 01Lec 01
Lec 01
 
Elearning and Sustainability
Elearning and SustainabilityElearning and Sustainability
Elearning and Sustainability
 
Machine Learning part 2 - Introduction to Data Science
Machine Learning part 2 -  Introduction to Data Science Machine Learning part 2 -  Introduction to Data Science
Machine Learning part 2 - Introduction to Data Science
 
01_introduction_ML.pdf
01_introduction_ML.pdf01_introduction_ML.pdf
01_introduction_ML.pdf
 
Business Analytics and Optimization Introduction
Business Analytics and Optimization IntroductionBusiness Analytics and Optimization Introduction
Business Analytics and Optimization Introduction
 
Teaching and practicing the students‘ knowledge using games
Teaching and practicing the students‘ knowledge using gamesTeaching and practicing the students‘ knowledge using games
Teaching and practicing the students‘ knowledge using games
 
ppt on introduction to Machine learning tools
ppt on introduction to Machine learning toolsppt on introduction to Machine learning tools
ppt on introduction to Machine learning tools
 
CS8082_MachineLearnigTechniques _Unit-1.ppt
CS8082_MachineLearnigTechniques _Unit-1.pptCS8082_MachineLearnigTechniques _Unit-1.ppt
CS8082_MachineLearnigTechniques _Unit-1.ppt
 
How to Make Cars Smarter: A Step Towards Self-Driving Cars
How to Make Cars Smarter: A Step Towards Self-Driving CarsHow to Make Cars Smarter: A Step Towards Self-Driving Cars
How to Make Cars Smarter: A Step Towards Self-Driving Cars
 
Machine Learning in Finance
Machine Learning in FinanceMachine Learning in Finance
Machine Learning in Finance
 
Machine Learning for Automated Reasoning: An Overview
Machine Learning for Automated Reasoning: An OverviewMachine Learning for Automated Reasoning: An Overview
Machine Learning for Automated Reasoning: An Overview
 

Recently uploaded

Obat Aborsi Depok 0851\7696\3835 Jual Obat Cytotec Di Depok
Obat Aborsi Depok 0851\7696\3835 Jual Obat Cytotec Di DepokObat Aborsi Depok 0851\7696\3835 Jual Obat Cytotec Di Depok
Obat Aborsi Depok 0851\7696\3835 Jual Obat Cytotec Di Depok
Obat Aborsi Jakarta Wa 085176963835 Apotek Jual Obat Cytotec Di Jakarta
 
obat aborsi bandung wa 081336238223 jual obat aborsi cytotec asli di bandung9...
obat aborsi bandung wa 081336238223 jual obat aborsi cytotec asli di bandung9...obat aborsi bandung wa 081336238223 jual obat aborsi cytotec asli di bandung9...
obat aborsi bandung wa 081336238223 jual obat aborsi cytotec asli di bandung9...
yulianti213969
 
Obat Aborsi Malang 0851\7696\3835 Jual Obat Cytotec Di Malang
Obat Aborsi Malang 0851\7696\3835 Jual Obat Cytotec Di MalangObat Aborsi Malang 0851\7696\3835 Jual Obat Cytotec Di Malang
Obat Aborsi Malang 0851\7696\3835 Jual Obat Cytotec Di Malang
Obat Aborsi Jakarta Wa 085176963835 Apotek Jual Obat Cytotec Di Jakarta
 
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODFRATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
CaitlinCummins3
 
Mental Health Issues of Graduate Students
Mental Health Issues of Graduate StudentsMental Health Issues of Graduate Students
Mental Health Issues of Graduate Students
vineshkumarsajnani12
 
Obat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di Pasuruan
Obat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di PasuruanObat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di Pasuruan
Obat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di Pasuruan
Obat Aborsi Jakarta Wa 085176963835 Apotek Jual Obat Cytotec Di Jakarta
 
Obat Aborsi Surabaya 0851\7696\3835 Jual Obat Cytotec Di Surabaya
Obat Aborsi Surabaya 0851\7696\3835 Jual Obat Cytotec Di SurabayaObat Aborsi Surabaya 0851\7696\3835 Jual Obat Cytotec Di Surabaya
Obat Aborsi Surabaya 0851\7696\3835 Jual Obat Cytotec Di Surabaya
Obat Aborsi Jakarta Wa 085176963835 Apotek Jual Obat Cytotec Di Jakarta
 

Recently uploaded (20)

Obat Aborsi Depok 0851\7696\3835 Jual Obat Cytotec Di Depok
Obat Aborsi Depok 0851\7696\3835 Jual Obat Cytotec Di DepokObat Aborsi Depok 0851\7696\3835 Jual Obat Cytotec Di Depok
Obat Aborsi Depok 0851\7696\3835 Jual Obat Cytotec Di Depok
 
Ital Liptz - all about Itai Liptz. news.
Ital Liptz - all about Itai Liptz. news.Ital Liptz - all about Itai Liptz. news.
Ital Liptz - all about Itai Liptz. news.
 
obat aborsi bandung wa 081336238223 jual obat aborsi cytotec asli di bandung9...
obat aborsi bandung wa 081336238223 jual obat aborsi cytotec asli di bandung9...obat aborsi bandung wa 081336238223 jual obat aborsi cytotec asli di bandung9...
obat aborsi bandung wa 081336238223 jual obat aborsi cytotec asli di bandung9...
 
Obat Aborsi Malang 0851\7696\3835 Jual Obat Cytotec Di Malang
Obat Aborsi Malang 0851\7696\3835 Jual Obat Cytotec Di MalangObat Aborsi Malang 0851\7696\3835 Jual Obat Cytotec Di Malang
Obat Aborsi Malang 0851\7696\3835 Jual Obat Cytotec Di Malang
 
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODFRATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
 
How does a bike-share company navigate speedy success? - Cyclistic
How does a bike-share company navigate speedy success? - CyclisticHow does a bike-share company navigate speedy success? - Cyclistic
How does a bike-share company navigate speedy success? - Cyclistic
 
A DAY IN THE LIFE OF A SALESPERSON .pptx
A DAY IN THE LIFE OF A SALESPERSON .pptxA DAY IN THE LIFE OF A SALESPERSON .pptx
A DAY IN THE LIFE OF A SALESPERSON .pptx
 
Understanding Financial Accounting 3rd Canadian Edition by Christopher D. Bur...
Understanding Financial Accounting 3rd Canadian Edition by Christopher D. Bur...Understanding Financial Accounting 3rd Canadian Edition by Christopher D. Bur...
Understanding Financial Accounting 3rd Canadian Edition by Christopher D. Bur...
 
WheelTug Short Pitch Deck 2024 | Byond Insights
WheelTug Short Pitch Deck 2024 | Byond InsightsWheelTug Short Pitch Deck 2024 | Byond Insights
WheelTug Short Pitch Deck 2024 | Byond Insights
 
What are the differences between an international company, a global company, ...
What are the differences between an international company, a global company, ...What are the differences between an international company, a global company, ...
What are the differences between an international company, a global company, ...
 
Sex service available my WhatsApp number 7374088497
Sex service available my WhatsApp number 7374088497Sex service available my WhatsApp number 7374088497
Sex service available my WhatsApp number 7374088497
 
How Bookkeeping helps you in Cost Saving, Tax Saving and Smooth Business Runn...
How Bookkeeping helps you in Cost Saving, Tax Saving and Smooth Business Runn...How Bookkeeping helps you in Cost Saving, Tax Saving and Smooth Business Runn...
How Bookkeeping helps you in Cost Saving, Tax Saving and Smooth Business Runn...
 
Goal Presentation_NEW EMPLOYEE_NETAPS FOUNDATION.pptx
Goal Presentation_NEW EMPLOYEE_NETAPS FOUNDATION.pptxGoal Presentation_NEW EMPLOYEE_NETAPS FOUNDATION.pptx
Goal Presentation_NEW EMPLOYEE_NETAPS FOUNDATION.pptx
 
Home Furnishings Ecommerce Platform Short Pitch 2024
Home Furnishings Ecommerce Platform Short Pitch 2024Home Furnishings Ecommerce Platform Short Pitch 2024
Home Furnishings Ecommerce Platform Short Pitch 2024
 
Pixar Case Analysis.....................
Pixar Case Analysis.....................Pixar Case Analysis.....................
Pixar Case Analysis.....................
 
Progress Report - Oracle's OCI Analyst Summit 2024
Progress Report - Oracle's OCI Analyst Summit 2024Progress Report - Oracle's OCI Analyst Summit 2024
Progress Report - Oracle's OCI Analyst Summit 2024
 
Mental Health Issues of Graduate Students
Mental Health Issues of Graduate StudentsMental Health Issues of Graduate Students
Mental Health Issues of Graduate Students
 
Obat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di Pasuruan
Obat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di PasuruanObat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di Pasuruan
Obat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di Pasuruan
 
Obat Aborsi Surabaya 0851\7696\3835 Jual Obat Cytotec Di Surabaya
Obat Aborsi Surabaya 0851\7696\3835 Jual Obat Cytotec Di SurabayaObat Aborsi Surabaya 0851\7696\3835 Jual Obat Cytotec Di Surabaya
Obat Aborsi Surabaya 0851\7696\3835 Jual Obat Cytotec Di Surabaya
 
HomeRoots Pitch Deck | Investor Insights | April 2024
HomeRoots Pitch Deck | Investor Insights | April 2024HomeRoots Pitch Deck | Investor Insights | April 2024
HomeRoots Pitch Deck | Investor Insights | April 2024
 

i2ml-chap1-v1-1.ppt

  • 1. INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, 2004 alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml Lecture Slides for
  • 3. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 3 Why “Learn” ?  Machine learning is programming computers to optimize a performance criterion using example data or past experience.  There is no need to “learn” to calculate payroll  Learning is used when:  Human expertise does not exist (navigating on Mars),  Humans are unable to explain their expertise (speech recognition)  Solution changes in time (routing on a computer network)  Solution needs to be adapted to particular cases (user biometrics)
  • 4. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 4 What We Talk About When We Talk About“Learning”  Learning general models from a data of particular examples  Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.  Example in retail: Customer transactions to consumer behavior: People who bought “Da Vinci Code” also bought “The Five People You Meet in Heaven” (www.amazon.com)  Build a model that is a good and useful approximation to the data.
  • 5. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 5 Data Mining  Retail: Market basket analysis, Customer relationship management (CRM)  Finance: Credit scoring, fraud detection  Manufacturing: Optimization, troubleshooting  Medicine: Medical diagnosis  Telecommunications: Quality of service optimization  Bioinformatics: Motifs, alignment  Web mining: Search engines  ...
  • 6. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 6 What is Machine Learning?  Optimize a performance criterion using example data or past experience.  Role of Statistics: Inference from a sample  Role of Computer science: Efficient algorithms to  Solve the optimization problem  Representing and evaluating the model for inference
  • 7. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 7 Applications  Association  Supervised Learning  Classification  Regression  Unsupervised Learning  Reinforcement Learning
  • 8. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 8 Learning Associations  Basket analysis: P (Y | X ) probability that somebody who buys X also buys Y where X and Y are products/services. Example: P ( chips | beer ) = 0.7
  • 9. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 9 Classification  Example: Credit scoring  Differentiating between low-risk and high-risk customers from their income and savings Discriminant: IF income > θ1 AND savings > θ2 THEN low-risk ELSE high-risk
  • 10. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 10 Classification: Applications  Aka Pattern recognition  Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style  Character recognition: Different handwriting styles.  Speech recognition: Temporal dependency.  Use of a dictionary or the syntax of the language.  Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech  Medical diagnosis: From symptoms to illnesses  ...
  • 11. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 11 Face Recognition Training examples of a person Test images AT&T Laboratories, Cambridge UK http://www.uk.research.att.com/facedatabase.html
  • 12. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 12 Regression  Example: Price of a used car  x : car attributes y : price y = g (x | θ ) g ( ) model, θ parameters y = wx+w0
  • 13. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 13 Regression Applications  Navigating a car: Angle of the steering wheel (CMU NavLab)  Kinematics of a robot arm α1= g1(x,y) α2= g2(x,y) α1 α2 (x,y)  Response surface design
  • 14. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 14 Supervised Learning: Uses  Prediction of future cases: Use the rule to predict the output for future inputs  Knowledge extraction: The rule is easy to understand  Compression: The rule is simpler than the data it explains  Outlier detection: Exceptions that are not covered by the rule, e.g., fraud
  • 15. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 15 Unsupervised Learning  Learning “what normally happens”  No output  Clustering: Grouping similar instances  Example applications  Customer segmentation in CRM  Image compression: Color quantization  Bioinformatics: Learning motifs
  • 16. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 16 Reinforcement Learning  Learning a policy: A sequence of outputs  No supervised output but delayed reward  Credit assignment problem  Game playing  Robot in a maze  Multiple agents, partial observability, ...
  • 17. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 17 Resources: Datasets  UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html  UCI KDD Archive: http://kdd.ics.uci.edu/summary.data.application.html  Statlib: http://lib.stat.cmu.edu/  Delve: http://www.cs.utoronto.ca/~delve/
  • 18. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 18 Resources: Journals  Journal of Machine Learning Research www.jmlr.org  Machine Learning  Neural Computation  Neural Networks  IEEE Transactions on Neural Networks  IEEE Transactions on Pattern Analysis and Machine Intelligence  Annals of Statistics  Journal of the American Statistical Association  ...
  • 19. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 19 Resources: Conferences  International Conference on Machine Learning (ICML)  ICML05: http://icml.ais.fraunhofer.de/  European Conference on Machine Learning (ECML)  ECML05: http://ecmlpkdd05.liacc.up.pt/  Neural Information Processing Systems (NIPS)  NIPS05: http://nips.cc/  Uncertainty in Artificial Intelligence (UAI)  UAI05: http://www.cs.toronto.edu/uai2005/  Computational Learning Theory (COLT)  COLT05: http://learningtheory.org/colt2005/  International Joint Conference on Artificial Intelligence (IJCAI)  IJCAI05: http://ijcai05.csd.abdn.ac.uk/  International Conference on Neural Networks (Europe)  ICANN05: http://www.ibspan.waw.pl/ICANN-2005/  ...