HOW TO INTERPRET
HYDRAULIC CONDUCTIVITY DATA
PART I
Leo Rivera, MS
Director of Scientific Outreach, METER Group, Inc.
• Crop production
• Irrigation and drainage
• Hydrology (native and urban)
• Landfill performance
• Stormwatersystem design
• Soil health
It impacts almost everything soil is used for
HYDRAULIC CONDUCTIVITY
WHY DO WE CARE ABOUT IT?
• Soil texture
• Soil structure
• Biopores
• Compaction/bulk density
• Water content/potential
HYDRAULIC CONDUCTIVITY
WHAT FACTORS DETERMINE ITS VALUE?
HYDRAULIC CONDUCTIVITY
SATURATED VS UNSATURATED
Hydraulic Conductivity
A measure of the ability of a porous
medium to transmit water
HYDRAULIC CONDUCTIVITY
THEORY
K
i
so
dz
dh
time
long
at
dz
dh
dz
dh
K
dz
dh
K
dz
dh
K
i
m
g
g
m

→
=
+
=
=
0
1
so
at a long time
For two ponding depths, we can write:
Solving to eliminate l, we get:
SATURO OPERATIONAL THEORY
MULTIPLE PONDED HEAD ANALYSIS
SATURO OPERATIONAL THEORY
MULTIPLE PONDED HEAD ANALYSIS
Head
-25
-20
-15
-10
-5
0
5
10
15
20
0 20 40 60
Pressure,
cm
Time (Min)
Flux
0.00E+00
5.00E-03
1.00E-02
1.50E-02
2.00E-02
2.50E-02
3.00E-02
3.50E-02
0 20 40 60
Flux,
cm
s-1
Time (Min)
DATA DEEP DIVE
SATURO OPERATIONAL THEORY
IDEAL SATURO FLUX DATA
0.00E+00
2.00E-03
4.00E-03
6.00E-03
8.00E-03
1.00E-02
1.20E-02
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101105109113
Flux
(cm/s)
Time (min)
Kfs =
D(i1 -i2 )
D1 - D2
SATURO DATA EXAMPLES
IDEAL PRESSURE HEAD DIFFERENCE?
0.000E+00
2.000E-04
4.000E-04
6.000E-04
8.000E-04
1.000E-03
1.200E-03
1.400E-03
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81
Flux
(cm/s)
Time (min)
Flux (cm/s)
Flux (cm/s) 5 per. Mov. Avg. (Flux (cm/s))
0.00
2.00
4.00
6.00
8.00
10.00
12.00
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81
Pressure
(cm)
Time (min)
Pressure(cm)
Pressure (cm)
Kfs (cm/s) 0.0002506
Kfs Error (cm/s) 0.00003963
SATURO DATA EXAMPLES
DEEPER LIMITING LAYERS
0.000E+00
1.000E-03
2.000E-03
3.000E-03
4.000E-03
5.000E-03
6.000E-03
7.000E-03
8.000E-03
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81
Flux
(cm/s)
Time (min)
Flux (cm/s)
Flux (cm/s) 5 per. Mov. Avg. (Flux (cm/s))
SATURO DATA EXAMPLES
UNSTABLE PORE STRUCTURES
0.000E+00
2.000E-03
4.000E-03
6.000E-03
8.000E-03
1.000E-02
1.200E-02
1.400E-02
1.600E-02
1.800E-02
2.000E-02
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65
Flux
(cm/s)
Time (min)
Flux (cm/s)
Flux (cm/s) 5 per. Mov. Avg. (Flux (cm/s))
SATURO DATA EXAMPLES
UNSTABLE PORE STRUCTURE OR TEMPERATURE?
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74
Flux
(cm/hr)
Time (min)
Flux (cm/hr)
Flux (cm/hr) 5 per. Mov. Avg. (Flux (cm/hr))
SATURO DATA EXAMPLES
HOW CAN I SPEED UP MY MEASUREMENTS?
y = 0.0366e-0.014x
R² = 0.8966
y = 0.0352e-0.019x
R² = 0.9261
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0 10 20 30 40 50 60 70
Infiltration,
cm/s
Time, min
Extrapolating Steady State
Flux high 1.04E-02cm/s
Flux low 6.37E-03cm/s
Pressure high 9.73cm
Pressure low 5.16cm
Hold time 15min
Insertion depth 5cm
Ring radius 7.5cm
D 9.3cm
cm/s cm/hr in/hr
Kfs 8.16E-03 29.4 11.6
CASE STUDIES
• Graduate research
• Developed semi-automateddouble-ring
infiltrometer system
• Made ~200 Kfs measurements
• Evaluate land-use impacts on soil
hydraulic properties
• How soil hydraulic properties change
across landscape positions (catena
effect)
CASE STUDY 1
LAND-USE & LANDSCAPE IMPACTS
Comparing the effects of landscape & land-use on
hydraulic properties of the same soil type
• Improved pasture—grazed
• Conventional tillage (corn/corn/wheat)
• Tall grass native prairie
CASE STUDY 1
LAND-USE & LANDSCAPE IMPACTS
Located in the USDA-ARS Riesel
Watershed in the Blackland prairie
Soils are predominantly mapped as
Houston Black and Heiden Clay
CASE STUDY 1
LAND-USE & LANDSCAPE IMPACTS
CASE STUDY 1
LAND-USE & LANDSCAPE IMPACTS
Tillage vs no-till impacts on the Palouse
• Cook Agronomy Research Farm
How do lab vs field measurements compare
• KSAT lab measurements
• SATURO field measurements
CASE STUDY 2
TILLAGE EFFECTS VS
LAB & FIELD MEASUREMENTS
CASE STUDY 2
TILLAGE EFFECTS VS LAB & FIELD MEASUREMENTS
Accounting for spatial variability
• Representative Elementary Volume (REV) - The smallest volume of soil that can
represent the range of microscopic variations
• For water flow processes, REV is based on soil structure
Time domain or seasonal changes
• Antecedentsoil moisture
• Changes in vegetation
• Land-use impacts
OTHER CONSIDERATIONS
• Optimize measurements for your location and application
• Learn from past mistakes
• Comparing lab vs. field measurements can be challenging
TAKEAWAYS
QUESTIONS
Leo Rivera, MS
Director of Scientific Outreach
METER Group, Inc.
2365 NE Hopkins Ct, Pullman, WA USA 99163
T: +1 509 332 2756
E: leo.rivera@metergroup.com
W: www.metergroup.com

How to Interpret Hydraulic Conductivity Data

  • 2.
    HOW TO INTERPRET HYDRAULICCONDUCTIVITY DATA PART I Leo Rivera, MS Director of Scientific Outreach, METER Group, Inc.
  • 3.
    • Crop production •Irrigation and drainage • Hydrology (native and urban) • Landfill performance • Stormwatersystem design • Soil health It impacts almost everything soil is used for HYDRAULIC CONDUCTIVITY WHY DO WE CARE ABOUT IT?
  • 4.
    • Soil texture •Soil structure • Biopores • Compaction/bulk density • Water content/potential HYDRAULIC CONDUCTIVITY WHAT FACTORS DETERMINE ITS VALUE?
  • 5.
  • 6.
    Hydraulic Conductivity A measureof the ability of a porous medium to transmit water HYDRAULIC CONDUCTIVITY THEORY K i so dz dh time long at dz dh dz dh K dz dh K dz dh K i m g g m  → = + = = 0 1 so at a long time
  • 7.
    For two pondingdepths, we can write: Solving to eliminate l, we get: SATURO OPERATIONAL THEORY MULTIPLE PONDED HEAD ANALYSIS
  • 8.
    SATURO OPERATIONAL THEORY MULTIPLEPONDED HEAD ANALYSIS Head -25 -20 -15 -10 -5 0 5 10 15 20 0 20 40 60 Pressure, cm Time (Min) Flux 0.00E+00 5.00E-03 1.00E-02 1.50E-02 2.00E-02 2.50E-02 3.00E-02 3.50E-02 0 20 40 60 Flux, cm s-1 Time (Min)
  • 9.
  • 10.
    SATURO OPERATIONAL THEORY IDEALSATURO FLUX DATA 0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03 1.00E-02 1.20E-02 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101105109113 Flux (cm/s) Time (min) Kfs = D(i1 -i2 ) D1 - D2
  • 11.
    SATURO DATA EXAMPLES IDEALPRESSURE HEAD DIFFERENCE? 0.000E+00 2.000E-04 4.000E-04 6.000E-04 8.000E-04 1.000E-03 1.200E-03 1.400E-03 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 Flux (cm/s) Time (min) Flux (cm/s) Flux (cm/s) 5 per. Mov. Avg. (Flux (cm/s)) 0.00 2.00 4.00 6.00 8.00 10.00 12.00 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 Pressure (cm) Time (min) Pressure(cm) Pressure (cm) Kfs (cm/s) 0.0002506 Kfs Error (cm/s) 0.00003963
  • 12.
    SATURO DATA EXAMPLES DEEPERLIMITING LAYERS 0.000E+00 1.000E-03 2.000E-03 3.000E-03 4.000E-03 5.000E-03 6.000E-03 7.000E-03 8.000E-03 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 Flux (cm/s) Time (min) Flux (cm/s) Flux (cm/s) 5 per. Mov. Avg. (Flux (cm/s))
  • 13.
    SATURO DATA EXAMPLES UNSTABLEPORE STRUCTURES 0.000E+00 2.000E-03 4.000E-03 6.000E-03 8.000E-03 1.000E-02 1.200E-02 1.400E-02 1.600E-02 1.800E-02 2.000E-02 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 Flux (cm/s) Time (min) Flux (cm/s) Flux (cm/s) 5 per. Mov. Avg. (Flux (cm/s))
  • 14.
    SATURO DATA EXAMPLES UNSTABLEPORE STRUCTURE OR TEMPERATURE? 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 Flux (cm/hr) Time (min) Flux (cm/hr) Flux (cm/hr) 5 per. Mov. Avg. (Flux (cm/hr))
  • 15.
    SATURO DATA EXAMPLES HOWCAN I SPEED UP MY MEASUREMENTS? y = 0.0366e-0.014x R² = 0.8966 y = 0.0352e-0.019x R² = 0.9261 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0 10 20 30 40 50 60 70 Infiltration, cm/s Time, min Extrapolating Steady State Flux high 1.04E-02cm/s Flux low 6.37E-03cm/s Pressure high 9.73cm Pressure low 5.16cm Hold time 15min Insertion depth 5cm Ring radius 7.5cm D 9.3cm cm/s cm/hr in/hr Kfs 8.16E-03 29.4 11.6
  • 16.
  • 17.
    • Graduate research •Developed semi-automateddouble-ring infiltrometer system • Made ~200 Kfs measurements • Evaluate land-use impacts on soil hydraulic properties • How soil hydraulic properties change across landscape positions (catena effect) CASE STUDY 1 LAND-USE & LANDSCAPE IMPACTS
  • 18.
    Comparing the effectsof landscape & land-use on hydraulic properties of the same soil type • Improved pasture—grazed • Conventional tillage (corn/corn/wheat) • Tall grass native prairie CASE STUDY 1 LAND-USE & LANDSCAPE IMPACTS
  • 19.
    Located in theUSDA-ARS Riesel Watershed in the Blackland prairie Soils are predominantly mapped as Houston Black and Heiden Clay CASE STUDY 1 LAND-USE & LANDSCAPE IMPACTS
  • 20.
    CASE STUDY 1 LAND-USE& LANDSCAPE IMPACTS
  • 21.
    Tillage vs no-tillimpacts on the Palouse • Cook Agronomy Research Farm How do lab vs field measurements compare • KSAT lab measurements • SATURO field measurements CASE STUDY 2 TILLAGE EFFECTS VS LAB & FIELD MEASUREMENTS
  • 22.
    CASE STUDY 2 TILLAGEEFFECTS VS LAB & FIELD MEASUREMENTS
  • 23.
    Accounting for spatialvariability • Representative Elementary Volume (REV) - The smallest volume of soil that can represent the range of microscopic variations • For water flow processes, REV is based on soil structure Time domain or seasonal changes • Antecedentsoil moisture • Changes in vegetation • Land-use impacts OTHER CONSIDERATIONS
  • 24.
    • Optimize measurementsfor your location and application • Learn from past mistakes • Comparing lab vs. field measurements can be challenging TAKEAWAYS
  • 25.
    QUESTIONS Leo Rivera, MS Directorof Scientific Outreach METER Group, Inc. 2365 NE Hopkins Ct, Pullman, WA USA 99163 T: +1 509 332 2756 E: leo.rivera@metergroup.com W: www.metergroup.com