I
          y = f ( x) = x       y




                           I
                           I
     I     I     I    I    I        I   I   I   I
x’




                           I
     -4    -3    -2   -1       0    1   2   3   4
                                                    x


                           I
                           I
                           I




                               Y’
                           I
I
          y = f ( x) = IxI       y




                             I
                             I
     I     I     I    I      I        I   I   I   I




                             I
x’   -4    -3    -2   -1              1   2   3   4
                                 0                    x


                             I
                             I
                             I




                                 Y’
                             I
I
                             y
 Y = f ( x) = 1/x




                         I
                         I
x’   I    I    I    I    I        I   I   I   I




                         I
     -4   -3   -2   -1       0    1   2   3   4   x


                         I
                         I
                         I




                             Y’
                         I
I
                              y
 Y = f ( x) =[ x ]




                          I
                          I
     I    I    I     I    I        I   I   I   I




                          I
x’   -4   -3   -2    -1            1   2   3   4
                              0                    x


                          I
                          I
                          I




                              Y’
                          I
I
                             y




                         I
                         I
     I    I    I    I    I        I   I   I   I
x’




                         I
     -4   -3   -2   -1       0    1   2   3   4
                                                  x


     Y = f ( x) = x 2    I
                         I
                         I




                             Y’
                         I
x 0         / 6 / 3 /2 2 /3 5 /6
sin x 0       5 87 1      87 5 0
                                            1


                                        .5

I   I     I    I     I     I    I    I              I     I   I   I    I   I    I   I   I   I
          - π 5π/6 -2π/3 - π/2 -π/3 - π/6       0   π/6   π/3 π/2 2π/3 5π/6 π
                                        .5


                                            1
x 0          /6       /3      /2    2 /3 5 /6
sin x0         5       87       1      87    5             0
                                           1


                                       .5

I   I    I    I     I     I    I    I              I     I   I   I    I   I    I   I   I   I
         - π 5π/6 -2π/3 - π/2 -π/3 - π/6       0   π/6   π/3 π/2 2π/3 5π/6 π
                                       .5


                                           1
x 0              / 6 / 3 /2 2 /3 5 /6 7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2
sin x 0            5 87 1      87 5 0     5     87 1        87 5 0

    1
     I
     I




    .5
I        I     I    I   I    I   I   I    I    I    I   I    I   I    I   I   I   I   I
     0       π/6   π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π
    .5
     I




    1
     I
x 0            /6        /3       /2 2 /3 5 /6         7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2
sin x 0          5        87        1   87    5 0         5     87    1     87     5    0

                                                                                    1




                                                                            I
                                                                            I
                                                                                .5
 I     I     I        I         I    I   I   I   I   I      I    I     I        I       I   I   I   I   I
     - 2π -11π/6 -5π/3 -3π/2 -4π/3 -7π/6 -π - 5π/6 -2π/3 - π/2 - π/3 -π/6   0
                                                                                .5




                                                                            I
                                                                                    1




                                                                            I
x 0           /6       /3 /2 2 /3 5 /6
sin x 1        87        5 0     5 87          1
                                           1


                                          .5


I   I      I         I    I   I   I   I            I     I   I   I     I   I   I   I   I   I
          - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0        π/6   π/3 π/2 2π/3 5π/6 π
                                        .5


                                           1
x 0    /6        /3     /2 2 /3 5 /6
sin x 1 87        5     0      5    87        1
                                      1


                                      .5


I   I    I    I    I    I    I    I          I     I  I    I    I   I   I   I   I   I
        - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0   π/6   π/3 π/2 2π/3 5π/6 π
                                      .5


                                      1
1


   I     I       I      I      I     I    I     I      I   I
-2π    -3 π/2   -π   - π/2    0    π/2   π    3 π/2   2π

                             -1
x 0             / 6 / 3 /2 0 /2 0 2 /3 5 /6  7 / 6 4 / 3 3 / 2 0 3 / 2 0 5 / 3 11 / 6 2
tan x 0          58 1 73             1 73 58 0 58 1.73                      1 73 58 0




    1
     I
     I




    .5
I        I       I    I   I    I    I    I    I    I    I    I    I     I   I   I   I      I   I
             0 π/6   π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π               5π/2
    .5
     I




    1
     I
x 0
tan x 0




                                    1




                                I
                                I
                                 .5
      I     I       I     I      I         I    I     I     I    I
   -2π    -3 π/2   -π   - π/2   0        π/2   π    3 π/2   2π

                                    .5

                                I
                                    1
                                I
x 0 /6                /3       /2 2 /3 5 / 6       0       0 7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2       0
cot x 1 73            58        0    58 1 73                  1 73 .58     0      58 1 73




    1
     I
     I




    .5
I        I       I    I     I      I    I       I       I    I     I    I     I     I   I    I   I       I   I
             0 π/6   π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π                            5π/2
    .5
     I




    1
     I
1




                             I
                             I
                              .5
   I     I       I     I      I         I    I     I     I    I
-2π    -3 π/2   -π   - π/2   0        π/2   π    3 π/2   2π

                                 .5

                             I
                                 1
                             I
-2π
                             I
                                          Goes tp + infinity




                            I
                          -3 π/2
                           I
                                        Goes tp + infinity


                          -π
 Goes tp - infinity
                            I
                          - π/2



Goes tp - infinity
                                   1




                      1
                          0
                           I




                                       Goes tp + infinity
                            I
                          π/2




                                       Goes tp + infinity
                           I
                          π




 Goes tp - infinity
                            I
                          3 π/2




Goes tp - infinity
                           I
                          2π
                            I
Goes tp + infinity




                          -2π
                            II
                                          Goes tp + infinity




                          -3 π/2
 Goes tp - infinity



                           I
                          -π
Goes tp - infinity
                            I
                          - π/2
                                        Goes tp + infinity
                                   1




                      1
                          0
                           II
                          π/2




                                        Goes tp + infinity
 Goes tp - infinity
                           I
                          π




Goes tp - infinity                     Goes tp + infinity
                            I
                          3 π/2
                           I
                          2π




                                       Goes tp + infinity
                            I
I
         1
f ( x) sin x




               I
               I
               I
               I
               I
               I
               I
I
                             y

                                          f(x) = x




                         I
                     x
               y e


                         I
     I    I    I    I    I        I       I   I      I




                         I
x’   -4   -3   -2   -1            (1,0)   2   3      4
                             0                           x


                         I
                                  y log e x
                         I
                         I




                             Y’
                         I
I
          y = f ( x) = x       y




                           I
                           I
     I     I     I    I    I        I   I   I   I
x’




                           I
     -4    -3    -2   -1       0    1   2   3   4
                                                    x
      When x increases f( x) also increases.
     f(Y == x is=strictly increasing function
        x) f( x) x is continuous function.
                           I
                           I
                           I




                               Y’
                           I
….- 3 π/2 , π/2 , 5 π/2 …. Are maxima as at
these values of x ,f(x) is maximum.
                                  1



    I          I      I     I       I      I    I     I      I     I
 -2π        -3 π/2   -π   - π/2    0    π/2    π    3 π/2   2π   5π/2



                                  -1




        -
….- π/2 , 3π/2 , …. are minima as at these
 values of x, f(x) is minimum.
                               1



     I      I      I     I       I      I    I     I      I     I
  -2π    -3 π/2   -π   - π/2    0    π/2    π    3 π/2   2π   5π/2



                               -1
At both maxima at minima the
Tangents are parallel to x – axis.
                             1



   I     I       I     I       I     I    I     I      I   I
-2π    -3 π/2   -π   - π/2    0    π/2   π    3 π/2   2π



                             -1
At both maxima at minima the Derivative
of the function is zero. Or f x 0
                              1



    I     I       I     I       I         I    I     I      I   I
 -2π    -3 π/2   -π   - π/2    0        π/2   π    3 π/2   2π
                                    f




                              -1
Slope of the tangent is zero of the tangent is zero
                                     Slope
                                1



      I      I      I      I         I      I       I      I     I   I
-2π       -3 π/2   -π   - π/2    0       π/2    π       3 π/2   2π



                                -1
                        Slope of the tangent is zero
'
                                     f ( x)    cos x
 At maxima slope of the tangent to the
 Derivative is negative.
                     1



   I       I       I     I       I      I      I     I      I   I
-2π      -3 π/2   -π   - π/2    0     π/2     π    3 π/2   2π



                               -1

       ….- maxima as wellπ/2 minima the slope
        At 3 π/2 , π/2 , 5 as …. Are maxima
            ….- π/2 , 3π/2 , …. Are minima
        of the Tangents are zero.

Graph oh functions

  • 1.
    I y = f ( x) = x y I I I I I I I I I I I x’ I -4 -3 -2 -1 0 1 2 3 4 x I I I Y’ I
  • 2.
    I y = f ( x) = IxI y I I I I I I I I I I I I x’ -4 -3 -2 -1 1 2 3 4 0 x I I I Y’ I
  • 3.
    I y Y = f ( x) = 1/x I I x’ I I I I I I I I I I -4 -3 -2 -1 0 1 2 3 4 x I I I Y’ I
  • 4.
    I y Y = f ( x) =[ x ] I I I I I I I I I I I I x’ -4 -3 -2 -1 1 2 3 4 0 x I I I Y’ I
  • 5.
    I y I I I I I I I I I I I x’ I -4 -3 -2 -1 0 1 2 3 4 x Y = f ( x) = x 2 I I I Y’ I
  • 6.
    x 0 / 6 / 3 /2 2 /3 5 /6 sin x 0 5 87 1 87 5 0 1 .5 I I I I I I I I I I I I I I I I I I - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0 π/6 π/3 π/2 2π/3 5π/6 π .5 1
  • 7.
    x 0 /6 /3 /2 2 /3 5 /6 sin x0 5 87 1 87 5 0 1 .5 I I I I I I I I I I I I I I I I I I - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0 π/6 π/3 π/2 2π/3 5π/6 π .5 1
  • 8.
    x 0 / 6 / 3 /2 2 /3 5 /6 7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2 sin x 0 5 87 1 87 5 0 5 87 1 87 5 0 1 I I .5 I I I I I I I I I I I I I I I I I I I 0 π/6 π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π .5 I 1 I
  • 9.
    x 0 /6 /3 /2 2 /3 5 /6 7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2 sin x 0 5 87 1 87 5 0 5 87 1 87 5 0 1 I I .5 I I I I I I I I I I I I I I I I I I I - 2π -11π/6 -5π/3 -3π/2 -4π/3 -7π/6 -π - 5π/6 -2π/3 - π/2 - π/3 -π/6 0 .5 I 1 I
  • 10.
    x 0 /6 /3 /2 2 /3 5 /6 sin x 1 87 5 0 5 87 1 1 .5 I I I I I I I I I I I I I I I I I I - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0 π/6 π/3 π/2 2π/3 5π/6 π .5 1
  • 11.
    x 0 /6 /3 /2 2 /3 5 /6 sin x 1 87 5 0 5 87 1 1 .5 I I I I I I I I I I I I I I I I I I - π 5π/6 -2π/3 - π/2 -π/3 - π/6 0 π/6 π/3 π/2 2π/3 5π/6 π .5 1
  • 12.
    1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π -1
  • 13.
    x 0 / 6 / 3 /2 0 /2 0 2 /3 5 /6 7 / 6 4 / 3 3 / 2 0 3 / 2 0 5 / 3 11 / 6 2 tan x 0 58 1 73 1 73 58 0 58 1.73 1 73 58 0 1 I I .5 I I I I I I I I I I I I I I I I I I I 0 π/6 π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π 5π/2 .5 I 1 I
  • 14.
    x 0 tan x0 1 I I .5 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π .5 I 1 I
  • 15.
    x 0 /6 /3 /2 2 /3 5 / 6 0 0 7 / 6 4 / 3 3 / 2 5 / 3 11 / 6 2 0 cot x 1 73 58 0 58 1 73 1 73 .58 0 58 1 73 1 I I .5 I I I I I I I I I I I I I I I I I I I 0 π/6 π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6 2π 5π/2 .5 I 1 I
  • 16.
    1 I I .5 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π .5 I 1 I
  • 17.
    -2π I Goes tp + infinity I -3 π/2 I Goes tp + infinity -π Goes tp - infinity I - π/2 Goes tp - infinity 1 1 0 I Goes tp + infinity I π/2 Goes tp + infinity I π Goes tp - infinity I 3 π/2 Goes tp - infinity I 2π I
  • 18.
    Goes tp +infinity -2π II Goes tp + infinity -3 π/2 Goes tp - infinity I -π Goes tp - infinity I - π/2 Goes tp + infinity 1 1 0 II π/2 Goes tp + infinity Goes tp - infinity I π Goes tp - infinity Goes tp + infinity I 3 π/2 I 2π Goes tp + infinity I
  • 19.
    I 1 f ( x) sin x I I I I I I I
  • 20.
    I y f(x) = x I x y e I I I I I I I I I I I x’ -4 -3 -2 -1 (1,0) 2 3 4 0 x I y log e x I I Y’ I
  • 21.
    I y = f ( x) = x y I I I I I I I I I I I x’ I -4 -3 -2 -1 0 1 2 3 4 x When x increases f( x) also increases. f(Y == x is=strictly increasing function x) f( x) x is continuous function. I I I Y’ I
  • 22.
    ….- 3 π/2, π/2 , 5 π/2 …. Are maxima as at these values of x ,f(x) is maximum. 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π 5π/2 -1 -
  • 23.
    ….- π/2 ,3π/2 , …. are minima as at these values of x, f(x) is minimum. 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π 5π/2 -1
  • 24.
    At both maximaat minima the Tangents are parallel to x – axis. 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π -1
  • 25.
    At both maximaat minima the Derivative of the function is zero. Or f x 0 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π f -1
  • 26.
    Slope of thetangent is zero of the tangent is zero Slope 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π -1 Slope of the tangent is zero
  • 27.
    ' f ( x) cos x At maxima slope of the tangent to the Derivative is negative. 1 I I I I I I I I I I -2π -3 π/2 -π - π/2 0 π/2 π 3 π/2 2π -1 ….- maxima as wellπ/2 minima the slope At 3 π/2 , π/2 , 5 as …. Are maxima ….- π/2 , 3π/2 , …. Are minima of the Tangents are zero.