1 5/25/2017 Ashok Leyland Presentation
Paint Exterior appearance (Gloss)
improvement in Boss Cab
CQ: Cab Paint ,PNR
QC Story
Content
 Problem
 Observation
 Analysis
 Actions
 Check
 Standardization
 Conclusion
2 5/25/2017 Ashok Leyland Presentation
Benchmarking
Gloss Level
G
L
O
S
S
9
2
8
8
9
3
9
3
9
3
9
4
9
6
8
8
8
6
9
0
9
2
9
4
9
6
9
8
10
0
AL @PNR-
BOSS
,Before
TATA-
ACE
AL-
Dost
AL@AALM-
AVIA
Bharat
Benz
Maruti -
Ertiga
Honda-
City
Gloss Level %
Commercial vehicle Passenger Car
3 5/25/2017 Ashok Leyland Presentation
Problem Identification
Step 1- Problem
Back Ground of the problem
93
92
95
96
95
94
93
92
91
90
BM (AALM-AVIA) Actual Boss@PNR Target
Gloss Level %
 92 % Gloss level low in PNR Produced Boss Cabs
4 5/25/2017 Ashok Leyland Presentation
Theme & Target
Theme & Target:
Step 1- Problem
• Perceived Quality
Why
• Low Gloss level in “BOSS“ Truck Cabin @ALP
What
• Gloss level = 92% , Target = 95%
How
5 5/25/2017 Ashok Leyland Presentation
Step 1- Problem Team Formation
Team Members:
6 5/25/2017 Ashok Leyland Presentation
Facilitator : Ramakant Sharma
Leader : Shivpujan Gupta
Members : Mukesh Rawat
Swati Rawat
Pooja Dewari
Deepak Pant
 Presently We are producing 03 models (Boss, G91 & Captain)
ED
SANDING
TOP COAT
PREPARATION
PT LINE ED LINE
SEALANT LINE
PVC LINE
TOP COAT LINE
TOP COAT STORAGE
INSPECTION
POLISHING
WAX
INPUT FROM
WELD ( BIW )
TO TRIM
PAINT
KITCHEN
QG-1
QG-2
QG-3
QG-4
QG-5
Step 2- Observation
Painting Process Flow
Gloss
Measurements
8 5/25/2017 Ashok Leyland Presentation
Step 2
Observation
MSA for Gloss
Measurement Variation : Gauge R & R Study:
MSA study is performed for Gloss-meter, to understand the %age variation within
appraisers and between appraisers.
100
75
50
Deepak Swati
2
1
0
Variation Breakdown
%Process
R Chart of Test-Retest Ranges by Operator(Repeatability)
Operators and parts with larger ranges have less consistency.
Reproducibility — Operator by Part Interaction
Look for abnormal points or patterns.
100 Source StDev (data)
Total Gage 0.471 2.16
75 Repeatability 0.364 1.67
Reproducibility 0.298 1.37
Part-to-Part 21.819 99.98
50
Process Var (data) 21.824 100.00
Reproducibility — Operator Main Effects
Look for operators with higher orlower averages.
100
75
50
Deepak Pooja Preety Swati
Gage R&R Study for Measurements
Variation Report
Xbar Chart of Part Averages byOperator
At least 50% should be outside the limits. (actual: 100.0%)
Pooja Preety
Results:
Repeatability = 1.67%
Reproducibility = 1.37 %, the result shows that we can adequately
measure process performance
Measurement (R&R) variations are so less or
negligible so we can go for process variation.
Status:
Step 2- Observation
Problem Definition
 Low Gloss in Boss model: 92 %
 Gloss measurement on daily basis at below location: X1, X2, X3 & X4
X3 X1 X2 X4
B- Class Area *A- Class Area B- Class Area
Gloss Data collection for Only A-Class Area
*Why A-Class area? : A-Class Area coming in direct eye contact ofcustomer
93.5
93.0
92.5
92.0
91.5
X2
The mean of X1 is not significantly different from the mean
of X2 (p > 0.05).
0 0.05 0.1
Yes
> 0.5
No
P = 0.815
-0.1 0.0 0.1 0.2
-0.2
-- Test: There is not enough evidence to conclude thatthe
means differ at the 0.05 level of significance.
-- CI: Quantifies the uncertainty associated with estimating
the difference from sample data. You can be 95% confident
that the true difference is between -0.14944 and0.18944.
-- Distribution of Data: Comparethe location and means of
samples. Look for unusual data before interpreting the
results of the test.
Distribution of Data
Compare the data and means of the samples.
X1
Do the means differ?
2-Sample t Test for the Mean of X1 and X2
Summary Report
Statistics X1 X2
Sample size 50 50
Mean 92.362 92.342
95% CI (92.22, 92.51) (92.250, 92.434)
Standard deviation 0.50825 0.32331
Difference between means* 0.02
95% CI (-0.14944, 0.18944)
* The difference is defined as X1 -X2.
95% CI for the Difference
Does the interval include zero?
Comments
Step 2- Observation
ANOVA
 Location X1 & X2 are
symmetric for painting
 No Significant Difference in
Gloss level
02 Sample t-test for X1 & X2 location :
So we can consider X1 & X2 location as 01 subgroups
Step 2- Observation
Data Collection
1). Sample Size– 50, 2). Sub Group Size-02, 3). Avg. Value - 92.3 4). Process isstable
X1
X2
C ab-1 C ab-6 C ab-11 C ab-16 Cab-21
93.5
93.0
92.5
92.0
91.5
C ab-26 C ab-31 C ab-36 C ab-41 Cab-46
Cabin
Sample
Mean
_
X=9 2.352
UC L=93.246
LCL=91.458
C ab-1 C ab-6 C ab-11 C ab-16 Cab-21
1.6
1.2
0.8
0.4
0.0
C ab-26 C ab-31 C ab-36 C ab-41 Cab-46
Cabin
Sample
Range
_
R=0 .475
UC L=1.553
LCL=0
For the initial gloss level we have taken Gloss Data of 50 cabins to analysis the processstability.
We have observed process was stable & gloss mean value ~92%
Daily Quality Check Sheet
Xbar-R Chart of Gloss Level
Step 2- Observation
Cause and effect diagram: Level 1
MAN
MACHINE
METHOD
MATERIAL
Robot
Voltage
Booth
Temperatur
e
Booth
Humidity
Additives of
Topcoat
Post Touch-
up manual
Paint
Application
Tag-o-Rag
Method
No. of
Coatings
Viscosity
Painting
skill
RobotFlow
Rate/
pattern
Robot
Preventive
Maintenanc
e
Painting
Application
Angle
Sanding&
Polishing
Polishing
Material
PT-ED Material
Low Gloss
ED & Top
coat DFT
Sheet
Roughness
Cab wiping
Lux level in
Top coat
booth
Top coat
Booth
Balance
Paint
resistivity
Topcoat
Paint
Material
Slow
thinner
Solvent
Evaporation
rate
Phosphate
Roughness
Training /
Painting
experience
Robot
Teaching
Gun Pattern
Paint
formulation
EDBath
Solvent
Paint
Potential Cause
12 5/25/2017 Ashok Leyland Presentation
Non-Potential Cause
To analyze Process variation causes we have done brain storming through Fishbone diagram as below Shown
and rectified 08 potential causes :
Step 2- Observation
Cause and effect diagram : Level 2
Significant cause & Effects for Low Gloss:
MAN
MACHINE
METHOD
MATERIAL
Booth
Temperature
Booth
Humidity
Robot Flow Rate/
pattern
Additives of
Topcoat
ED Bath
Slow Thinner
Paint
Viscosity
Post Touch
up
Low Gloss
1
4
7
5
3
2
8
6
*Sequence numbers (1* to 8)
Given as per PaintingProcess
Flow ….
13 5/25/2017 Ashok Leyland Presentation
Step 3-Analysis
Causes Validation :
Cause Validation through Placket Screening Analysis :
1. No. of factors- 08, No. of levels-2, No. of runs- 12
Factors Corresponding to red arrows are Significantfactors
14 5/25/2017 Ashok Leyland Presentation
Step 3-Analysis
Trials:
After Elimination of Insignificant Causes from Placket Screening:
Now according to placket screening 88.55% Variation in Gloss is due to 04factors:
a)ED Bath Solvent%, b) Robot Flow Rate, c) Slow Thinner, d)Paint Viscosity
15 5/25/2017 Ashok Leyland Presentation
Sl. No. Factors Difficulty Remark
1 Solvent %
Pilot Batch preparation in scale down
model Solvent addition as per design ~04 hour per Run ( Refer the Example)
2 Flow Rate Flow rate adjustment in all runs
01 hour per Run for manual flow
rate adjustment & application
3 Slow Thinner Slow thinner addition as per Design ( in Pot Quantity) 30 minute per run for pot quantity
4 Paint Viscosity Viscosity setting in all runs ( in Pot Quantity) 30 minute per run
5 Touch/Up No -------
6 Booth Temp. No, Automation is there -------
7 Booth Humidity No, Automation is there -------
8 Additives No -------
16 5/25/2017 Ashok Leyland Presentation
Step 3-Analysis
Placket Screening Model:
StdOrde
r
RunOrder PtTyp
e
Blocks Solvent % Flow Rate
Slow
Thinne
r
Paint Viscosity Touch/Up Booth Temp. Booth
Humidity
Additives Gloss
%
3 1 1 1 1 400 3 24 yes 25 55 no 96.2
1 2 1 1 2.5 300 3 24 no 25 75 yes 95.8
5 3 1 1 2.5 400 1 26 yes 25 75 no 95.4
11 4 1 1 1 400 1 24 no 30 75 yes 93.5
4 5 1 1 2.5 300 3 26 no 30 55 no 95.2
10 6 1 1 2.5 300 1 24 yes 30 75 no 94.2
12 7 1 1 1 300 1 24 no 25 55 no 92.2
7 8 1 1 1 400 3 26 no 30 75 no 93.9
6 9 1 1 2.5 400 3 24 yes 30 55 yes 97.5
2 10 1 1 2.5 400 1 26 no 25 55 yes 93.6
9 11 1 1 1 300 1 26 yes 30 55 yes 90
8 12 1 1 1 300 3 26 yes 25 75 yes 93.2
Below Challenges faced to follow Placket Screening Design :
Challenges for solvent % changes in ED paint bath main tank
Panel to be coated (-)
ED bath (+)
(to be circulated continuously)
We can not take
the risk of any
abnormality in
main tank.
ED paint main bath tank
volume is 1,71,000Liter.
ED tank
We can
simulate the
same exercise
in Scale down
Bath
 To make Scale Down bath with Different Solvent % level (~4 hours for one experiment)
 Pilot Scale Down batch of 02 liter ED Bath Preparation with DI Water, F1 & F2
Solution.
 Homogeneous mixture for bath maturity
 Added solvent % as per run
 Final Panel Preparation
 Baking in Lab Oven
ED coated panel
Reference pic.
17 5/25/2017 Ashok Leyland Presentation
Causes Validation :
Step 4-Action
These 04 factors taken up in a full factorialdesign to optimize the value of Gloss level:
No. of factors- 04 ,No. of levels-2, No. of runs- 32 [ N=(LF ) R ], Replicate=02
Factors Corresponding to red arrows are Significantfactors
18 5/25/2017 Ashok Leyland Presentation
Causes Validation :
Step 4-Action
Elimination of insignificant causes one by one from Full factorial Design:
As per full factorial DOE conducted in ACTION phase,80.57 % Variation in Gloss Due to :
19 5/25/2017 Ashok Leyland Presentation
1. ED Bath Solvent%
3. Slow Thinner
2. Robot Flow Rate
4. Solvent% * Paint Viscosity
5. Robot Flow Rate * Paint Viscosity
Optimization of parameters :
Step 4-Action
After elimination of insignificant causes from Full factorial Design, we have optimized all
significant causes as below table:
Factor Optimization
Factors
Before DOE
The
process
parameter
range
Output
from DOE
Process
correction
after
optimization
( Engg.
Trials)
Why we
cannot go
beyond this
parameter
range
ED Bath
Solvent%
1.0 – 2.0 2 1.8 – 2.2
Poor adhesion &
High cost
Robot flow
rate
300 - 450 400 380 - 420
Sag issue &
high cost
Slow thinner
%
Nil 1 0.5 – 2.0
Sag issue on
curve area
Paint
Viscosity
20 - 26 22 20 - 24
Sag issue at <
20 viscosity
Gloss% 91.9 95.3 >95 --
20 5/25/2017 Ashok Leyland Presentation
Slow Thinner
container
Challenges for Slow thinner % & Viscosity adjustment
 Paint Preparation in Paint Kitchen: (~3 hours)
 Slow solvent % introduction in mixing tank
 Homogeneous mixture of paint & solvent
 Viscosity adjustment as per DOE
 Transfer the paint in main tank for robotpainting
 Paint application by robot & bake the cabin inoven
 Final output check on cabin
21 5/25/2017 Ashok Leyland Presentation
Challenges for Robot Flow rate adjustment
 Flow rate adjustment in Robot: ( ~3 hours for one experiment )
 Robot Flow rate adjustment as per
DOE output at required brush level
based on location / class ofcabin.
 Top-coat Painting on cabin as per
DOE output
 Oven baking & Result check
Top coat paint application
by Robot
22 5/25/2017 Ashok Leyland Presentation
Step 5-Check
Result Confirmation
Gloss level After all optimization
Daily Check Sheet
1. Sample Size– 45, 2. Sub Group Size-02, 3. Avg. Value - 95.4 , 4. Process isstable
X1
X2
C ab-1 C ab-5 C ab-9 C ab-13 Cab-17
96
95
94
C ab-21 C ab-25 C ab-29 C ab-33 C ab-37 C ab-41 C ab-45
Cabin
Sam
ple
M
e
a
n
_
X=95.324
UC L=96.594
LCL=94.055
C ab-1 C ab-5 C ab-9 C ab-13 Cab-17
2.0
1.5
1.0
0.5
0.0
C ab-21 C ab-25 C ab-29 C ab-33 C ab-37 C ab-41 C ab-45
Cabin
Sam
ple
Range
_
R=0.675
UC L=2.206
LCL=0
Xbar-R Chart of Gloss Level After
23 5/25/2017 Ashok Leyland Presentation
Bench Marking
Gloss Level
G
L
O
S
S
9
2
8
8
9
3
9
3
9
3
9
5 9
4
9
6
8
8
8
6
9
0
9
2
9
4
9
6
9
8
10
0
AL @PNR-
BOSS
,Before
TATA-
ACE
AL-
Dost
AL@AALM-
AVIA
Bharat
Benz
AL @PNR-
BOSS,
After
Maruti -
Ertiga
Honda-
City
Gloss Level %
Commercial vehicle Passenger Car
24 5/25/2017 Ashok Leyland Presentation
Gloss Evaluation by Top Management After Implementation
Evaluated By
1. Head Operations
2. SD-CQ
3. AALM, AVIA Team
4. PD – PNR
5. CQ Head –PNR
6. BU Head- Cab & Team
Comments: Orange peel & Gloss has improved
and maintain the same levelfor
mass production.
26 5/25/2017 Ashok Leyland Presentation
4. Revised Control plan: ED solvent level
Step 6- Standardize
1. Solvent Level spec revised from 1.0~2.0 % To
1.5~2.5% .
2. Daily Gloss Monitoring.
3. Daily Thinner Combination Check SheetIntroduced
5. Revised Control plan: Top Coat Glosslevel
6. Revised Control plan : Paint Kitchen
3. Daily thinner
Combination Check
Sheet
T O ,
M r . Ri shi kant Si ngh D A T E :- 3 . 0 7 . 1 3
M / s M / S A L L - P a n t n a g a r P a in t S h o p
C E D B A T H S A M P L E A NA L YS IS B Y M / S . K NP
C H E C K E D B Y: - M. K . G
c c : E D L a b Mumbai .
R E M A R K S : - P lease main t ain A S H % a b o v e 2 3 % .
T est ed B y: Y. K . S h a r m a F o r K A N S A I N E R O L A C P A I N T S L T D .
( N A V E E N K U M A R )
K A N S A I N E R O L A C P A I N T S Ltd
B A W A L P L A N T , P l o t N o . 3 6 S e c t o r - 7 H S I D C G r o w t h C e n t e r B a w a l 1 2 3 5 0 1 D i s t . R e w a r i , ( H ar y a na )
T EL EP HONE N O - 0 1 2 8 4 - 2 6 1 7 0 7 ;
S amp le D at ed : 24. 06. 13
S amp le R eceived : 1. 07. 13
S . N o . T est It ems S p ecificat io n R esu lt R e m a r k
1 Non - Volatile C ontent 1 8 ~ 2 2 % 20. 27 O K
2 A S H C ontent 2 0 ~ 2 4 % 21. 90 O K
3 p H 5. 7 ~ 6. 3 5. 70 O K
4 S p. Conductivity 1 3 0 0 ~ 1 9 0 0 1 6 2 0 O K
5 M E Q 2 4 ~ 3 2 26. 56 O K
6
S olvents A naly si s
Total % 1. 5 ~ 2. 5 2. 06 O K
1. Solvent Level
Revised
2. Daily Check
sheet forGloss
C h e c k e d
B y ( B U )
A p p r o v e d
B y ( B U )
P r e p a r e d B y ( C F T )
P r e p a r e d B y ( C F T ) C h e c k e d
B y ( U P )
A p p r o v e d
B y ( U P )
S i z e F r e
q .
P r e v e n t i o n / E r r o r
P r o o f i n g
D e t e
c t i o n
1
g r e a t e r t h a n
9 0
G l o s s o f
t o p c o a t
p a i n t e d
c a b i n s h o u l d b e
G l o s s o m e t e r - - - -
- - - -
A s p e r
Q u a l i t y
- - - - A u d i t S c h e d u l e
P / P A / C Q / F -
0 0 6 )
N o n e
* I n c a s e Q C i n c h a r g e f i n d s t h e g l o s s o f p a i n t e d
c a b i n t b e o u t o f s p e c i f i c a t i o n , t h e n i n c h a r g e
n e e d s t o i n s t r u c t t h e p o l i s h i n g l i n e o p e r a t o r t o
d o t h e p o l i s h i n g o f t h e w h o l
n o n - c o n f o r m i n g c a b i n .
G l o s s t e s t i n g b y Q C i n c h a r g e
* A f t e r w a r d s , t h e Q C i n c h a r g e n e e d s t o r e c h e c k
t h e
a n d r e c o r d i n g o f o b s e r v a t i o n s
g l o s s o f t h e c a b i n . I f t h e g l o s s i s f o u n d t o b e
O K , t h e n h e
i n D a i l y q u a l i t y c h e c k s h e e t
n e e d s t o s e n d t h e c a b i n t o w a x b o o t h f o r f u r t h e r
( P / P A / C Q / F - 0 1 3 )
p r o c e s s i n g . I n c a s e t h e g l o s s i s N O T O K , t h e n t h e Q C i
c h a r g e n e e d s t o i n f o r m t h e l i n e i n c h a r g e a n d
i n s t r u c t h i
t o d o d r y s a n d i n g a n d r e - p a i n t i n g o f t h e c a b i n .
* A f t e r r e - p a i n t i n g , t h e l i n e i n c h a r g e n e e d s t o
g e t t h e a p p r o v a l f r o m Q C a n d t h e n o n l y s e n d
t h e c a b i n f o r f u r t h e
p r o c e s s i
n g .
2
T o p c o a t
p a i n t
0 / 1 0 0 i n
a d h e s i o n
t e s t
t e s t e r
f i l m s h o u l d p a s s C r o s s H a t c h
- - - - - - - -
A s p e r
Q u a l i t y
- - - - A u d i t S c h e d u l e
P / P A / C Q / F -
0 0 6 )
N o n e
* I n c a s e o f a d h e s i o n f a i l u r e , t h e Q C i n c h a r g e
n e e d s t o i m m e d i a t e l y s t o p t h e l i n e a n d c h e c k
t h e a d h e s i o n o f a l l t p r o c e s s e d c a b i n s f o r t h a t
d a y . I f t h e a d h e s i o n t e s t i s f o u O K i n r e s t , t h e n
h e n e e d s t o o n l y q u a r a n t i n e t h e n o n - c o n f o r m i
n g c a b i n a n d p e r f o r m s o l v e n t t e s t o n t h e s a m e
c a b i n . I f s o l v e n t t e s t r e s u l t s a r e f o u n d t o b e N O T
O K , t h e a d h e s i o n t e s t o f t o p c o a t t h e Q C i n c h a r g e n e e d s t o i n s t r u c t
t h e l i n e i n c h a r g e t o
p a i n t e d c a b i n u s i n g c r o s s r e b a k e t h e s a m e c a b i n .
h a t c h t e s t e r b y Q C i n c h a r g e * T h e l i n e i n c h a r g e n e e d s t o r e b a k e t h e
c a b i n b y p a s s i n a n d r e c o r d i n g o f o b s e r v a t i o n s t h r o u g h o v e n a n d
t h e r e a f t e r g e t t h e s a m e r e - i n s p e c t e d b
i n D a i l y q u a l i t y c h e c k s h e e t C r a f t e r t h e a p p r o v a l o f Q C o n l y , h e c a n
s e n d t h e c a b i n t ( P / P A / C Q / F - 0 1 3 ) w a x b o o t h f o r f u r t h e r p r o c e s s i
n g .
* I n c a s e t h e r e s u l t s o f s o l v e n t t e s t a r e f o u n d t o
b e O K , t h e n t h e Q C i n c h a r g e n e e d s t o i n s t r u c t
t h e l i n e i n c h a r g e
f o r d r y s a n d i n g f o l l o w e d b y r e p a i n t i n g o f t h e
c a b i n .
* T h e l i n e i n c h a r g e a f t e r r e p a i n t i n g o f t h e c a b i n
n e e d s t o
g e t t h e a p p r o v a l o f Q C a n d t h e n o n l y s e n d t h e
c a b i n f o r f u r t h e r p r o c e s s i n g .
E a c h
C a b
1 0 0 %
E a c h
C a b
1 0 0 %
a s p e r c a b
p a i n t
1 q u a l i t y s c h e d u l e
( P / P A / C Q / F -
0 0 6 )
D a t e :
1 5 . 1 1 . 1 3
D a
t e
3
P a r t N o . / L a t e s t c h a n g e L e v e l : 1 . B 0 Y 0 0 6 0 1 /
B 0 Y 0 0 8 0 1
2 . B 0 Y 1 7 7 0 1
C o r e T e a m : R o h i t , D e e p a k , L a k h v i n d e r K a u r , R i s h i , A j a y , M u k e s h , S h i v C u s t o m e r E n g i n e e r i n g A p p r o v a l
D a t e ( I f R e q u i r e d ) :
P u j a n , A k s h a n s h , J o y G u r u
S p e c i a
l
M e
t h o d s
S u p p l i e r P l a n t : S u p p l i e r
C o d e :
O t h e r A p p r o v a l D a t e ( I f R e
q u i r e d ) :
O t h e r A p p r o v a l D a t e ( I f R e
q u i r e d ) :
S u p p l i e r P l a n t A p p r o v a l
D a t e :
C u s t o m e r Q u a l i t y
A p p r o v a l :
S a m p l e
S i z e
O p e r a t o r
S a m p l e S i z e I n s p e
c t o r
S i z e F r e q .
P a r t / P r o c e s s N a m e /
M a c h i n e , D e v i c e ,
P r o c e s s O p e r a t i o n
J i g , T o o l s f o r M f g .
N o . d e s c r i p t i o n
C h a r a c t e
r i s t i c
t h e p a i n t e d c a b i n
2 6 0
I n s p e c t i o n a n d p o l i s h i n g p a d ,
s h o u l d b e f r e e f r o m
P o l i s h i n g c o n v e y o r , p o l i s h e r
p a i n t i n g
d e f e c t s
C o n t r o l M e
t h o d R e a c t i o n P l a n i n c l u d i n g c o r r e
c t i v e a c t i o n
N o . P r o d u c
t
P r o c e
s s
v i s u a l c h e c k i n g b y p o l i
s h i n g l i n e o p e r a t o r a f t e r
r e c t i f i c a t i o n
a n d r e c o r d i n g o f s a m e i n s e l f
* I n c a s e p a i n t s a g i s p r e s e n t o n t h e p a i n t e d
c a b i n , t h e n
c e r t i f i c a t i o n c a r d ( ( P / P A / M / F -
t h e o p e r a t o r n e e d s t o f i r s t t r y
d o i n g s a n d i n g o f t h e
0 3 0 & P / P A / M / F - 0 3 3 ) )
a f f e c t e d p o r t i o n ( i n c a s e i t i s o f v e r y s m a l l g r a d e )
f o l l o w e
v i s u a l c h e c k i n g b y Q C g a t e
b y s u b s e q u e n t p o l i s h i n g . I f t h e d e f e c t i s r e c t i f i e d ,
t h e n t h
o p e r a t o r a t p o l i s h i n g s t a g e f o r
o p e r a t o r n e e d s t o s e n d t h e r e c t i f i e d c a b i
n t o W a x b o o t h
p a i n t i n g d e f e c t s a n d
f o r f u r t h e r p r o c e s s i n g . W h e r e a s i f t h e d e f e c t i s t i l l n o t
r e c o r d i n g i n d e f e c t s c h e c k
r e c t i f i e d , t h e n t h e s a m e d e f e c t e d C a b i n n e e d s t o
b e s e
s h e e t ( P / P A / C Q / F - 0 0 4 )
t o S p o t r e p a i r b o o t h f o r t o u c h u p . A f t e r
a p p r o v a l f r o m Q
, t h e c a b i n n e e d s t o b e s e n t t o W a x b o o t h f o r f u r t h e r
p r o c e s s i n g .
* I n c a s e t h e g r a d e i s h i g h , t h e n t h e c a b i n n e e d s
t o b e s e n t t o d r y s a n d i n g b o o t h f o r r e w o r k
o f t h e i d e n t i f i e d p o r t i o n . A f t e r r e w o r k , d r y
s a n d i n g l i n e o p e r a t o r n e e d s t o s e n d t h e s a m e
c a b i n t o t o p c o a t b o o t h f o r r e p a i n t i n g .
* I f Q C g a t e o p e r a t o r d e t e c t s a s i m i l a r n o n
c o n f o r m i n g c a b i n i n p o l i s h i n g l i n e , t h e n t h e
g a t e o p e r a t o r n e e d s t o
d u r i n g p r o d u c t a u d i t
t h e Q C o p e r a t o r n e e d s t o i n f o r m l i n e i n
c h a r g e .
q u a l i t y i n s p e c t i o n b y Q C i n
s e n d t h e c a b i n t o t o u c h u p b o o t h f o r m i n o r
g r a d e .
c h a r g e f o r p a i n t i n g d e f e c t s
* I n c a s e t h e n o n - c o n f o r m i t y i s o f h i g h e r
g r a d e , t h e n t h e n
( P / P A / C Q / F - 0 0 3 )
* L i n e i n c h a r g e n e e d s t o s e n d t h e c a b i n t o d r y
s a n d i n g
b o o t h f o r r e w o r k f o l l o w e d b y r e p a i n t i n g o f t h e
c a b i n i n t o p c o a t b o o t h . A f t e r r e p a i n t i n g , t h e
Q C g a t e o p e r a t o r n e e d s t o r e - i n s p e c t t h e
c a b i n a n d o n c e i t i s O K , t h e n o n n e e d s t o
s e n d t o w a x b o o t h f o r f u r t h e r p r o c e s s i n g .
c h a r a c t e r i s t i c s
P r o d u c t / P r o c e s s E v a l u a t i o n
S p e c i f i c a t i o n M e a s u r e
m e n t
T o l e r e n c e s T e c h n i q u e
s
n o s a g g i n g o f
V i s u a l
p a i n t
P a r t N a m e / D e s c r i p t i o n . : 1 . G 9 1 C A B I N
( S L E E P E R A N D D A Y ) 2 . B O S S
C A B I N
Pre -La unch Production
Approved By(BU)
Approved By(UP)
Size Freq. Prevention / Error Proofing Detection
1 A ppl i c at i on V i s c os i t y
2
Tem perat ure of P ai nt
Thi nner Mixture
Rat i o of P ai nt Thinner
Mixture
Ref. A s p e r
S uppl i er
n
R e c c o m m a d a t i o
B e a k e r &
2 0 L C a n
4 No c ont ami nati on -
B y In P r o c es s E ve r y 1 0 0 % filter
F i l l i ng
N o n e vi s ual Ins pec t i on
*In c a s e operat or fi nds a n y abnorm al i t y t o b e
out of s p e c , t hen h e i m m e d i at e l y n e e d s
i nform A r e a i nc harge.
0 1 1
P a i nt M i xi ng
Tank , F ord
W a t c h , To p c oa t 3
P ai nt ,Thi nner
2 2 5 P ai nt M i x i ng C u p , S t o p
No. Product Proce ss Specification Measurement
Tolerences Techniques
M e a s u ri n g b y
o n c e E ve r y H o u r ----- o n c e / m o n t h
1. V i s c os i t y t esti ng of
1. vi s ual c h e c ki n g a n d rec ordi ng of
Ref. V i s c os i t y V s F or d C u p B 4 i n c o m i n g pai nt b y Q C
pai nt vi s c os i t y b y pai nt k i t c hen
T e m p . gr a p h M e a s u ri n g b y
o n c e E ve r y H o u r ----- o n c e / m o n t h
i nc harge before i s s ue of
operat or i n pai nt
T h e r m o m e t er t he s a m e b a t c h f r o m
vi s c os i t y c h e c k s he e t (P / PA /M /F-
s t ores o n l i ne a n d
M e a s u ri n g b y rec ordi ng of s a m e i n
2. Qual i t y i ns pec t i on b y Q C
o n c e E ve r y H o u r ----- o n c e / m o n t h i n c o m i n g m at eri al
i nc harge for pai nt vi s c os i t y duri ng
c h e c k sh e et ( P P A M - F 0 -
p r o c e s s audi t P / P A / CQ/ F - 00 2
0 4 0 )
Part/ Process Name/
Machine, Device,
Process Operation
Jig,Tools for Mfg.
No. description
Control Method
Reaction Plan including corrective action
Spe cia l
characteristics
Product/ Process Evaluation
Da te
Sa m ple Size
Operator
Size Freq.
Sample Size Inspector
Part Name/Description. : 1. G91 CABIN (SLEEPER AND DAY)
2. BOSS CABIN
Supplier Plant : Supplier Code :
Supplier Plant Approval Date : Customer Quality Approval
Other Approval Date (If Required) : Other Approval Date (If Required) :
Characteristic Methods
Date : 18.12.13
P a r t N o . / L a t e st c h a n g e L e v e l : 1. B 0 Y 0 0 6 0 1 / B 0 Y 0 0 8 0 1
2. B 0 Y 1 7 7 0 1
Co re T e a m : Ro h i t, De e pak, La khvi nd er Ka u r,Rish i, Ajay,Mukesh , S hiv Customer Engineering Approval Date (If Required) : Prepared By(CFT) Checked By(BU)
P u j an,Aksh ansh ,Joy Gu r u Prepared By(CFT) Checked By(UP)
C O N T R O L P L AN
Prototype Key Contact/Phone :05944-259163 Date (Origin) :1/03/2011 Control Plan Number : P/PA/M/C/035 (PAINT KITCHEN)
Revision Number : 000
4
5
6
27 5/25/2017 Ashok Leyland Presentation
Step 7- Conclusion
 Benchmarked Gloss Level achieved from baseline 92 % to 95 %.
 Smooth, Glossy ( Paint Exterior appearance).
 Customer delight & attractive Quality
 Awarded by CV of the year.
 Sales Volume increased YOY from FY’14 (1081nos.) to FY’16 (2102 nos.) by 51%.
Boss Customer Assessment-
Positive
Horizontal Deployment
Boss :
Plastics parts • M/s TACO @ PNR
Captain Cabs
U-Truck Cabs
Thank
s

Gloss Boss cab Paint,25.08.16.pptx

  • 1.
    1 5/25/2017 AshokLeyland Presentation Paint Exterior appearance (Gloss) improvement in Boss Cab CQ: Cab Paint ,PNR QC Story
  • 2.
    Content  Problem  Observation Analysis  Actions  Check  Standardization  Conclusion 2 5/25/2017 Ashok Leyland Presentation
  • 3.
  • 4.
    Problem Identification Step 1-Problem Back Ground of the problem 93 92 95 96 95 94 93 92 91 90 BM (AALM-AVIA) Actual Boss@PNR Target Gloss Level %  92 % Gloss level low in PNR Produced Boss Cabs 4 5/25/2017 Ashok Leyland Presentation
  • 5.
    Theme & Target Theme& Target: Step 1- Problem • Perceived Quality Why • Low Gloss level in “BOSS“ Truck Cabin @ALP What • Gloss level = 92% , Target = 95% How 5 5/25/2017 Ashok Leyland Presentation
  • 6.
    Step 1- ProblemTeam Formation Team Members: 6 5/25/2017 Ashok Leyland Presentation Facilitator : Ramakant Sharma Leader : Shivpujan Gupta Members : Mukesh Rawat Swati Rawat Pooja Dewari Deepak Pant
  • 7.
     Presently Weare producing 03 models (Boss, G91 & Captain) ED SANDING TOP COAT PREPARATION PT LINE ED LINE SEALANT LINE PVC LINE TOP COAT LINE TOP COAT STORAGE INSPECTION POLISHING WAX INPUT FROM WELD ( BIW ) TO TRIM PAINT KITCHEN QG-1 QG-2 QG-3 QG-4 QG-5 Step 2- Observation Painting Process Flow Gloss Measurements
  • 8.
    8 5/25/2017 AshokLeyland Presentation Step 2 Observation MSA for Gloss Measurement Variation : Gauge R & R Study: MSA study is performed for Gloss-meter, to understand the %age variation within appraisers and between appraisers. 100 75 50 Deepak Swati 2 1 0 Variation Breakdown %Process R Chart of Test-Retest Ranges by Operator(Repeatability) Operators and parts with larger ranges have less consistency. Reproducibility — Operator by Part Interaction Look for abnormal points or patterns. 100 Source StDev (data) Total Gage 0.471 2.16 75 Repeatability 0.364 1.67 Reproducibility 0.298 1.37 Part-to-Part 21.819 99.98 50 Process Var (data) 21.824 100.00 Reproducibility — Operator Main Effects Look for operators with higher orlower averages. 100 75 50 Deepak Pooja Preety Swati Gage R&R Study for Measurements Variation Report Xbar Chart of Part Averages byOperator At least 50% should be outside the limits. (actual: 100.0%) Pooja Preety Results: Repeatability = 1.67% Reproducibility = 1.37 %, the result shows that we can adequately measure process performance Measurement (R&R) variations are so less or negligible so we can go for process variation. Status:
  • 9.
    Step 2- Observation ProblemDefinition  Low Gloss in Boss model: 92 %  Gloss measurement on daily basis at below location: X1, X2, X3 & X4 X3 X1 X2 X4 B- Class Area *A- Class Area B- Class Area Gloss Data collection for Only A-Class Area *Why A-Class area? : A-Class Area coming in direct eye contact ofcustomer
  • 10.
    93.5 93.0 92.5 92.0 91.5 X2 The mean ofX1 is not significantly different from the mean of X2 (p > 0.05). 0 0.05 0.1 Yes > 0.5 No P = 0.815 -0.1 0.0 0.1 0.2 -0.2 -- Test: There is not enough evidence to conclude thatthe means differ at the 0.05 level of significance. -- CI: Quantifies the uncertainty associated with estimating the difference from sample data. You can be 95% confident that the true difference is between -0.14944 and0.18944. -- Distribution of Data: Comparethe location and means of samples. Look for unusual data before interpreting the results of the test. Distribution of Data Compare the data and means of the samples. X1 Do the means differ? 2-Sample t Test for the Mean of X1 and X2 Summary Report Statistics X1 X2 Sample size 50 50 Mean 92.362 92.342 95% CI (92.22, 92.51) (92.250, 92.434) Standard deviation 0.50825 0.32331 Difference between means* 0.02 95% CI (-0.14944, 0.18944) * The difference is defined as X1 -X2. 95% CI for the Difference Does the interval include zero? Comments Step 2- Observation ANOVA  Location X1 & X2 are symmetric for painting  No Significant Difference in Gloss level 02 Sample t-test for X1 & X2 location : So we can consider X1 & X2 location as 01 subgroups
  • 11.
    Step 2- Observation DataCollection 1). Sample Size– 50, 2). Sub Group Size-02, 3). Avg. Value - 92.3 4). Process isstable X1 X2 C ab-1 C ab-6 C ab-11 C ab-16 Cab-21 93.5 93.0 92.5 92.0 91.5 C ab-26 C ab-31 C ab-36 C ab-41 Cab-46 Cabin Sample Mean _ X=9 2.352 UC L=93.246 LCL=91.458 C ab-1 C ab-6 C ab-11 C ab-16 Cab-21 1.6 1.2 0.8 0.4 0.0 C ab-26 C ab-31 C ab-36 C ab-41 Cab-46 Cabin Sample Range _ R=0 .475 UC L=1.553 LCL=0 For the initial gloss level we have taken Gloss Data of 50 cabins to analysis the processstability. We have observed process was stable & gloss mean value ~92% Daily Quality Check Sheet Xbar-R Chart of Gloss Level
  • 12.
    Step 2- Observation Causeand effect diagram: Level 1 MAN MACHINE METHOD MATERIAL Robot Voltage Booth Temperatur e Booth Humidity Additives of Topcoat Post Touch- up manual Paint Application Tag-o-Rag Method No. of Coatings Viscosity Painting skill RobotFlow Rate/ pattern Robot Preventive Maintenanc e Painting Application Angle Sanding& Polishing Polishing Material PT-ED Material Low Gloss ED & Top coat DFT Sheet Roughness Cab wiping Lux level in Top coat booth Top coat Booth Balance Paint resistivity Topcoat Paint Material Slow thinner Solvent Evaporation rate Phosphate Roughness Training / Painting experience Robot Teaching Gun Pattern Paint formulation EDBath Solvent Paint Potential Cause 12 5/25/2017 Ashok Leyland Presentation Non-Potential Cause To analyze Process variation causes we have done brain storming through Fishbone diagram as below Shown and rectified 08 potential causes :
  • 13.
    Step 2- Observation Causeand effect diagram : Level 2 Significant cause & Effects for Low Gloss: MAN MACHINE METHOD MATERIAL Booth Temperature Booth Humidity Robot Flow Rate/ pattern Additives of Topcoat ED Bath Slow Thinner Paint Viscosity Post Touch up Low Gloss 1 4 7 5 3 2 8 6 *Sequence numbers (1* to 8) Given as per PaintingProcess Flow …. 13 5/25/2017 Ashok Leyland Presentation
  • 14.
    Step 3-Analysis Causes Validation: Cause Validation through Placket Screening Analysis : 1. No. of factors- 08, No. of levels-2, No. of runs- 12 Factors Corresponding to red arrows are Significantfactors 14 5/25/2017 Ashok Leyland Presentation
  • 15.
    Step 3-Analysis Trials: After Eliminationof Insignificant Causes from Placket Screening: Now according to placket screening 88.55% Variation in Gloss is due to 04factors: a)ED Bath Solvent%, b) Robot Flow Rate, c) Slow Thinner, d)Paint Viscosity 15 5/25/2017 Ashok Leyland Presentation
  • 16.
    Sl. No. FactorsDifficulty Remark 1 Solvent % Pilot Batch preparation in scale down model Solvent addition as per design ~04 hour per Run ( Refer the Example) 2 Flow Rate Flow rate adjustment in all runs 01 hour per Run for manual flow rate adjustment & application 3 Slow Thinner Slow thinner addition as per Design ( in Pot Quantity) 30 minute per run for pot quantity 4 Paint Viscosity Viscosity setting in all runs ( in Pot Quantity) 30 minute per run 5 Touch/Up No ------- 6 Booth Temp. No, Automation is there ------- 7 Booth Humidity No, Automation is there ------- 8 Additives No ------- 16 5/25/2017 Ashok Leyland Presentation Step 3-Analysis Placket Screening Model: StdOrde r RunOrder PtTyp e Blocks Solvent % Flow Rate Slow Thinne r Paint Viscosity Touch/Up Booth Temp. Booth Humidity Additives Gloss % 3 1 1 1 1 400 3 24 yes 25 55 no 96.2 1 2 1 1 2.5 300 3 24 no 25 75 yes 95.8 5 3 1 1 2.5 400 1 26 yes 25 75 no 95.4 11 4 1 1 1 400 1 24 no 30 75 yes 93.5 4 5 1 1 2.5 300 3 26 no 30 55 no 95.2 10 6 1 1 2.5 300 1 24 yes 30 75 no 94.2 12 7 1 1 1 300 1 24 no 25 55 no 92.2 7 8 1 1 1 400 3 26 no 30 75 no 93.9 6 9 1 1 2.5 400 3 24 yes 30 55 yes 97.5 2 10 1 1 2.5 400 1 26 no 25 55 yes 93.6 9 11 1 1 1 300 1 26 yes 30 55 yes 90 8 12 1 1 1 300 3 26 yes 25 75 yes 93.2 Below Challenges faced to follow Placket Screening Design :
  • 17.
    Challenges for solvent% changes in ED paint bath main tank Panel to be coated (-) ED bath (+) (to be circulated continuously) We can not take the risk of any abnormality in main tank. ED paint main bath tank volume is 1,71,000Liter. ED tank We can simulate the same exercise in Scale down Bath  To make Scale Down bath with Different Solvent % level (~4 hours for one experiment)  Pilot Scale Down batch of 02 liter ED Bath Preparation with DI Water, F1 & F2 Solution.  Homogeneous mixture for bath maturity  Added solvent % as per run  Final Panel Preparation  Baking in Lab Oven ED coated panel Reference pic. 17 5/25/2017 Ashok Leyland Presentation
  • 18.
    Causes Validation : Step4-Action These 04 factors taken up in a full factorialdesign to optimize the value of Gloss level: No. of factors- 04 ,No. of levels-2, No. of runs- 32 [ N=(LF ) R ], Replicate=02 Factors Corresponding to red arrows are Significantfactors 18 5/25/2017 Ashok Leyland Presentation
  • 19.
    Causes Validation : Step4-Action Elimination of insignificant causes one by one from Full factorial Design: As per full factorial DOE conducted in ACTION phase,80.57 % Variation in Gloss Due to : 19 5/25/2017 Ashok Leyland Presentation 1. ED Bath Solvent% 3. Slow Thinner 2. Robot Flow Rate 4. Solvent% * Paint Viscosity 5. Robot Flow Rate * Paint Viscosity
  • 20.
    Optimization of parameters: Step 4-Action After elimination of insignificant causes from Full factorial Design, we have optimized all significant causes as below table: Factor Optimization Factors Before DOE The process parameter range Output from DOE Process correction after optimization ( Engg. Trials) Why we cannot go beyond this parameter range ED Bath Solvent% 1.0 – 2.0 2 1.8 – 2.2 Poor adhesion & High cost Robot flow rate 300 - 450 400 380 - 420 Sag issue & high cost Slow thinner % Nil 1 0.5 – 2.0 Sag issue on curve area Paint Viscosity 20 - 26 22 20 - 24 Sag issue at < 20 viscosity Gloss% 91.9 95.3 >95 -- 20 5/25/2017 Ashok Leyland Presentation
  • 21.
    Slow Thinner container Challenges forSlow thinner % & Viscosity adjustment  Paint Preparation in Paint Kitchen: (~3 hours)  Slow solvent % introduction in mixing tank  Homogeneous mixture of paint & solvent  Viscosity adjustment as per DOE  Transfer the paint in main tank for robotpainting  Paint application by robot & bake the cabin inoven  Final output check on cabin 21 5/25/2017 Ashok Leyland Presentation
  • 22.
    Challenges for RobotFlow rate adjustment  Flow rate adjustment in Robot: ( ~3 hours for one experiment )  Robot Flow rate adjustment as per DOE output at required brush level based on location / class ofcabin.  Top-coat Painting on cabin as per DOE output  Oven baking & Result check Top coat paint application by Robot 22 5/25/2017 Ashok Leyland Presentation
  • 23.
    Step 5-Check Result Confirmation Glosslevel After all optimization Daily Check Sheet 1. Sample Size– 45, 2. Sub Group Size-02, 3. Avg. Value - 95.4 , 4. Process isstable X1 X2 C ab-1 C ab-5 C ab-9 C ab-13 Cab-17 96 95 94 C ab-21 C ab-25 C ab-29 C ab-33 C ab-37 C ab-41 C ab-45 Cabin Sam ple M e a n _ X=95.324 UC L=96.594 LCL=94.055 C ab-1 C ab-5 C ab-9 C ab-13 Cab-17 2.0 1.5 1.0 0.5 0.0 C ab-21 C ab-25 C ab-29 C ab-33 C ab-37 C ab-41 C ab-45 Cabin Sam ple Range _ R=0.675 UC L=2.206 LCL=0 Xbar-R Chart of Gloss Level After 23 5/25/2017 Ashok Leyland Presentation
  • 24.
    Bench Marking Gloss Level G L O S S 9 2 8 8 9 3 9 3 9 3 9 59 4 9 6 8 8 8 6 9 0 9 2 9 4 9 6 9 8 10 0 AL @PNR- BOSS ,Before TATA- ACE AL- Dost AL@AALM- AVIA Bharat Benz AL @PNR- BOSS, After Maruti - Ertiga Honda- City Gloss Level % Commercial vehicle Passenger Car 24 5/25/2017 Ashok Leyland Presentation
  • 25.
    Gloss Evaluation byTop Management After Implementation Evaluated By 1. Head Operations 2. SD-CQ 3. AALM, AVIA Team 4. PD – PNR 5. CQ Head –PNR 6. BU Head- Cab & Team Comments: Orange peel & Gloss has improved and maintain the same levelfor mass production.
  • 26.
    26 5/25/2017 AshokLeyland Presentation 4. Revised Control plan: ED solvent level Step 6- Standardize 1. Solvent Level spec revised from 1.0~2.0 % To 1.5~2.5% . 2. Daily Gloss Monitoring. 3. Daily Thinner Combination Check SheetIntroduced 5. Revised Control plan: Top Coat Glosslevel 6. Revised Control plan : Paint Kitchen 3. Daily thinner Combination Check Sheet T O , M r . Ri shi kant Si ngh D A T E :- 3 . 0 7 . 1 3 M / s M / S A L L - P a n t n a g a r P a in t S h o p C E D B A T H S A M P L E A NA L YS IS B Y M / S . K NP C H E C K E D B Y: - M. K . G c c : E D L a b Mumbai . R E M A R K S : - P lease main t ain A S H % a b o v e 2 3 % . T est ed B y: Y. K . S h a r m a F o r K A N S A I N E R O L A C P A I N T S L T D . ( N A V E E N K U M A R ) K A N S A I N E R O L A C P A I N T S Ltd B A W A L P L A N T , P l o t N o . 3 6 S e c t o r - 7 H S I D C G r o w t h C e n t e r B a w a l 1 2 3 5 0 1 D i s t . R e w a r i , ( H ar y a na ) T EL EP HONE N O - 0 1 2 8 4 - 2 6 1 7 0 7 ; S amp le D at ed : 24. 06. 13 S amp le R eceived : 1. 07. 13 S . N o . T est It ems S p ecificat io n R esu lt R e m a r k 1 Non - Volatile C ontent 1 8 ~ 2 2 % 20. 27 O K 2 A S H C ontent 2 0 ~ 2 4 % 21. 90 O K 3 p H 5. 7 ~ 6. 3 5. 70 O K 4 S p. Conductivity 1 3 0 0 ~ 1 9 0 0 1 6 2 0 O K 5 M E Q 2 4 ~ 3 2 26. 56 O K 6 S olvents A naly si s Total % 1. 5 ~ 2. 5 2. 06 O K 1. Solvent Level Revised 2. Daily Check sheet forGloss C h e c k e d B y ( B U ) A p p r o v e d B y ( B U ) P r e p a r e d B y ( C F T ) P r e p a r e d B y ( C F T ) C h e c k e d B y ( U P ) A p p r o v e d B y ( U P ) S i z e F r e q . P r e v e n t i o n / E r r o r P r o o f i n g D e t e c t i o n 1 g r e a t e r t h a n 9 0 G l o s s o f t o p c o a t p a i n t e d c a b i n s h o u l d b e G l o s s o m e t e r - - - - - - - - A s p e r Q u a l i t y - - - - A u d i t S c h e d u l e P / P A / C Q / F - 0 0 6 ) N o n e * I n c a s e Q C i n c h a r g e f i n d s t h e g l o s s o f p a i n t e d c a b i n t b e o u t o f s p e c i f i c a t i o n , t h e n i n c h a r g e n e e d s t o i n s t r u c t t h e p o l i s h i n g l i n e o p e r a t o r t o d o t h e p o l i s h i n g o f t h e w h o l n o n - c o n f o r m i n g c a b i n . G l o s s t e s t i n g b y Q C i n c h a r g e * A f t e r w a r d s , t h e Q C i n c h a r g e n e e d s t o r e c h e c k t h e a n d r e c o r d i n g o f o b s e r v a t i o n s g l o s s o f t h e c a b i n . I f t h e g l o s s i s f o u n d t o b e O K , t h e n h e i n D a i l y q u a l i t y c h e c k s h e e t n e e d s t o s e n d t h e c a b i n t o w a x b o o t h f o r f u r t h e r ( P / P A / C Q / F - 0 1 3 ) p r o c e s s i n g . I n c a s e t h e g l o s s i s N O T O K , t h e n t h e Q C i c h a r g e n e e d s t o i n f o r m t h e l i n e i n c h a r g e a n d i n s t r u c t h i t o d o d r y s a n d i n g a n d r e - p a i n t i n g o f t h e c a b i n . * A f t e r r e - p a i n t i n g , t h e l i n e i n c h a r g e n e e d s t o g e t t h e a p p r o v a l f r o m Q C a n d t h e n o n l y s e n d t h e c a b i n f o r f u r t h e p r o c e s s i n g . 2 T o p c o a t p a i n t 0 / 1 0 0 i n a d h e s i o n t e s t t e s t e r f i l m s h o u l d p a s s C r o s s H a t c h - - - - - - - - A s p e r Q u a l i t y - - - - A u d i t S c h e d u l e P / P A / C Q / F - 0 0 6 ) N o n e * I n c a s e o f a d h e s i o n f a i l u r e , t h e Q C i n c h a r g e n e e d s t o i m m e d i a t e l y s t o p t h e l i n e a n d c h e c k t h e a d h e s i o n o f a l l t p r o c e s s e d c a b i n s f o r t h a t d a y . I f t h e a d h e s i o n t e s t i s f o u O K i n r e s t , t h e n h e n e e d s t o o n l y q u a r a n t i n e t h e n o n - c o n f o r m i n g c a b i n a n d p e r f o r m s o l v e n t t e s t o n t h e s a m e c a b i n . I f s o l v e n t t e s t r e s u l t s a r e f o u n d t o b e N O T O K , t h e a d h e s i o n t e s t o f t o p c o a t t h e Q C i n c h a r g e n e e d s t o i n s t r u c t t h e l i n e i n c h a r g e t o p a i n t e d c a b i n u s i n g c r o s s r e b a k e t h e s a m e c a b i n . h a t c h t e s t e r b y Q C i n c h a r g e * T h e l i n e i n c h a r g e n e e d s t o r e b a k e t h e c a b i n b y p a s s i n a n d r e c o r d i n g o f o b s e r v a t i o n s t h r o u g h o v e n a n d t h e r e a f t e r g e t t h e s a m e r e - i n s p e c t e d b i n D a i l y q u a l i t y c h e c k s h e e t C r a f t e r t h e a p p r o v a l o f Q C o n l y , h e c a n s e n d t h e c a b i n t ( P / P A / C Q / F - 0 1 3 ) w a x b o o t h f o r f u r t h e r p r o c e s s i n g . * I n c a s e t h e r e s u l t s o f s o l v e n t t e s t a r e f o u n d t o b e O K , t h e n t h e Q C i n c h a r g e n e e d s t o i n s t r u c t t h e l i n e i n c h a r g e f o r d r y s a n d i n g f o l l o w e d b y r e p a i n t i n g o f t h e c a b i n . * T h e l i n e i n c h a r g e a f t e r r e p a i n t i n g o f t h e c a b i n n e e d s t o g e t t h e a p p r o v a l o f Q C a n d t h e n o n l y s e n d t h e c a b i n f o r f u r t h e r p r o c e s s i n g . E a c h C a b 1 0 0 % E a c h C a b 1 0 0 % a s p e r c a b p a i n t 1 q u a l i t y s c h e d u l e ( P / P A / C Q / F - 0 0 6 ) D a t e : 1 5 . 1 1 . 1 3 D a t e 3 P a r t N o . / L a t e s t c h a n g e L e v e l : 1 . B 0 Y 0 0 6 0 1 / B 0 Y 0 0 8 0 1 2 . B 0 Y 1 7 7 0 1 C o r e T e a m : R o h i t , D e e p a k , L a k h v i n d e r K a u r , R i s h i , A j a y , M u k e s h , S h i v C u s t o m e r E n g i n e e r i n g A p p r o v a l D a t e ( I f R e q u i r e d ) : P u j a n , A k s h a n s h , J o y G u r u S p e c i a l M e t h o d s S u p p l i e r P l a n t : S u p p l i e r C o d e : O t h e r A p p r o v a l D a t e ( I f R e q u i r e d ) : O t h e r A p p r o v a l D a t e ( I f R e q u i r e d ) : S u p p l i e r P l a n t A p p r o v a l D a t e : C u s t o m e r Q u a l i t y A p p r o v a l : S a m p l e S i z e O p e r a t o r S a m p l e S i z e I n s p e c t o r S i z e F r e q . P a r t / P r o c e s s N a m e / M a c h i n e , D e v i c e , P r o c e s s O p e r a t i o n J i g , T o o l s f o r M f g . N o . d e s c r i p t i o n C h a r a c t e r i s t i c t h e p a i n t e d c a b i n 2 6 0 I n s p e c t i o n a n d p o l i s h i n g p a d , s h o u l d b e f r e e f r o m P o l i s h i n g c o n v e y o r , p o l i s h e r p a i n t i n g d e f e c t s C o n t r o l M e t h o d R e a c t i o n P l a n i n c l u d i n g c o r r e c t i v e a c t i o n N o . P r o d u c t P r o c e s s v i s u a l c h e c k i n g b y p o l i s h i n g l i n e o p e r a t o r a f t e r r e c t i f i c a t i o n a n d r e c o r d i n g o f s a m e i n s e l f * I n c a s e p a i n t s a g i s p r e s e n t o n t h e p a i n t e d c a b i n , t h e n c e r t i f i c a t i o n c a r d ( ( P / P A / M / F - t h e o p e r a t o r n e e d s t o f i r s t t r y d o i n g s a n d i n g o f t h e 0 3 0 & P / P A / M / F - 0 3 3 ) ) a f f e c t e d p o r t i o n ( i n c a s e i t i s o f v e r y s m a l l g r a d e ) f o l l o w e v i s u a l c h e c k i n g b y Q C g a t e b y s u b s e q u e n t p o l i s h i n g . I f t h e d e f e c t i s r e c t i f i e d , t h e n t h o p e r a t o r a t p o l i s h i n g s t a g e f o r o p e r a t o r n e e d s t o s e n d t h e r e c t i f i e d c a b i n t o W a x b o o t h p a i n t i n g d e f e c t s a n d f o r f u r t h e r p r o c e s s i n g . W h e r e a s i f t h e d e f e c t i s t i l l n o t r e c o r d i n g i n d e f e c t s c h e c k r e c t i f i e d , t h e n t h e s a m e d e f e c t e d C a b i n n e e d s t o b e s e s h e e t ( P / P A / C Q / F - 0 0 4 ) t o S p o t r e p a i r b o o t h f o r t o u c h u p . A f t e r a p p r o v a l f r o m Q , t h e c a b i n n e e d s t o b e s e n t t o W a x b o o t h f o r f u r t h e r p r o c e s s i n g . * I n c a s e t h e g r a d e i s h i g h , t h e n t h e c a b i n n e e d s t o b e s e n t t o d r y s a n d i n g b o o t h f o r r e w o r k o f t h e i d e n t i f i e d p o r t i o n . A f t e r r e w o r k , d r y s a n d i n g l i n e o p e r a t o r n e e d s t o s e n d t h e s a m e c a b i n t o t o p c o a t b o o t h f o r r e p a i n t i n g . * I f Q C g a t e o p e r a t o r d e t e c t s a s i m i l a r n o n c o n f o r m i n g c a b i n i n p o l i s h i n g l i n e , t h e n t h e g a t e o p e r a t o r n e e d s t o d u r i n g p r o d u c t a u d i t t h e Q C o p e r a t o r n e e d s t o i n f o r m l i n e i n c h a r g e . q u a l i t y i n s p e c t i o n b y Q C i n s e n d t h e c a b i n t o t o u c h u p b o o t h f o r m i n o r g r a d e . c h a r g e f o r p a i n t i n g d e f e c t s * I n c a s e t h e n o n - c o n f o r m i t y i s o f h i g h e r g r a d e , t h e n t h e n ( P / P A / C Q / F - 0 0 3 ) * L i n e i n c h a r g e n e e d s t o s e n d t h e c a b i n t o d r y s a n d i n g b o o t h f o r r e w o r k f o l l o w e d b y r e p a i n t i n g o f t h e c a b i n i n t o p c o a t b o o t h . A f t e r r e p a i n t i n g , t h e Q C g a t e o p e r a t o r n e e d s t o r e - i n s p e c t t h e c a b i n a n d o n c e i t i s O K , t h e n o n n e e d s t o s e n d t o w a x b o o t h f o r f u r t h e r p r o c e s s i n g . c h a r a c t e r i s t i c s P r o d u c t / P r o c e s s E v a l u a t i o n S p e c i f i c a t i o n M e a s u r e m e n t T o l e r e n c e s T e c h n i q u e s n o s a g g i n g o f V i s u a l p a i n t P a r t N a m e / D e s c r i p t i o n . : 1 . G 9 1 C A B I N ( S L E E P E R A N D D A Y ) 2 . B O S S C A B I N Pre -La unch Production Approved By(BU) Approved By(UP) Size Freq. Prevention / Error Proofing Detection 1 A ppl i c at i on V i s c os i t y 2 Tem perat ure of P ai nt Thi nner Mixture Rat i o of P ai nt Thinner Mixture Ref. A s p e r S uppl i er n R e c c o m m a d a t i o B e a k e r & 2 0 L C a n 4 No c ont ami nati on - B y In P r o c es s E ve r y 1 0 0 % filter F i l l i ng N o n e vi s ual Ins pec t i on *In c a s e operat or fi nds a n y abnorm al i t y t o b e out of s p e c , t hen h e i m m e d i at e l y n e e d s i nform A r e a i nc harge. 0 1 1 P a i nt M i xi ng Tank , F ord W a t c h , To p c oa t 3 P ai nt ,Thi nner 2 2 5 P ai nt M i x i ng C u p , S t o p No. Product Proce ss Specification Measurement Tolerences Techniques M e a s u ri n g b y o n c e E ve r y H o u r ----- o n c e / m o n t h 1. V i s c os i t y t esti ng of 1. vi s ual c h e c ki n g a n d rec ordi ng of Ref. V i s c os i t y V s F or d C u p B 4 i n c o m i n g pai nt b y Q C pai nt vi s c os i t y b y pai nt k i t c hen T e m p . gr a p h M e a s u ri n g b y o n c e E ve r y H o u r ----- o n c e / m o n t h i nc harge before i s s ue of operat or i n pai nt T h e r m o m e t er t he s a m e b a t c h f r o m vi s c os i t y c h e c k s he e t (P / PA /M /F- s t ores o n l i ne a n d M e a s u ri n g b y rec ordi ng of s a m e i n 2. Qual i t y i ns pec t i on b y Q C o n c e E ve r y H o u r ----- o n c e / m o n t h i n c o m i n g m at eri al i nc harge for pai nt vi s c os i t y duri ng c h e c k sh e et ( P P A M - F 0 - p r o c e s s audi t P / P A / CQ/ F - 00 2 0 4 0 ) Part/ Process Name/ Machine, Device, Process Operation Jig,Tools for Mfg. No. description Control Method Reaction Plan including corrective action Spe cia l characteristics Product/ Process Evaluation Da te Sa m ple Size Operator Size Freq. Sample Size Inspector Part Name/Description. : 1. G91 CABIN (SLEEPER AND DAY) 2. BOSS CABIN Supplier Plant : Supplier Code : Supplier Plant Approval Date : Customer Quality Approval Other Approval Date (If Required) : Other Approval Date (If Required) : Characteristic Methods Date : 18.12.13 P a r t N o . / L a t e st c h a n g e L e v e l : 1. B 0 Y 0 0 6 0 1 / B 0 Y 0 0 8 0 1 2. B 0 Y 1 7 7 0 1 Co re T e a m : Ro h i t, De e pak, La khvi nd er Ka u r,Rish i, Ajay,Mukesh , S hiv Customer Engineering Approval Date (If Required) : Prepared By(CFT) Checked By(BU) P u j an,Aksh ansh ,Joy Gu r u Prepared By(CFT) Checked By(UP) C O N T R O L P L AN Prototype Key Contact/Phone :05944-259163 Date (Origin) :1/03/2011 Control Plan Number : P/PA/M/C/035 (PAINT KITCHEN) Revision Number : 000 4 5 6
  • 27.
    27 5/25/2017 AshokLeyland Presentation Step 7- Conclusion  Benchmarked Gloss Level achieved from baseline 92 % to 95 %.  Smooth, Glossy ( Paint Exterior appearance).  Customer delight & attractive Quality  Awarded by CV of the year.  Sales Volume increased YOY from FY’14 (1081nos.) to FY’16 (2102 nos.) by 51%.
  • 28.
  • 29.
    Horizontal Deployment Boss : Plasticsparts • M/s TACO @ PNR Captain Cabs U-Truck Cabs
  • 30.