This document discusses using machine learning algorithms to predict heart disease based on patient attributes. It begins with an introduction describing heart disease as a major cause of death and the importance of early detection. It then discusses using machine learning techniques like logistic regression, backward elimination, and recursive feature elimination on a publicly available heart disease dataset to classify patients and evaluate the results. The goal is to help identify patients at high risk of heart disease so lifestyle changes can be made to reduce complications. Various machine learning algorithms are tested and evaluated to determine the best approach for heart disease prediction.