SlideShare a Scribd company logo
1 of 9
History of mobile phones
The history of mobile phones charts improvements to communication devices which connect wirelessly
to the public switched telephone network. The transmission of speech by radio has a long and varied
history going back to Reginald Fessenden's invention and shore-to-ship demonstration of radio
telephony.
Before the devices that are now referred to as a mobile phone existed, there were some precursors. The
development of mobile telephony began in 1918 with tests of wireless telephony on military trains
between Berlin and Zossen. In 1924, public trials started with telephone connection on trains between
Berlin and Hamburg.[1] In 1925, the company Zugtelephonie A. G. was founded to supply train
telephony equipment[1] and in 1926 telephone service in trains of the Deutsche Reichsbahn and the
German mail service on the route between Hamburg and Berlin was approved and offered to 1st class
travelers.
In 1926 the artist Karl Arnold created a visionary cartoon about the use of mobile phones in the street,
in the picture „wireless telephony", published in the German satirical magazine Simplicissimus.
The portrayal of a utopia of mobile phone in literature dates back to the year 1931. It is found in Erich
Kästner's children's book The 35th of May, or Conrad's Ride to the South Seas:
“ A gentleman who rode along the sidewalk in front of them, suddenly stepped off the conveyor
belt, pulled a phone from his coat pocket, spoke a number into it and shouted: "Gertrude, listen, I'll be
an hour late for lunch because I want to go to the laboratory. Goodbye, sweetheart!" Then he put his
pocket phone away again, stepped back on the conveyor belt, started reading a book... ”
—Erich Kästner
The Second World War made military use of radio telephony links. Hand-held radio transceivers have
been available since the 1940s. Mobile telephones for automobiles became available from some
telephone companies in the 1940s. Early devices were bulky and consumed high power and the network
supported only a few simultaneous conversations. Modern cellular networks allow automatic and
pervasive use of mobile phones for voice and data communications.
In the United States, engineers from Bell Labs began work on a system to allow mobile users to place
and receive telephone calls from automobiles, leading to the inauguration of mobile service on 17 June
1946 in St. Louis, Missouri. Shortly after, AT&T offered Mobile Telephone Service. A wide range of
mostly incompatible mobile telephone services offered limited coverage area and only a few available
channels in urban areas. The introduction of cellular technology, which allowed re-use of frequencies
many times in small adjacent areas covered by relatively low powered transmitters, made widespread
adoption of mobile telephones economically feasible.
In the USSR, Leonid Kupriyanovich, engineer from Moscow, in 1957-1961 developed and presented a
number of experimental models of handheld mobile phone. The weight of a latest model, presented in
1961, was only 70 g and it freely took place on a palm. However in the USSR the decision at first to
develop the system of automobile "Altai" phone was made.
The advances in mobile telephony can be traced in successive generations from the early "0G" services
like MTS and its successor Improved Mobile Telephone Service, to first generation (1G) analog cellular
network, second generation (2G) digital cellular networks, third generation (3G) broadband data
services to the current state of the art, fourth generation (4G) native-IP networks.
Motorola was the first company to produce a handheld mobile phone. On 3 April 1973 Martin Cooper, a
Motorola engineer and executive, made the first mobile telephone call from handheld subscriber
equipment in front of reporters, placing a call to Dr. Joel S. Engel of Bell Labs.[4][5] The prototype
handheld phone used by Dr. Martin Cooper weighed 1.1 kg and measured 23 cm long, 13 cm deep and
4.45 cm wide. The prototype offered a talk time of just 30 minutes and took 10 hours to re-charge.[6]
Cooper has stated his vision for the handheld device was inspired by Captain James T. Kirk using his
Communicator on the television show Star Trek.[7]
John F. Mitchell,[8][9][10] Motorola's chief of portable communication products and Martin Cooper's
boss in 1973, played a key role in advancing the development of handheld mobile telephone equipment.
Mitchell successfully pushed Motorola to develop wireless communication products that would be small
enough to use anywhere and participated in the design of the cellular phone.[11][12]
MTS[edit]
In 1947 AT&T commercialized Mobile Telephone Service. From its start in St. Louis in 1946, AT&T then
introduced Mobile Telephone Service to one hundred towns and highway corridors by 1948. Mobile
Telephone Service was a rarity with only 5,000 customers placing about 30 000 calls each week. Calls
were set up manually by an operator and the user had to depress a button on the handset to talk and
release the button to listen. The call subscriber equipment weighed about 36 kg.[13]
Subscriber growth and revenue generation were hampered by the constraints of the technology.
Because only three radio channels were available, only three customers in any given city could make
mobile telephone calls at one time.[14] Mobile Telephone Service was expensive, costing 15 USD per
month, plus 0.30 to 0.40 USD per local call, equivalent to about 176 USD per month and 3.50 to 4.75 per
call in 2012 USD.[13]
IMTS[edit]
AT&T introduced the first major improvement to mobile telephony in 1965, giving the improved service
the obvious name of Improved Mobile Telephone Service. IMTS used additional radio channels, allowing
more simultaneous calls in a given geographic area, introduced customer dialing, eliminating manual call
set by an operator, and reduced the size and weight of the subscriber equipment.[13]
Despite the capacity improvement offered by IMTS, demand outstripped capacity. In agreement with
state regulatory agencies, AT&T limited the service to just 40 000 customers system wide. In New York,
NY, for example, 2 000 customers shared just 12 radio channels and typically had to wait 30 minutes to
place a call.[13]
Radio Common Carrier[edit]
A mobile radio telephone
Radio Common Carrier or RCC was a service introduced in the 1960s by independent telephone
companies to compete against AT&T's IMTS. RCC systems used paired UHF 454/459 MHz and VHF
152/158 MHz frequencies near those used by IMTS. RCC based services were provided until the 1980s
when cellular AMPS systems made RCC equipment obsolete.
Some RCC systems were designed to allow customers of adjacent carriers to use their facilities, but
equipment used by RCCs did not allow the equivalent of modern "roaming" because technical standards
were not uniform. For example, the phone of an Omaha, Nebraska–based RCC service would not be
likely to work in Phoenix, Arizona. Roaming was not encouraged, in part, because there was no
centralized industry billing database for RCCs. Signaling formats were not standardized. For example,
some systems used two-tone sequential paging to alert a mobile of an incoming call. Other systems used
DTMF. Some used Secode 2805, which transmitted an interrupted 2805 Hz tone (similar to IMTS
signaling) to alert mobiles of an offered call. Some radio equipment used with RCC systems was half-
duplex, push-to-talk LOMO equipment such as Motorola hand-helds or RCA 700-series conventional
two-way radios. Other vehicular equipment had telephone handsets, rotary or pushbutton dials, and
operated full duplex like a conventional wired telephone. A few users had full-duplex briefcase
telephones (radically advanced for their day).
At the end of RCC's existence, industry associations were working on a technical standard that would
have allowed roaming, and some mobile users had multiple decoders to enable operation with more
than one of the common signaling formats (600/1500, 2805, and Reach). Manual operation was often a
fallback for RCC roamers.
Other services[edit]
In 1969 Penn Central Railroad equipped commuter trains along the 360 km New York-Washington route
with special pay phones that allowed passengers to place telephone calls while the train was moving.
The system re-used six frequencies in the 450 MHz band in nine sites.[14]
European mobile radio networks[edit]
This section needs additional citations for verification. Please help improve this article by adding
citations to reliable sources. Unsourced material may be challenged and removed. (April 2012)
In Europe, several mutually incompatible mobile radio services were developed. West Germany had a
network called A-Netz launched in 1952 as the country's first public commercial mobile phone network.
In 1972 this was displaced by B-Netz which connected calls automatically. In 1966 Norway had a system
called OLT which was manually controlled.
Cellular concepts[edit]
A multi-directional, cellular network antenna array
In December 1947, Douglas H. Ring and W. Rae Young, Bell Labs engineers, proposed hexagonal cells for
mobile phones in vehicles.[15] At this stage, the technology to implement these ideas did not exist, nor
had the frequencies been allocated. Two decades would pass before Richard H. Frenkiel, Joel S. Engel
and Philip T. Porter of Bell Labs expanded the early proposals into a much more detailed system plan. It
was Porter who first proposed that the cell towers use the now-familiar directional antennas to reduce
interference and increase channel reuse (see picture at right) [16] Porter also invented the dial-then-
send method used by all cell phones to reduce wasted channel time.
In all these early examples, a mobile phone had to stay within the coverage area serviced by one base
station throughout the phone call, i.e. there was no continuity of service as the phones moved through
several cell areas. The concepts of frequency reuse and handoff, as well as a number of other concepts
that formed the basis of modern cell phone technology, were described in the late 1960s, in papers by
Frenkiel and Porter. In 1970 Amos E. Joel, Jr., a Bell Labs engineer,[17] invented a "three-sided trunk
circuit" to aid in the "call handoff" process from one cell to another. His patent contained an early
description of the Bell Labs cellular concept, but as switching systems became faster, such a circuit
became unnecessary and was never implemented in a system.
A cellular telephone switching plan was described by Fluhr and Nussbaum in 1973,[18] and a cellular
telephone data signaling system was described in 1977 by Hachenburg et al.[19]
Emergence of automated services[edit]
The first fully automated mobile phone system for vehicles was launched in Sweden in 1956. Named
MTA (Mobile Telephone system A), it allowed calls to be made and received in the car using a rotary
dial. The car phone could also be paged. Calls from the car were direct dial, whereas incoming calls
required an operator to determine which base station the phone was currently at. It was developed by
StureLaurén and other engineers at Televerket network operator. Ericsson provided the switchboard
while SvenskaRadioaktiebolaget (SRA) and Marconi provided the telephones and base station
equipment. MTA phones consisted of vacuum tubes and relays, and weighed 40 kg. In 1962, an
upgraded version called Mobile System B (MTB) was introduced. This was a push-button telephone, and
used transistors and DTMF signaling to improve its operational reliability. In 1971 the MTD version was
launched, opening for several different brands of equipment and gaining commercial success.[20][21]
The network remained open until 1983 and still had 600 customers when it closed.
In 1958 development began on a similar system for motorists in the USSR.[22] The "Altay" national civil
mobile phone service was based on Soviet MRT-1327 standard. The main developers of the Altay system
were the Voronezh Science Research Institute of Communications (VNIIS) and the State Specialized
Project Institute (GSPI). In 1963 the service started in Moscow, and by 1970 was deployed in 30 cities
across the USSR. Versions of the Altay system are still in use today as a trunking system in some parts of
Russia.
In 1959 a private telephone company located in Brewster, Kansas, USA, the S&T Telephone Company,
(still in business today) with the use of Motorola Radio Telephone equipment and a private tower
facility, offered to the public mobile telephone services in that local area of NW Kansas. This system was
a direct dial up service through their local switchboard, and was installed in many private vehicles
including grain combines, trucks, and automobiles. For some as yet unknown reason, the system, after
being placed online and operated for a very brief time period, was shut down. The management of the
company was immediately changed, and the fully operable system and related equipment was
immediately dismantled in early 1960, not to be seen again.[citation needed]
In 1966, Bulgaria presented the pocket mobile automatic phone RAT-0,5 combined with a base station
RATZ-10 (RATC-10) on Interorgtechnika-66 international exhibition. One base station, connected to one
telephone wire line, could serve up to six customers.[citation needed]
One of the first successful public commercial mobile phone networks was the ARP network in Finland,
launched in 1971. Posthumously, ARP is sometimes viewed as a zero generation (0G) cellular network,
being slightly above previous proprietary and limited coverage networks.[citation needed]
Handheld mobile phone[edit]
Prior to 1973, mobile telephony was limited to phones installed in cars and other vehicles.[17] Motorola
was the first company to produce a handheld mobile phone. On 3 April 1973 when Martin Cooper, a
Motorola researcher and executive, made the first mobile telephone call from handheld subscriber
equipment, placing a call to Dr. Joel S. Engel of Bell Labs.[4][5] The prototype handheld phone used by
Dr. Cooper weighed 1.1 kg and measured 23 cm long, 13 cm deep and 4.45 cm wide. The prototype
offered a talk time of just 30 minutes and took 10 hours to re-charge.[6]
John F. Mitchell,[8][9][10] Motorola's chief of portable communication products and Cooper's boss in
1973, played a key role in advancing the development of handheld mobile telephone equipment.
Mitchell successfully pushed Motorola to develop wireless communication products that would be small
enough to use anywhere and participated in the design of the cellular phone.[11][12]
Analog cellular networks – 1G[edit]
Main article: 1G
The first analog cellular system widely deployed in North America was the Advanced Mobile Phone
System (AMPS).[23] It was commercially introduced in the Americas in 1978, Israel in 1986, and Australia
in 1987.
AMPS was a pioneering technology that helped drive mass market usage of cellular technology, but it
had several serious issues by modern standards. It was unencrypted and easily vulnerable to
eavesdropping via a scanner; it was susceptible to cell phone "cloning;" and it used a Frequency-division
multiple access (FDMA) scheme and required significant amounts of wireless spectrum to support. Many
of the iconic early commercial cell phones such as the Motorola DynaTAC Analog AMPS were eventually
superseded by Digital AMPS (D-AMPS) in 1990, and AMPS service was shut down by most North
American carriers by 2008.
Digital cellular networks – 2G[edit]
Two 1991 GSM mobile phones with several AC adapters
In the 1990s, the 'second generation' mobile phone systems emerged. Two systems competed for
supremacy in the global market: the European developed GSM standard and the U.S. developed CDMA
standard. These differed from the previous generation by using digital instead of analog transmission,
and also fast out-of-band phone-to-network signaling. The rise in mobile phone usage as a result of 2G
was explosive and this era also saw the advent of prepaid mobile phones.
In 1991 the first GSM network (Radiolinja) launched in Finland. In general the frequencies used by 2G
systems in Europe were higher than those in America, though with some overlap. For example, the 900
MHz frequency range was used for both 1G and 2G systems in Europe, so the 1G systems were rapidly
closed down to make space for the 2G systems. In America the IS-54 standard was deployed in the same
band as AMPS and displaced some of the existing analog channels.
In 1993, IBM Simon was introduced. This was possibly the world's first smartphone. It was a mobile
phone, pager, fax machine, and PDA all rolled into one. It included a calendar, address book, clock,
calculator, notepad, email, and a touchscreen with a QWERTY keyboard.[24] The IBM Simon had a stylus
you used to tap the touch screen with. It featured predictive typing that would guess the next characters
as you tapped. It had apps, or at least a way to deliver more features by plugging a PCMCIA 1.8 MB
memory card into the phone.[25]
Coinciding with the introduction of 2G systems was a trend away from the larger "brick" phones toward
tiny 100 – 200 gram hand-held devices. This change was possible not only through technological
improvements such as more advanced batteries and more energy-efficient electronics, but also because
of the higher density of cell sites to accommodate increasing usage. The latter meant that the average
distance transmission from phone to the base station shortened, leading to increased battery life whilst
on the move.
Personal Handy-phone System mobiles and modems used in Japan around 1997–2003
The second generation introduced a new variant of communication called SMS or text messaging. It was
initially available only on GSM networks but spread eventually on all digital networks. The first machine-
generated SMS message was sent in the UK on 3 December 1992 followed in 1993 by the first person-to-
person SMS sent in Finland. The advent of prepaid services in the late 1990s soon made SMS the
communication method of choice amongst the young, a trend which spread across all ages.
2G also introduced the ability to access media content on mobile phones. In 1998 the first downloadable
content sold to mobile phones was the ring tone, launched by Finland's Radiolinja (now Elisa).
Advertising on the mobile phone first appeared in Finland when a free daily SMS news headline service
was launched in 2000, sponsored by advertising.
Mobile payments were trialed in 1998 in Finland and Sweden where a mobile phone was used to pay for
a Coca Cola vending machine and car parking. Commercial launches followed in 1999 in Norway. The
first commercial payment system to mimic banks and credit cards was launched in the Philippines in
1999 simultaneously by mobile operators Globe and Smart.
The first full internet service on mobile phones was introduced by NTT DoCoMo in Japan in 1999.
Mobile broadband data – 3G[edit]
Main article: 3G
As the use of 2G phones became more widespread and people began to utilize mobile phones in their
daily lives, it became clear that demand for data (such as access to browse the internet) was growing.
Furthermore, experience from fixed broadband services showed there would also be an ever increasing
demand for greater data speeds. The 2G technology was nowhere near up to the job, so the industry
began to work on the next generation of technology known as 3G. The main technological difference
that distinguishes 3G technology from 2G technology is the use of packet switching rather than circuit
switching for data transmission.[26] In addition, the standardization process focused on requirements
more than technology (2 Mbit/s maximum data rate indoors, 384 kbit/s outdoors, for example).
Inevitably this led to many competing standards with different contenders pushing their own
technologies, and the vision of a single unified worldwide standard looked far from reality. The standard
2G CDMA networks became 3G compliant with the adoption of Revision A to EV-DO, which made
several additions to the protocol while retaining backwards compatibility:
Introduction of several new forward link data rates that increase the maximum burst rate from 2.45
Mbit/s to 3.1 Mbit/s
Protocols that would decrease connection establishment time
Ability for more than one mobile to share the same time slot
Introduction of QoS flags
All these were put in place to allow for low latency, low bit rate communications such as VoIP.[27]
The first pre-commercial trial network with 3G was launched by NTT DoCoMo in Japan in the Tokyo
region in May 2001. NTT DoCoMo launched the first commercial 3G network on 1 October 2001, using
the WCDMA technology. In 2002 the first 3G networks on the rival CDMA2000 1xEV-DO technology
were launched by SK Telecom and KTF in South Korea, and Monet in the USA. Monet has since gone
bankrupt. By the end of 2002, the second WCDMA network was launched in Japan by Vodafone KK (now
Softbank). European launches of 3G were in Italy and the UK by the Three/Hutchison group, on WCDMA.
2003 saw a further 8 commercial launches of 3G, six more on WCDMA and two more on the EV-DO
standard.
During the development of 3G systems, 2.5G systems such as CDMA2000 1x and GPRS were developed
as extensions to existing 2G networks. These provide some of the features of 3G without fulfilling the
promised high data rates or full range of multimedia services. CDMA2000-1X delivers theoretical
maximum data speeds of up to 307 kbit/s. Just beyond these is the EDGE system which in theory covers
the requirements for 3G system, but is so narrowly above these that any practical system would be sure
to fall short.
The high connection speeds of 3G technology enabled a transformation in the industry: for the first
time, media streaming of radio (and even television) content to 3G handsets became possible,[28] with
companies such as RealNetworks[29] and Disney[30] among the early pioneers in this type of offering.
In the mid-2000s (decade), an evolution of 3G technology began to be implemented, namely High-Speed
Downlink Packet Access (HSDPA). It is an enhanced 3G (third generation) mobile telephony
communications protocol in the High-Speed Packet Access (HSPA) family, also coined 3.5G, 3G+ or turbo
3G, which allows networks based on Universal Mobile Telecommunications System (UMTS) to have
higher data transfer speeds and capacity. Current HSDPA deployments support down-link speeds of 1.8,
3.6, 7.2 and 14.0 Mbit/s. Further speed increases are available with HSPA+, which provides speeds of up
to 42 Mbit/s downlink and 84 Mbit/s with Release 9 of the 3GPP standards.
By the end of 2007, there were 295 million subscribers on 3G networks worldwide, which reflected 9%
of the total worldwide subscriber base. About two thirds of these were on the WCDMA standard and
one third on the EV-DO standard. The 3G telecoms services generated over 120 Billion dollars of
revenues during 2007 and at many markets the majority of new phones activated were 3G phones. In
Japan and South Korea the market no longer supplies phones of the second generation.
Although mobile phones had long had the ability to access data networks such as the Internet, it was not
until the widespread availability of good quality 3G coverage in the mid-2000s (decade) that specialized
devices appeared to access the mobile internet. The first such devices, known as "dongles", plugged
directly into a computer through the USB port. Another new class of device appeared subsequently, the
so-called "compact wireless router" such as the Novatel MiFi, which makes 3G internet connectivity
available to multiple computers simultaneously over Wi-Fi, rather than just to a single computer via a
USB plug-in.
Such devices became especially popular for use with laptop computers due to the added portability they
bestow. Consequently, some computer manufacturers started to embed the mobile data function
directly into the laptop so a dongle or MiFi wasn't needed. Instead, the SIM card could be inserted
directly into the device itself to access the mobile data services. Such 3G-capable laptops became
commonly known as "netbooks". Other types of data-aware devices followed in the netbook's footsteps.
By the beginning of 2010, E-readers, such as the Amazon Kindle and the Nook from Barnes & Noble, had
already become available with embedded wireless internet, and Apple Computer had announced plans
for embedded wireless internet on its iPad tablet devices beginning that Fall.
Native IP networks – 4G[edit]
Main article: 4G
By 2009, it had become clear that, at some point, 3G networks would be overwhelmed by the growth of
bandwidth-intensive applications like streaming media.[31] Consequently, the industry began looking to
data-optimized 4th-generation technologies, with the promise of speed improvements up to 10-fold
over existing 3G technologies. The first two commercially available technologies billed as 4G were the
WiMAX standard (offered in the U.S. by Sprint) and the LTE standard, first offered in Scandinavia by
TeliaSonera.
One of the main ways in which 4G differed technologically from 3G was in its elimination of circuit
switching, instead employing an all-IP network. Thus, 4G ushered in a treatment of voice calls just like
any other type of streaming audio media, utilizing packet switching over internet, LAN or WAN networks
via VoIP.[32]
Satellite mobile[edit]
Main article: Satellite phone
Earth-orbiting satellites can cover remote areas out of reach of wired networks or where construction of
a cellular network is uneconomic. The Inmarsat satellite telephone system, originally developed in 1979
for safety of life at sea, is now also useful for areas out of reach of landline, conventional cellular, or
marine VHF radio stations. In 1998 the Iridium satellite system was set up, and although the initial
operating company went bankrupt due to high initial expenses, the service is available today.

More Related Content

What's hot

4 Ibahrine Radio The First Broadcast Medium
4 Ibahrine Radio The First Broadcast Medium4 Ibahrine Radio The First Broadcast Medium
4 Ibahrine Radio The First Broadcast Mediumibahrine
 
Radio & Culture
Radio & CultureRadio & Culture
Radio & Culturesnehasashi
 
Timeline of the development of radio and telecommunications
Timeline of the development of radio and telecommunicationsTimeline of the development of radio and telecommunications
Timeline of the development of radio and telecommunicationsJose Emmanuel Maningas
 
Telecommunications evolution timeline
Telecommunications evolution timelineTelecommunications evolution timeline
Telecommunications evolution timelinefredrcjr
 
The Broadcasters - Ch 4 and 5
The Broadcasters - Ch 4 and 5 The Broadcasters - Ch 4 and 5
The Broadcasters - Ch 4 and 5 Jill Falk
 
Telephone Influence on Society
Telephone Influence on SocietyTelephone Influence on Society
Telephone Influence on SocietyJess Miedel
 
History of radio
History of radioHistory of radio
History of radioshimabegum
 
early radio history
early radio historyearly radio history
early radio historymike05
 
Sustainably Connecting a Global Community
Sustainably Connecting a Global CommunitySustainably Connecting a Global Community
Sustainably Connecting a Global CommunityArm
 
History & Role of Technology in Business Communication.
History & Role of Technology in Business Communication.History & Role of Technology in Business Communication.
History & Role of Technology in Business Communication.Junaid Inam
 
History of Early Radio Technology
History of Early Radio TechnologyHistory of Early Radio Technology
History of Early Radio Technologymrsbauerart
 
10 Facts About the Telecommunications Industry, from Richard Horowitz
10 Facts About the Telecommunications Industry, from Richard Horowitz10 Facts About the Telecommunications Industry, from Richard Horowitz
10 Facts About the Telecommunications Industry, from Richard HorowitzRichard Horowitz
 
Communication media television
Communication media televisionCommunication media television
Communication media televisionKristen Tsai
 
Mobile Television | Historical Timeline
Mobile Television | Historical TimelineMobile Television | Historical Timeline
Mobile Television | Historical Timelinelreese23
 
History Of Communicate Part 1
History Of Communicate Part 1History Of Communicate Part 1
History Of Communicate Part 1karalee ham
 

What's hot (20)

4 Ibahrine Radio The First Broadcast Medium
4 Ibahrine Radio The First Broadcast Medium4 Ibahrine Radio The First Broadcast Medium
4 Ibahrine Radio The First Broadcast Medium
 
Radio & Culture
Radio & CultureRadio & Culture
Radio & Culture
 
Timeline of the development of radio and telecommunications
Timeline of the development of radio and telecommunicationsTimeline of the development of radio and telecommunications
Timeline of the development of radio and telecommunications
 
The history of radio
The history of radioThe history of radio
The history of radio
 
Revista diegom
Revista diegomRevista diegom
Revista diegom
 
Chapter 6 Television and Cable
Chapter 6  Television and CableChapter 6  Television and Cable
Chapter 6 Television and Cable
 
Telecommunications evolution timeline
Telecommunications evolution timelineTelecommunications evolution timeline
Telecommunications evolution timeline
 
Radio
RadioRadio
Radio
 
The Broadcasters - Ch 4 and 5
The Broadcasters - Ch 4 and 5 The Broadcasters - Ch 4 and 5
The Broadcasters - Ch 4 and 5
 
Telephone Influence on Society
Telephone Influence on SocietyTelephone Influence on Society
Telephone Influence on Society
 
History of radio
History of radioHistory of radio
History of radio
 
early radio history
early radio historyearly radio history
early radio history
 
Sustainably Connecting a Global Community
Sustainably Connecting a Global CommunitySustainably Connecting a Global Community
Sustainably Connecting a Global Community
 
History & Role of Technology in Business Communication.
History & Role of Technology in Business Communication.History & Role of Technology in Business Communication.
History & Role of Technology in Business Communication.
 
Broadcast History
Broadcast HistoryBroadcast History
Broadcast History
 
History of Early Radio Technology
History of Early Radio TechnologyHistory of Early Radio Technology
History of Early Radio Technology
 
10 Facts About the Telecommunications Industry, from Richard Horowitz
10 Facts About the Telecommunications Industry, from Richard Horowitz10 Facts About the Telecommunications Industry, from Richard Horowitz
10 Facts About the Telecommunications Industry, from Richard Horowitz
 
Communication media television
Communication media televisionCommunication media television
Communication media television
 
Mobile Television | Historical Timeline
Mobile Television | Historical TimelineMobile Television | Historical Timeline
Mobile Television | Historical Timeline
 
History Of Communicate Part 1
History Of Communicate Part 1History Of Communicate Part 1
History Of Communicate Part 1
 

Viewers also liked

Group 5
Group 5Group 5
Group 5Xylar
 
Historyofthecellphone 101216214850-phpapp02
Historyofthecellphone 101216214850-phpapp02Historyofthecellphone 101216214850-phpapp02
Historyofthecellphone 101216214850-phpapp02Xylar
 
AWelch_SampleRealEstateInvestmentProject
AWelch_SampleRealEstateInvestmentProjectAWelch_SampleRealEstateInvestmentProject
AWelch_SampleRealEstateInvestmentProjectAnthony Welch
 
Monopolistic competition and oligopoly
Monopolistic competition and oligopoly  Monopolistic competition and oligopoly
Monopolistic competition and oligopoly Gaurav Singh
 
Desarrollo motor mielinización
Desarrollo motor   mielinizaciónDesarrollo motor   mielinización
Desarrollo motor mielinizaciónandreinabq
 
Presentation on selective mutism
Presentation on selective mutismPresentation on selective mutism
Presentation on selective mutismGaurav Singh
 

Viewers also liked (11)

Group 5
Group 5Group 5
Group 5
 
Historyofthecellphone 101216214850-phpapp02
Historyofthecellphone 101216214850-phpapp02Historyofthecellphone 101216214850-phpapp02
Historyofthecellphone 101216214850-phpapp02
 
EL COMPUTADOR
EL COMPUTADOREL COMPUTADOR
EL COMPUTADOR
 
AWelch_SampleRealEstateInvestmentProject
AWelch_SampleRealEstateInvestmentProjectAWelch_SampleRealEstateInvestmentProject
AWelch_SampleRealEstateInvestmentProject
 
Afm assignment
Afm assignmentAfm assignment
Afm assignment
 
Game rental
Game rentalGame rental
Game rental
 
EL COMPUTADOR
EL COMPUTADOREL COMPUTADOR
EL COMPUTADOR
 
Media Komunikasi
Media KomunikasiMedia Komunikasi
Media Komunikasi
 
Monopolistic competition and oligopoly
Monopolistic competition and oligopoly  Monopolistic competition and oligopoly
Monopolistic competition and oligopoly
 
Desarrollo motor mielinización
Desarrollo motor   mielinizaciónDesarrollo motor   mielinización
Desarrollo motor mielinización
 
Presentation on selective mutism
Presentation on selective mutismPresentation on selective mutism
Presentation on selective mutism
 

Similar to History of mobile phones

Wireless communications
Wireless communicationsWireless communications
Wireless communicationsNaaf Get
 
The Development of Cellular Mobile Communication System
The Development of Cellular Mobile Communication SystemThe Development of Cellular Mobile Communication System
The Development of Cellular Mobile Communication SystemYusuf Kurniawan
 
WirelessCommunicationsbyTheodoreS.Rappaportz-lib.org.pdf
WirelessCommunicationsbyTheodoreS.Rappaportz-lib.org.pdfWirelessCommunicationsbyTheodoreS.Rappaportz-lib.org.pdf
WirelessCommunicationsbyTheodoreS.Rappaportz-lib.org.pdfelaelango
 
Chaitali Deb - Project - 2013
Chaitali Deb - Project - 2013Chaitali Deb - Project - 2013
Chaitali Deb - Project - 2013Chaitali Deb
 
History of mobile
History of mobileHistory of mobile
History of mobileGaditek
 
Mobile Phone History
Mobile Phone HistoryMobile Phone History
Mobile Phone HistoryPatricia
 
Reading ISBN ( for citations)Telecommunications and Data Communi.docx
Reading ISBN ( for citations)Telecommunications and Data Communi.docxReading ISBN ( for citations)Telecommunications and Data Communi.docx
Reading ISBN ( for citations)Telecommunications and Data Communi.docxsodhi3
 
The Evolution Of Cell Phones
The Evolution Of Cell PhonesThe Evolution Of Cell Phones
The Evolution Of Cell PhonesTobias Frieder
 
History of mobile phones
History of mobile phonesHistory of mobile phones
History of mobile phonesrajiv88
 
Cellular network History
Cellular network HistoryCellular network History
Cellular network HistoryKumar Gaurav
 
Evolution of cell phone
Evolution of cell phoneEvolution of cell phone
Evolution of cell phone000kmi000
 
Details on Electronics and communication
Details on Electronics and communicationDetails on Electronics and communication
Details on Electronics and communicationKumaran Vinayagam
 
Introduction & history of mobile computing
Introduction & history of mobile computingIntroduction & history of mobile computing
Introduction & history of mobile computingDavid Livingston J
 
Innovation in telecommunication
Innovation in telecommunicationInnovation in telecommunication
Innovation in telecommunicationbrahmaredy
 
reserch on Indian telecom in dusrty
reserch on Indian telecom in dusrtyreserch on Indian telecom in dusrty
reserch on Indian telecom in dusrtyManish Diwale
 

Similar to History of mobile phones (20)

Wireless communications
Wireless communicationsWireless communications
Wireless communications
 
The Development of Cellular Mobile Communication System
The Development of Cellular Mobile Communication SystemThe Development of Cellular Mobile Communication System
The Development of Cellular Mobile Communication System
 
WirelessCommunicationsbyTheodoreS.Rappaportz-lib.org.pdf
WirelessCommunicationsbyTheodoreS.Rappaportz-lib.org.pdfWirelessCommunicationsbyTheodoreS.Rappaportz-lib.org.pdf
WirelessCommunicationsbyTheodoreS.Rappaportz-lib.org.pdf
 
Chaitali Deb - Project - 2013
Chaitali Deb - Project - 2013Chaitali Deb - Project - 2013
Chaitali Deb - Project - 2013
 
History of mobile
History of mobileHistory of mobile
History of mobile
 
Mobile Phone History
Mobile Phone HistoryMobile Phone History
Mobile Phone History
 
Reading ISBN ( for citations)Telecommunications and Data Communi.docx
Reading ISBN ( for citations)Telecommunications and Data Communi.docxReading ISBN ( for citations)Telecommunications and Data Communi.docx
Reading ISBN ( for citations)Telecommunications and Data Communi.docx
 
The Evolution Of Cell Phones
The Evolution Of Cell PhonesThe Evolution Of Cell Phones
The Evolution Of Cell Phones
 
History of mobile phones
History of mobile phonesHistory of mobile phones
History of mobile phones
 
Short history
Short historyShort history
Short history
 
Cellular network History
Cellular network HistoryCellular network History
Cellular network History
 
Cellular bani
Cellular baniCellular bani
Cellular bani
 
Wireless telecom Presentation 殺
Wireless telecom Presentation 殺Wireless telecom Presentation 殺
Wireless telecom Presentation 殺
 
Evolution of cell phone
Evolution of cell phoneEvolution of cell phone
Evolution of cell phone
 
Details on Electronics and communication
Details on Electronics and communicationDetails on Electronics and communication
Details on Electronics and communication
 
Introduction & history of mobile computing
Introduction & history of mobile computingIntroduction & history of mobile computing
Introduction & history of mobile computing
 
Innovation in telecommunication
Innovation in telecommunicationInnovation in telecommunication
Innovation in telecommunication
 
Gsm ercson01
Gsm ercson01Gsm ercson01
Gsm ercson01
 
reserch on Indian telecom in dusrty
reserch on Indian telecom in dusrtyreserch on Indian telecom in dusrty
reserch on Indian telecom in dusrty
 
L17 The Mobile Revolution
L17 The Mobile RevolutionL17 The Mobile Revolution
L17 The Mobile Revolution
 

Recently uploaded

VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Roomdivyansh0kumar0
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurSuhani Kapoor
 
Monte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMMonte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMRavindra Nath Shukla
 
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service DewasVip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewasmakika9823
 
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service Pune
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service PuneVIP Call Girls Pune Kirti 8617697112 Independent Escort Service Pune
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service PuneCall girls in Ahmedabad High profile
 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni
 
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdfRenandantas16
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...lizamodels9
 
RE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechRE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechNewman George Leech
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.Aaiza Hassan
 
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,noida100girls
 
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts ServiceVip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Serviceankitnayak356677
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis UsageNeil Kimberley
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Neil Kimberley
 
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsApsara Of India
 
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,noida100girls
 

Recently uploaded (20)

Best Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting PartnershipBest Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting Partnership
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
 
Monte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMMonte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSM
 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through Cartoons
 
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service DewasVip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
 
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service Pune
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service PuneVIP Call Girls Pune Kirti 8617697112 Independent Escort Service Pune
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service Pune
 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.
 
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
 
RE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechRE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman Leech
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.
 
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
 
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts ServiceVip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023
 
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
 
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
 

History of mobile phones

  • 1. History of mobile phones The history of mobile phones charts improvements to communication devices which connect wirelessly to the public switched telephone network. The transmission of speech by radio has a long and varied history going back to Reginald Fessenden's invention and shore-to-ship demonstration of radio telephony. Before the devices that are now referred to as a mobile phone existed, there were some precursors. The development of mobile telephony began in 1918 with tests of wireless telephony on military trains between Berlin and Zossen. In 1924, public trials started with telephone connection on trains between Berlin and Hamburg.[1] In 1925, the company Zugtelephonie A. G. was founded to supply train telephony equipment[1] and in 1926 telephone service in trains of the Deutsche Reichsbahn and the German mail service on the route between Hamburg and Berlin was approved and offered to 1st class travelers. In 1926 the artist Karl Arnold created a visionary cartoon about the use of mobile phones in the street, in the picture „wireless telephony", published in the German satirical magazine Simplicissimus. The portrayal of a utopia of mobile phone in literature dates back to the year 1931. It is found in Erich Kästner's children's book The 35th of May, or Conrad's Ride to the South Seas: “ A gentleman who rode along the sidewalk in front of them, suddenly stepped off the conveyor belt, pulled a phone from his coat pocket, spoke a number into it and shouted: "Gertrude, listen, I'll be an hour late for lunch because I want to go to the laboratory. Goodbye, sweetheart!" Then he put his pocket phone away again, stepped back on the conveyor belt, started reading a book... ” —Erich Kästner The Second World War made military use of radio telephony links. Hand-held radio transceivers have been available since the 1940s. Mobile telephones for automobiles became available from some telephone companies in the 1940s. Early devices were bulky and consumed high power and the network supported only a few simultaneous conversations. Modern cellular networks allow automatic and pervasive use of mobile phones for voice and data communications. In the United States, engineers from Bell Labs began work on a system to allow mobile users to place and receive telephone calls from automobiles, leading to the inauguration of mobile service on 17 June 1946 in St. Louis, Missouri. Shortly after, AT&T offered Mobile Telephone Service. A wide range of mostly incompatible mobile telephone services offered limited coverage area and only a few available channels in urban areas. The introduction of cellular technology, which allowed re-use of frequencies many times in small adjacent areas covered by relatively low powered transmitters, made widespread adoption of mobile telephones economically feasible. In the USSR, Leonid Kupriyanovich, engineer from Moscow, in 1957-1961 developed and presented a number of experimental models of handheld mobile phone. The weight of a latest model, presented in
  • 2. 1961, was only 70 g and it freely took place on a palm. However in the USSR the decision at first to develop the system of automobile "Altai" phone was made. The advances in mobile telephony can be traced in successive generations from the early "0G" services like MTS and its successor Improved Mobile Telephone Service, to first generation (1G) analog cellular network, second generation (2G) digital cellular networks, third generation (3G) broadband data services to the current state of the art, fourth generation (4G) native-IP networks. Motorola was the first company to produce a handheld mobile phone. On 3 April 1973 Martin Cooper, a Motorola engineer and executive, made the first mobile telephone call from handheld subscriber equipment in front of reporters, placing a call to Dr. Joel S. Engel of Bell Labs.[4][5] The prototype handheld phone used by Dr. Martin Cooper weighed 1.1 kg and measured 23 cm long, 13 cm deep and 4.45 cm wide. The prototype offered a talk time of just 30 minutes and took 10 hours to re-charge.[6] Cooper has stated his vision for the handheld device was inspired by Captain James T. Kirk using his Communicator on the television show Star Trek.[7] John F. Mitchell,[8][9][10] Motorola's chief of portable communication products and Martin Cooper's boss in 1973, played a key role in advancing the development of handheld mobile telephone equipment. Mitchell successfully pushed Motorola to develop wireless communication products that would be small enough to use anywhere and participated in the design of the cellular phone.[11][12] MTS[edit] In 1947 AT&T commercialized Mobile Telephone Service. From its start in St. Louis in 1946, AT&T then introduced Mobile Telephone Service to one hundred towns and highway corridors by 1948. Mobile Telephone Service was a rarity with only 5,000 customers placing about 30 000 calls each week. Calls were set up manually by an operator and the user had to depress a button on the handset to talk and release the button to listen. The call subscriber equipment weighed about 36 kg.[13] Subscriber growth and revenue generation were hampered by the constraints of the technology. Because only three radio channels were available, only three customers in any given city could make mobile telephone calls at one time.[14] Mobile Telephone Service was expensive, costing 15 USD per month, plus 0.30 to 0.40 USD per local call, equivalent to about 176 USD per month and 3.50 to 4.75 per call in 2012 USD.[13] IMTS[edit] AT&T introduced the first major improvement to mobile telephony in 1965, giving the improved service the obvious name of Improved Mobile Telephone Service. IMTS used additional radio channels, allowing more simultaneous calls in a given geographic area, introduced customer dialing, eliminating manual call set by an operator, and reduced the size and weight of the subscriber equipment.[13] Despite the capacity improvement offered by IMTS, demand outstripped capacity. In agreement with state regulatory agencies, AT&T limited the service to just 40 000 customers system wide. In New York,
  • 3. NY, for example, 2 000 customers shared just 12 radio channels and typically had to wait 30 minutes to place a call.[13] Radio Common Carrier[edit] A mobile radio telephone Radio Common Carrier or RCC was a service introduced in the 1960s by independent telephone companies to compete against AT&T's IMTS. RCC systems used paired UHF 454/459 MHz and VHF 152/158 MHz frequencies near those used by IMTS. RCC based services were provided until the 1980s when cellular AMPS systems made RCC equipment obsolete. Some RCC systems were designed to allow customers of adjacent carriers to use their facilities, but equipment used by RCCs did not allow the equivalent of modern "roaming" because technical standards were not uniform. For example, the phone of an Omaha, Nebraska–based RCC service would not be likely to work in Phoenix, Arizona. Roaming was not encouraged, in part, because there was no centralized industry billing database for RCCs. Signaling formats were not standardized. For example, some systems used two-tone sequential paging to alert a mobile of an incoming call. Other systems used DTMF. Some used Secode 2805, which transmitted an interrupted 2805 Hz tone (similar to IMTS signaling) to alert mobiles of an offered call. Some radio equipment used with RCC systems was half- duplex, push-to-talk LOMO equipment such as Motorola hand-helds or RCA 700-series conventional two-way radios. Other vehicular equipment had telephone handsets, rotary or pushbutton dials, and operated full duplex like a conventional wired telephone. A few users had full-duplex briefcase telephones (radically advanced for their day). At the end of RCC's existence, industry associations were working on a technical standard that would have allowed roaming, and some mobile users had multiple decoders to enable operation with more than one of the common signaling formats (600/1500, 2805, and Reach). Manual operation was often a fallback for RCC roamers. Other services[edit] In 1969 Penn Central Railroad equipped commuter trains along the 360 km New York-Washington route with special pay phones that allowed passengers to place telephone calls while the train was moving. The system re-used six frequencies in the 450 MHz band in nine sites.[14] European mobile radio networks[edit] This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2012) In Europe, several mutually incompatible mobile radio services were developed. West Germany had a network called A-Netz launched in 1952 as the country's first public commercial mobile phone network.
  • 4. In 1972 this was displaced by B-Netz which connected calls automatically. In 1966 Norway had a system called OLT which was manually controlled. Cellular concepts[edit] A multi-directional, cellular network antenna array In December 1947, Douglas H. Ring and W. Rae Young, Bell Labs engineers, proposed hexagonal cells for mobile phones in vehicles.[15] At this stage, the technology to implement these ideas did not exist, nor had the frequencies been allocated. Two decades would pass before Richard H. Frenkiel, Joel S. Engel and Philip T. Porter of Bell Labs expanded the early proposals into a much more detailed system plan. It was Porter who first proposed that the cell towers use the now-familiar directional antennas to reduce interference and increase channel reuse (see picture at right) [16] Porter also invented the dial-then- send method used by all cell phones to reduce wasted channel time. In all these early examples, a mobile phone had to stay within the coverage area serviced by one base station throughout the phone call, i.e. there was no continuity of service as the phones moved through several cell areas. The concepts of frequency reuse and handoff, as well as a number of other concepts that formed the basis of modern cell phone technology, were described in the late 1960s, in papers by Frenkiel and Porter. In 1970 Amos E. Joel, Jr., a Bell Labs engineer,[17] invented a "three-sided trunk circuit" to aid in the "call handoff" process from one cell to another. His patent contained an early description of the Bell Labs cellular concept, but as switching systems became faster, such a circuit became unnecessary and was never implemented in a system. A cellular telephone switching plan was described by Fluhr and Nussbaum in 1973,[18] and a cellular telephone data signaling system was described in 1977 by Hachenburg et al.[19] Emergence of automated services[edit] The first fully automated mobile phone system for vehicles was launched in Sweden in 1956. Named MTA (Mobile Telephone system A), it allowed calls to be made and received in the car using a rotary dial. The car phone could also be paged. Calls from the car were direct dial, whereas incoming calls required an operator to determine which base station the phone was currently at. It was developed by StureLaurén and other engineers at Televerket network operator. Ericsson provided the switchboard while SvenskaRadioaktiebolaget (SRA) and Marconi provided the telephones and base station equipment. MTA phones consisted of vacuum tubes and relays, and weighed 40 kg. In 1962, an upgraded version called Mobile System B (MTB) was introduced. This was a push-button telephone, and used transistors and DTMF signaling to improve its operational reliability. In 1971 the MTD version was launched, opening for several different brands of equipment and gaining commercial success.[20][21] The network remained open until 1983 and still had 600 customers when it closed. In 1958 development began on a similar system for motorists in the USSR.[22] The "Altay" national civil mobile phone service was based on Soviet MRT-1327 standard. The main developers of the Altay system were the Voronezh Science Research Institute of Communications (VNIIS) and the State Specialized
  • 5. Project Institute (GSPI). In 1963 the service started in Moscow, and by 1970 was deployed in 30 cities across the USSR. Versions of the Altay system are still in use today as a trunking system in some parts of Russia. In 1959 a private telephone company located in Brewster, Kansas, USA, the S&T Telephone Company, (still in business today) with the use of Motorola Radio Telephone equipment and a private tower facility, offered to the public mobile telephone services in that local area of NW Kansas. This system was a direct dial up service through their local switchboard, and was installed in many private vehicles including grain combines, trucks, and automobiles. For some as yet unknown reason, the system, after being placed online and operated for a very brief time period, was shut down. The management of the company was immediately changed, and the fully operable system and related equipment was immediately dismantled in early 1960, not to be seen again.[citation needed] In 1966, Bulgaria presented the pocket mobile automatic phone RAT-0,5 combined with a base station RATZ-10 (RATC-10) on Interorgtechnika-66 international exhibition. One base station, connected to one telephone wire line, could serve up to six customers.[citation needed] One of the first successful public commercial mobile phone networks was the ARP network in Finland, launched in 1971. Posthumously, ARP is sometimes viewed as a zero generation (0G) cellular network, being slightly above previous proprietary and limited coverage networks.[citation needed] Handheld mobile phone[edit] Prior to 1973, mobile telephony was limited to phones installed in cars and other vehicles.[17] Motorola was the first company to produce a handheld mobile phone. On 3 April 1973 when Martin Cooper, a Motorola researcher and executive, made the first mobile telephone call from handheld subscriber equipment, placing a call to Dr. Joel S. Engel of Bell Labs.[4][5] The prototype handheld phone used by Dr. Cooper weighed 1.1 kg and measured 23 cm long, 13 cm deep and 4.45 cm wide. The prototype offered a talk time of just 30 minutes and took 10 hours to re-charge.[6] John F. Mitchell,[8][9][10] Motorola's chief of portable communication products and Cooper's boss in 1973, played a key role in advancing the development of handheld mobile telephone equipment. Mitchell successfully pushed Motorola to develop wireless communication products that would be small enough to use anywhere and participated in the design of the cellular phone.[11][12] Analog cellular networks – 1G[edit] Main article: 1G The first analog cellular system widely deployed in North America was the Advanced Mobile Phone System (AMPS).[23] It was commercially introduced in the Americas in 1978, Israel in 1986, and Australia in 1987. AMPS was a pioneering technology that helped drive mass market usage of cellular technology, but it had several serious issues by modern standards. It was unencrypted and easily vulnerable to
  • 6. eavesdropping via a scanner; it was susceptible to cell phone "cloning;" and it used a Frequency-division multiple access (FDMA) scheme and required significant amounts of wireless spectrum to support. Many of the iconic early commercial cell phones such as the Motorola DynaTAC Analog AMPS were eventually superseded by Digital AMPS (D-AMPS) in 1990, and AMPS service was shut down by most North American carriers by 2008. Digital cellular networks – 2G[edit] Two 1991 GSM mobile phones with several AC adapters In the 1990s, the 'second generation' mobile phone systems emerged. Two systems competed for supremacy in the global market: the European developed GSM standard and the U.S. developed CDMA standard. These differed from the previous generation by using digital instead of analog transmission, and also fast out-of-band phone-to-network signaling. The rise in mobile phone usage as a result of 2G was explosive and this era also saw the advent of prepaid mobile phones. In 1991 the first GSM network (Radiolinja) launched in Finland. In general the frequencies used by 2G systems in Europe were higher than those in America, though with some overlap. For example, the 900 MHz frequency range was used for both 1G and 2G systems in Europe, so the 1G systems were rapidly closed down to make space for the 2G systems. In America the IS-54 standard was deployed in the same band as AMPS and displaced some of the existing analog channels. In 1993, IBM Simon was introduced. This was possibly the world's first smartphone. It was a mobile phone, pager, fax machine, and PDA all rolled into one. It included a calendar, address book, clock, calculator, notepad, email, and a touchscreen with a QWERTY keyboard.[24] The IBM Simon had a stylus you used to tap the touch screen with. It featured predictive typing that would guess the next characters as you tapped. It had apps, or at least a way to deliver more features by plugging a PCMCIA 1.8 MB memory card into the phone.[25] Coinciding with the introduction of 2G systems was a trend away from the larger "brick" phones toward tiny 100 – 200 gram hand-held devices. This change was possible not only through technological improvements such as more advanced batteries and more energy-efficient electronics, but also because of the higher density of cell sites to accommodate increasing usage. The latter meant that the average distance transmission from phone to the base station shortened, leading to increased battery life whilst on the move. Personal Handy-phone System mobiles and modems used in Japan around 1997–2003 The second generation introduced a new variant of communication called SMS or text messaging. It was initially available only on GSM networks but spread eventually on all digital networks. The first machine- generated SMS message was sent in the UK on 3 December 1992 followed in 1993 by the first person-to-
  • 7. person SMS sent in Finland. The advent of prepaid services in the late 1990s soon made SMS the communication method of choice amongst the young, a trend which spread across all ages. 2G also introduced the ability to access media content on mobile phones. In 1998 the first downloadable content sold to mobile phones was the ring tone, launched by Finland's Radiolinja (now Elisa). Advertising on the mobile phone first appeared in Finland when a free daily SMS news headline service was launched in 2000, sponsored by advertising. Mobile payments were trialed in 1998 in Finland and Sweden where a mobile phone was used to pay for a Coca Cola vending machine and car parking. Commercial launches followed in 1999 in Norway. The first commercial payment system to mimic banks and credit cards was launched in the Philippines in 1999 simultaneously by mobile operators Globe and Smart. The first full internet service on mobile phones was introduced by NTT DoCoMo in Japan in 1999. Mobile broadband data – 3G[edit] Main article: 3G As the use of 2G phones became more widespread and people began to utilize mobile phones in their daily lives, it became clear that demand for data (such as access to browse the internet) was growing. Furthermore, experience from fixed broadband services showed there would also be an ever increasing demand for greater data speeds. The 2G technology was nowhere near up to the job, so the industry began to work on the next generation of technology known as 3G. The main technological difference that distinguishes 3G technology from 2G technology is the use of packet switching rather than circuit switching for data transmission.[26] In addition, the standardization process focused on requirements more than technology (2 Mbit/s maximum data rate indoors, 384 kbit/s outdoors, for example). Inevitably this led to many competing standards with different contenders pushing their own technologies, and the vision of a single unified worldwide standard looked far from reality. The standard 2G CDMA networks became 3G compliant with the adoption of Revision A to EV-DO, which made several additions to the protocol while retaining backwards compatibility: Introduction of several new forward link data rates that increase the maximum burst rate from 2.45 Mbit/s to 3.1 Mbit/s Protocols that would decrease connection establishment time Ability for more than one mobile to share the same time slot Introduction of QoS flags All these were put in place to allow for low latency, low bit rate communications such as VoIP.[27] The first pre-commercial trial network with 3G was launched by NTT DoCoMo in Japan in the Tokyo region in May 2001. NTT DoCoMo launched the first commercial 3G network on 1 October 2001, using
  • 8. the WCDMA technology. In 2002 the first 3G networks on the rival CDMA2000 1xEV-DO technology were launched by SK Telecom and KTF in South Korea, and Monet in the USA. Monet has since gone bankrupt. By the end of 2002, the second WCDMA network was launched in Japan by Vodafone KK (now Softbank). European launches of 3G were in Italy and the UK by the Three/Hutchison group, on WCDMA. 2003 saw a further 8 commercial launches of 3G, six more on WCDMA and two more on the EV-DO standard. During the development of 3G systems, 2.5G systems such as CDMA2000 1x and GPRS were developed as extensions to existing 2G networks. These provide some of the features of 3G without fulfilling the promised high data rates or full range of multimedia services. CDMA2000-1X delivers theoretical maximum data speeds of up to 307 kbit/s. Just beyond these is the EDGE system which in theory covers the requirements for 3G system, but is so narrowly above these that any practical system would be sure to fall short. The high connection speeds of 3G technology enabled a transformation in the industry: for the first time, media streaming of radio (and even television) content to 3G handsets became possible,[28] with companies such as RealNetworks[29] and Disney[30] among the early pioneers in this type of offering. In the mid-2000s (decade), an evolution of 3G technology began to be implemented, namely High-Speed Downlink Packet Access (HSDPA). It is an enhanced 3G (third generation) mobile telephony communications protocol in the High-Speed Packet Access (HSPA) family, also coined 3.5G, 3G+ or turbo 3G, which allows networks based on Universal Mobile Telecommunications System (UMTS) to have higher data transfer speeds and capacity. Current HSDPA deployments support down-link speeds of 1.8, 3.6, 7.2 and 14.0 Mbit/s. Further speed increases are available with HSPA+, which provides speeds of up to 42 Mbit/s downlink and 84 Mbit/s with Release 9 of the 3GPP standards. By the end of 2007, there were 295 million subscribers on 3G networks worldwide, which reflected 9% of the total worldwide subscriber base. About two thirds of these were on the WCDMA standard and one third on the EV-DO standard. The 3G telecoms services generated over 120 Billion dollars of revenues during 2007 and at many markets the majority of new phones activated were 3G phones. In Japan and South Korea the market no longer supplies phones of the second generation. Although mobile phones had long had the ability to access data networks such as the Internet, it was not until the widespread availability of good quality 3G coverage in the mid-2000s (decade) that specialized devices appeared to access the mobile internet. The first such devices, known as "dongles", plugged directly into a computer through the USB port. Another new class of device appeared subsequently, the so-called "compact wireless router" such as the Novatel MiFi, which makes 3G internet connectivity available to multiple computers simultaneously over Wi-Fi, rather than just to a single computer via a USB plug-in. Such devices became especially popular for use with laptop computers due to the added portability they bestow. Consequently, some computer manufacturers started to embed the mobile data function directly into the laptop so a dongle or MiFi wasn't needed. Instead, the SIM card could be inserted directly into the device itself to access the mobile data services. Such 3G-capable laptops became
  • 9. commonly known as "netbooks". Other types of data-aware devices followed in the netbook's footsteps. By the beginning of 2010, E-readers, such as the Amazon Kindle and the Nook from Barnes & Noble, had already become available with embedded wireless internet, and Apple Computer had announced plans for embedded wireless internet on its iPad tablet devices beginning that Fall. Native IP networks – 4G[edit] Main article: 4G By 2009, it had become clear that, at some point, 3G networks would be overwhelmed by the growth of bandwidth-intensive applications like streaming media.[31] Consequently, the industry began looking to data-optimized 4th-generation technologies, with the promise of speed improvements up to 10-fold over existing 3G technologies. The first two commercially available technologies billed as 4G were the WiMAX standard (offered in the U.S. by Sprint) and the LTE standard, first offered in Scandinavia by TeliaSonera. One of the main ways in which 4G differed technologically from 3G was in its elimination of circuit switching, instead employing an all-IP network. Thus, 4G ushered in a treatment of voice calls just like any other type of streaming audio media, utilizing packet switching over internet, LAN or WAN networks via VoIP.[32] Satellite mobile[edit] Main article: Satellite phone Earth-orbiting satellites can cover remote areas out of reach of wired networks or where construction of a cellular network is uneconomic. The Inmarsat satellite telephone system, originally developed in 1979 for safety of life at sea, is now also useful for areas out of reach of landline, conventional cellular, or marine VHF radio stations. In 1998 the Iridium satellite system was set up, and although the initial operating company went bankrupt due to high initial expenses, the service is available today.